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Preface

Research in differential geometry requires a broad core of knowledge. For over half
a century, this core has begun with the study of curves and surfaces in Euclidean
space and has ended with the Gauss—Bonnet Theorem. Even this portion of core
material is disappearing from many undergraduate programs. One goal of this
book is to broaden core knowledge with an introduction to topics in classical
differential geometry that are of current research interest. Another goal is to provide
an elementary introduction to the method of moving frames. This method provides
a unifying approach to each topic.

A space is homogeneous if a Lie group acts transitively on it. In this book a
moving frame along a submanifold of a homogeneous space is a map from an open
subset of the submanifold into the group of transformations of the ambient space. It
is a very special case of the idea of sections of the principal bundle of linear frames
of a manifold.

This exposition is restricted to curves and surfaces in order to emphasize the
geometric interpretation of invariants and of other constructions. Working in these
low dimensions helps a student develop a strong geometric intuition.

The book presents a careful selection of important results to serve two basic
purposes. One is to show the reader how to prove the most important theorems in the
subject, as this kind of knowledge is the foundation of future progress. Secondly, the
method of moving frames is a natural means for discovering and proving important
results. Its application in many areas helps to uncover many deep relationships,
such as the Lawson correspondence. Finally, we think the topics chosen are very
interesting. The more one studies them, the more fascinating they become.

A moving frame does not exist globally, in general. Its existence is obstructed by
topology or by the existence of objects like umbilic points. Despite this, however,
the method of moving frames often leads to global results. These results require
arguments using covering space theory and cohomology theory, for which we give
extra details and references; we do not assume the reader has a background in this
material.

We have written this text for intermediate-level graduate students. The method
of moving frames requires an elementary knowledge of Lie groups, which most
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viii Preface

students learn in their first or second year of graduate study. The exposition is
detailed, especially in the earlier chapters. Moreover, the book pursues significant
results beyond the standard topics of an introductory differential geometry course.
A sample of these results includes the Willmore functional, the classification of
cyclides of Dupin, the Bonnet problem, constant mean curvature immersions,
isothermic immersions, and the duality between minimal surfaces in Euclidean
space and constant mean curvature surfaces in hyperbolic space. The book con-
cludes with Lie sphere geometry and its spectacular result that all cyclides of Dupin
are Lie sphere congruent to each other.

We use Mathematica®), Matlab™, and Xfig to illustrate selected concepts and
results.

There are nearly 300 problems and exercises in the text. They range from
simple applications of what is being presented to open problems. The exercises are
embedded in the text as essential parts of the exposition. The problems are gathered
at the end of each chapter. Solutions to select problems are given at the end of the
book.

It is the authors’ pleasure to thank Joseph Hutchings for permission to use some
illustrations and examples that he made in the summer of 2008 at Washington
University while partially supported by an REU supplement of NSF Grant No.
DMS-0312442.

This material is based upon work supported by the National Science Foundation
under Grant No. DMS-0604236 and the Italian Ministry of University and Research
(MIUR) via the PRIN project “Varieta reali e complesse: geometria, topologia e
analisi armonica.” The first author thanks GANG at the University of Massachusetts
at Ambherst for their support and hospitality in February and March of 2001;
the Matematisk Institutt at the University of Bergen, Norway, for its generous
hospitality during April and May 2001; the University of California at Berkeley
for its generous hospitality from September 2009 through February 2010; the
Politecnico di Torino for its support and hospitality and the support of the GNSAGA
of the Istituto Nazionale di Alta Matematica “F. Severi” during May and June of
2010 and in July 2015; the Universita di Parma for its support and hospitality in
September 2013; and especially Washington University for valuing research and
scholarship and providing sabbatical leaves during the spring semester of 2001 and
the academic year 2009-2010. The second and third authors gratefully acknowledge
the Mathematics Department of Washington University in St. Louis for its support
and hospitality in February and March of 2008.

St. Louis, MO, USA Gary R. Jensen
Torino, Italy Emilio Musso
Parma, Italy Lorenzo Nicolodi
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Chapter 1
Introduction

This book evolved from the lecture notes of a graduate topics course given by the
first author in the Fall of 1996. S.-S. Chern’s University of Houston notes [46]
formed the core of these lectures and influenced the philosophy of this book, which
is to present the method of moving frames in the context of interesting problems
in the highly intuitive geometric setting of three-dimensional space. Chern’s article
[47] and Bryant’s papers [20] and [21] influenced the choice of topics. These latter
two papers contain the first modern expositions of Mobius geometry and hyperbolic
geometry treated by the method of moving frames.

By referring to the classical geometries we mean the three space forms plus
Mobius geometry and Lie sphere geometry. We use the term space form for the
simply connected spaces R?® of Euclidean geometry, S* of spherical geometry, and
H? of hyperbolic geometry. Mobius geometry is the sphere S? acted upon by its Lie
group of all conformal diffeomorphisms. Lie sphere geometry is the unit tangent
bundle of S* acted upon by the Lie group of all contact transformations. The
book does not cover some other classical geometries, such as projective geometry,
Laguerre geometry, equiaffine geometry, and similarity geometry, all of which can
be treated extensively by the method of moving frames.

We use the idea of congruence throughout the book. By this we mean the
following. Immersions x,y : M — N”" into a manifold on which a Lie group G
acts transitively are congruent if there exists a group element A € G such that
y(p) = Ax(p) for every point p € M. This is not the same as the notion of congruence
in elementary Euclidean geometry, for which congruence of x(M) and y(M) means
there exists A € G such that Ay(M) = x(M). For Euclid’s notion we use the
following. Immersions x : M — N and y : M — N are equivalent if there exists a
diffeomorphism F : M — M such that x and y o F are congruent.

The book contains several fascinating threads that emerge as larger groups of
transformations enter the picture. One of these is the story of Dupin immersions in
Euclidean geometry. Such immersions are natural generalizations of isoparametric
immersions (constant principal curvatures) in any of the space forms. Although the

© Springer International Publishing Switzerland 2016 1
G.R. Jensen et al., Surfaces in Classical Geometries, Universitext,
DOI 10.1007/978-3-319-27076-0_1



2 1 Introduction

latter are easily classified, the Dupin immersions seem too abundant to classify.
It turns out that the Dupin condition is invariant under conformal transformations.
In Mobius geometry we discover that any Dupin immersion is M&bius congruent
to some isoparametric immersion in a space form. The Dupin condition is also
invariant under parallel transformations, so the notion of Dupin immersion makes
sense in Lie sphere geometry, where it turns out that the classification is as simple
as possible: All Dupin immersions are Lie sphere congruent to the Legendre lift of
a great circle in the sphere.

Another thread running through the book is the story of isothermic immersions,
which have enjoyed a recent renaissance in the field of integrable systems. Constant
mean curvature immersions in the space forms are isothermic. Proper Bonnet
immersions are isothermic off their necessarily discrete set of umbilic points.
Any isothermic immersion generates a Bonnet pair by the Kamberov—Pedit—
Pinkall (KPP) construction. An isothermic immersion remains isothermic after a
conformal transformation. In Mobius geometry an isothermic immersion is special
if it is Mobius congruent to a constant mean curvature immersion in a space
form. A Willmore immersion in Mobius space is Mobius congruent to a minimal
immersion in some space form precisely when it is isothermic.

The idea of associates of a given immersion weaves throughout the book.
Constant mean curvature immersions in the space forms have a 1-parameter family
of associates, which are noncongruent immersions of the same surface with the
same induced metric and the same constant mean curvature. Willmore immersions
in Mobius space have associates, which are noncongruent Willmore immersions of
the same Riemann surface. Isothermic immersions in Mobius space have associates,
historically called T-transforms.

The Lawson correspondence between minimal surfaces in R® and CMC 1
surfaces in H?, as well as between CMC 1 surfaces in R? and minimal surfaces
in 83, is neatly described with moving frames adapted to a complex coordinate on a
surface. Several chapters are devoted to understanding the first correspondence.

We include many illustrations to help the reader develop geometric intuition and
to understand the concepts.

We proceed now to a chapter by chapter description of the text. It is our advice
to the reader with the suggested background to begin with Chapter 4, Euclidean
geometry, and refer back to Chapter 2, Lie groups, and Chapter 3, Theory of Moving
Frames, as needed.

Chapter 2 presents a brief introduction to matrix Lie groups, their Lie algebras,
and their actions on manifolds. We review left-invariant 1-forms and the Maurer—
Cartan form of a Lie group, and the adjoint representation of the Lie group on its
Lie algebra. The treatment of principal bundles is self-contained. We derive basic
properties of transitive actions. We define the notion of a slice for nontransitive
actions. In many instances this is just a submanifold cutting each orbit uniquely
and transitively such that the isotropy subgroup at each point of the submanifold
is the same. We use the general idea of a slice, however, for the ubiquitous
action of conjugation by the orthogonal group on symmetric matrices. The chapter



1 Introduction 3

concludes with statements and proofs of the Cartan—Darboux uniqueness and
existence theorems. Our proof of the global existence theorem is simpler than those
proofs we have seen in the literature.

Chapter 3 presents an outline of the method of moving frames for any sub-
manifold of an arbitrary homogeneous space. We explain how a Lie group acting
transitively on a manifold N is related to the principal bundle of linear frames
on N. We present a general outline of the frame reduction procedure after first
describing the procedure for the elementary example of curves in the punctured
plane acted upon by the special linear group SL(2,R). We re-emphasize that this
book demonstrates the use of the method of moving frames to study submanifolds
of homogeneous spaces. It is not a text on the theory of moving frames. This
chapter concludes with basic theorems that characterize when a submanifold of a
homogeneous space is itself homogeneous.

Chapter 4 begins with a standard elementary introduction to the theory of
surfaces immersed in Euclidean space R3, whose Riemannian metric is the standard
dot product. Section 4.2 is a review for readers who have studied basic differential
geometry of curves and surfaces in Euclidean space. Geometric intuition is used
to construct Euclidean frames on a surface. Section 4.3 repeats the exposition,
but this time following the frame reduction procedure outlined in Chapter 3. The
classical existence and congruence theorems of Bonnet are stated and proved as
consequences of the Cartan—Darboux Theorems. A section on tangent and curvature
spheres provides needed background for Lie sphere geometry. The Gauss map helps
tie together the formalism of Gauss and that of moving frames. We discuss special
examples, such as surfaces of revolution, tubes about a space curve, inversions
in a sphere, and parallel transforms of a given immersion. These constructions
provide many valuable examples throughout the book. The latter two constructions
introduce for the first time Mobius, respectively Lie sphere, transformations that
are not Euclidean motions. The section on elasticae contains material needed in our
introduction of the Willmore problems.

Chapter 5 applies the method of moving frames to immersions of surfaces in
spherical geometry, modeled by the unit three-sphere S* C R* with its group of
isometries the orthogonal group, O(4). Stereographic projection from the sphere
to Euclidean space appears in this chapter. It is our means to visualize geometric
objects in S3. The existence of compact minimal immersions in 8%, such as the
Clifford torus, provide important examples of Willmore immersions. The chapter
concludes with Hopf cylinders and Pinkall’s Willmore tori in S*. Their construction
uses the universal cover SU(2) = S3 of SO(3).

Chapter 6 applies the method of moving frames to immersions of surfaces in
hyperbolic geometry H?, for which we use the hyperboloid model with its full group
of isometries O+ (3, 1). Moving frames lead to natural expressions of the sphere at
infinity and the hyperbolic Gauss map. The Poincaré ball model is introduced as
a means to visualize surfaces immersed in hyperbolic space. As in the chapters on
Euclidean and spherical geometry, the notions of tangent and curvature spheres of
an immersed surface are described in detail as preparation for their fundamental role
in Lie sphere geometry. The chapter concludes with many elementary examples.
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Chapter 7 reviews complex structures on a manifold, then gives an elementary
exposition of the complex structure induced on a surface by a Riemannian metric.
In this way a complex structure is induced on any surface immersed into one of
the space forms. Surfaces immersed into Mobius space inherit a complex structure.
In all cases we use this structure to define a reduction of a moving frame to a
unique frame associated to a given complex coordinate. Umbilic points do not
hinder the existence of these frames, in contrast to the obstruction they can pose
for the existence of second order frame fields. The Hopf invariant and the Hopf
quadratic differential play a prominent role in the space forms as well as in Mobius
geometry. Using the structure equations of the Hopf invariant A, the conformal factor
e", and the mean curvature H of such frames, we give an elementary description of
the Lawson correspondence between minimal surfaces in Euclidean geometry and
constant mean curvature equal to one (CMC 1) surfaces in hyperbolic geometry; and
between minimal surfaces in spherical geometry and CMC surfaces in Euclidean
geometry.

Chapter 8 gives a brief history and exposition of minimal immersions in
Euclidean space. We present the calculation of the first variation of the area
functional and we derive the Enneper—Weierstrass representation. Scherk’s surface
is used to illustrate the problems that arise in integrating the Weierstrass forms. This
integration problem is a simpler version of the monodromy problem encountered
later in finding examples of CMC 1 immersions in hyperbolic geometry. We present
results on complete minimal immersions with finite total curvature, which will be
used in Chapter 14 to characterize minimal immersions in Euclidean space that
smoothly extend to compact Willmore immersions into Mdobius space. The final
section on minimal curves applies the method of moving frames to the nonintuitive
setting of holomorphic curves in C*> whose tangent vector is nonzero and isotropic
at every point. An isotropic vector in C? is one whose C-bilinear dot product with
itself is zero.

Chapter 9 gives a brief introduction to classical isothermic immersions in
Euclidean space, a notion easily extended to immersions of surfaces into each of
the space forms. The definition, which is the existence of coordinate charts that are
isothermal and whose coordinate curves are lines of curvature, seems more analytic
than geometric. We show that CMC immersions are isothermic away from their
umbilics, which indicates that isothermic immersions are generalizations of CMC
immersions. The Christoffel transform provides geometric content to the concept.

Chapter 10 presents the Bonnet Problem, which asks whether an immersion
of a surface x : M — R? admits a Bonnet mate, which is another noncongruent
immersion X : M — R? with the same induced metric and the same mean curvature
at each point. Any immersion with constant mean curvature admits a 1-parameter
family of Bonnet mates, all noncongruent to each other. These are its associates.
The problem is thus to determine whether an immersion with nonconstant mean
curvature has a Bonnet mate. The answer for an umbilic free immersion is whether
it is isothermic or not. If it is nonisothermic, then it possesses a unique Bonnet mate.
We believe that this is a new result. If it is isothermic, then only in special cases will
it have a Bonnet mate, and if it does, it has a 1-parameter family of mates, similar
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to the CMC case. Such immersions are called proper Bonnet. A brief introduction
to the notion of G-deformation is used to derive the KPP Bonnet pair construction
of Kamberov, Pedit, and Pinkall. We state and prove a new result on proper Bonnet
immersions that implies results of Cartan, Bonnet, Chern, and Lawson—Tribuzy.
The chapter concludes with a summary of Cartan’s classification of proper Bonnet
immersions.

Chapter 11 is an introduction to immersions of surfaces in hyperbolic space with
constant mean curvature equal to one (CMC 1 immersions in H?). The approach
follows Bryant’s paper [21], which replaces the hyperboloid model of H? by the
set of all 2 x 2 hermitian matrices with determinant one and positive trace. This
model is acted upon isometrically by SL(2,C), the universal cover of the group
of all isometries of hyperbolic space. The method of moving frames is applied
to the study of immersed surfaces in this homogeneous space. Departing from
Bryant’s approach, we use frames adapted to a given complex coordinate to great
advantage. A null immersion from a Riemann surface into SL(2, C) projects to a
CMC 1 immersion into hyperbolic space. The null immersions are analogous to
minimal curves of the Enneper—Weierstrass representation of minimal immersions
into Euclidean space. A solution of these equations leads to a more complicated
monodromy problem, which is described in detail. The chapter ends with some of
Bryant’s examples as well as more recent examples of Bohle—Peters and Bobenko—
Pavlyukevich—Springborn.

Chapter 12 introduces conformal geometry and Liouville’s characterization of
conformal transformations of Euclidean space. Through stereographic projection
these are all globally defined conformal transformations of the sphere S®. The
Mobius group Méb is the group of all conformal transformations of S°. It is a ten-
dimensional Lie group containing the group of isometries of each of the space forms
as a subgroup. Mobius space . is the homogeneous space consisting of the sphere
S* acted upon by Mob. .# has a conformal structure invariant under the action
of Mob. The reduction procedure is applied to Mobius frames. The space forms
are each equivariantly embedded into Mobius geometry. Conformally invariant
properties, such as Willmore immersion, or isothermic immersion, or Dupin immer-
sion, have characterizations in terms of the Mdbius invariants. Oriented spheres in
Mobius space provide the appropriate geometric interpretation of the vectors of a
frame field.

Chapter 13 takes up the Mobius invariant conformal structure on Mobius space.
It induces a conformal structure on any immersed surface, which in turn induces
a complex structure on the surface. Mobius geometry is the study of properties
of conformal immersions of Riemann surfaces into Mobius space .# that remain
invariant under the action of Mob. Each complex coordinate chart on an immersed
surface has a unique Mobius frame field adapted to it, whose first-order invariant
we call k and whose second-order invariant we call b. These are smooth, complex
valued functions on the domain of the frame field. These frames are used to derive
the structure equations for k and b, the conformal area, the conformal Gauss map,
and the conformal area element. The equivariant embeddings of the space forms into
Mobius space are conformal. Relative to a complex coordinate, the Hopf invariant,
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conformal factor, and mean curvature of an immersed surface in a space form
determine the Mdbius invariants k and b of the immersion into .# obtained by
applying the embedding of the space form into .# to the given immersed surface.
This gives a formula for the conformal area element showing that the Willmore
energy is conformally invariant.

Chapter 14 introduces isothermic immersions of surfaces into Mobius space.
An isothermic immersion of a surface into a space form, then composed with the
equivariant embedding of the space form into Mobius space, becomes an isothermic
immersion of the surface into Mobius space. Thus, an isothermic immersion in
a space form remains isothermic under conformal transformations. An isothermic
immersion into Mobius space is special if it comes from a CMC immersion into a
space form. By a theorem of Voss, the Bryant quartic differential form of an umbilic
free conformal immersion into Mobius space is holomorphic if and only if it is
Willmore or special isothermic. A minimal immersion into a space form followed by
the equivariant embedding of the space form into Mobius space becomes a Willmore
immersion into Mdobius space. Moreover, it is isothermic, with isolated umbilics,
since this is true for minimal immersions in space forms and these properties are
preserved by the embeddings into Mobius space. The theorem of Thomsen states
that up to Mobius transformation, all isothermic Willmore immersions with isolated
umbilics arise in this way.

Chapter 15 presents the method of moving frames in Lie sphere geometry. This
involves a number of new ideas, beginning with the fact that some Lie sphere
transformations are not diffeomorphisms of space S*, but rather of the unit tangent
bundle of 3. This we identify with the set of pencils of oriented spheres in S*, which
is identified with the set A of all lines in the quadric hypersurface Q C P(R*?). The
set A is a five-dimensional subspace of the Grassmannian G(2,6). The Lie sphere
transformations are the projective transformations of P(R*?) that send Q to Q. This
is a Lie group acting transitively on A. The Lie sphere transformations taking points
of 8% to points of S* are exactly the Mobius transformations, which form a proper
subgroup of the Lie sphere group. In particular, the isometry groups of the space
forms are natural subgroups of the Lie sphere group. There is a contact structure
on A invariant under the Lie sphere group. A surface immersed in a space form
with a unit normal vector field has an equivariant Legendre lift into A. A surface
conformally immersed into Mobius space with an oriented tangent sphere map has
an equivariant Legendre lift into A. This chapter studies Legendre immersions of
surfaces into this homogeneous space A under the action of the Lie sphere group.
A major application is a proof that all Dupin immersions of surfaces in a space
form are Lie sphere congruent to each other. One of these Dupin immersions is the
Legendre lift of a great circle of S°.



Chapter 2
Lie Groups

We present here a brief introduction to matrix Lie groups and their Lie algebras
and their actions on manifolds. We review left-invariant 1-forms and the Maurer—
Cartan form of a Lie group, and the adjoint representation of the Lie group on its
Lie algebra. The treatment of principal bundles is self-contained. We derive basic
properties of transitive actions. We define the notion of a slice for nontransitive
actions. In many instances this is just a submanifold cutting each orbit uniquely
and transitively such that the isotropy subgroup at each point of the submanifold is
the same. The general idea of a slice is used, however, for the ubiquitous action
by conjugation of the orthogonal group on symmetric matrices. We review the
Frobenius theory of smooth distributions. The chapter concludes with statements
and proofs of the Cartan—Darboux uniqueness and existence theorems. Our proof
of the global existence theorem is simpler than those proofs we have seen in the
literature. These theorems provide the principal analytic tools of the book.

2.1 Lie group actions

The real general linear group GL(n,R) of all n x n nonsingular matrices is a group
under matrix multiplication and it is an open submanifold of the vector space R™"
of all n x n matrices. It is thus a Lie group of dimension #2. In the same way, the
complex general linear group GL(n, C) is a complex Lie group, which means it is a
complex manifold and the group operations are holomorphic. (See Chapter 7 for the
definition of complex manifold). A matrix Lie group is a closed subgroup of some
GL(n,R). All Lie groups used in this book are matrix groups, so we restrict our
exposition to this case.
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The Lie algebra of all left-invariant vector fields on GL(#n,R) is naturally iden-
tified with gl(n,R), the set R”*" with Lie bracket given by matrix commutations,
[X,Y] = XY —YX. If G C GL(n,R) is a matrix subgroup, its Lie algebra g of all
left-invariant vector fields is a Lie subalgebra of gl(rn,R).

For a matrix group, the derivative of left or right multiplication is again left or
right multiplication. That is, if g € G and L, : G — G is left multiplication, L, (x) =
gx, for any x € G, then the tangent space T,G is a subspace of R™" and

(dLy), : T,G — TG,  (dLg). X = gX.

Since g = TG C gl(n,R), where 1 € G is the identity element, it follows that 7,G =
xg. For right multiplication R, (x) = xg,

(dR)x : TG — TG,  (dR,),X = Xg.

In particular, 7,G = gx, for any x € G. That xg = gx, for any x € G, follows from
the invariance of g under the adjoint representation of G on g, which is

Ad(g) :g—g, Ad(g) = (dCy,

where for any g € G, the conjugation map C, : G — G is Cy(x) = gxg~'. For a
matrix group G, the adjoint representation is

Ad(g)X = gXg ',

for any X € g C gl(n,R), and so ggg~! = g.
The Maurer—Cartan form w of G is the g-valued left-invariant 1-form on G whose

value at g € G is
w, = g 'dg,

where this is matrix multiplication. In more detail, if X € T,G, then w,(X) = g~'X.
The Maurer—Cartan form of GL(2,R) is

U\
—Alga = (1 2 X axy
@A (x% x3 dx? dx3

at the point A € GL(2,R). Here dx} is the differential of the coordinate function xj’:
on the open subset GL(2,R) C R?*2. On a closed subgroup G of GL(n,R), these
forms are pulled back to G by the inclusion map, so on G they would satisfy the set
of linear equations defining the subspace g C gl(2,R). The Maurer—Cartan structure
equations of G are

do =d(g7'dg) = —g 'dg g7 ' ANdg = —w Aw,

where in this matrix multiplication, the terms are multiplied by the wedge product
of 1-forms.
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Example 2.1. The special orthogonal group is
SO(n) = {A € GL(n,R) : AA =1, detA =1}.

Its Maurer—Cartan form is an n x n matrix of left-invariant 1-forms a)} on SO(n) that
satisfy o] = —ol, foralli,j=1,...,n.

Example 2.2. The special linear group is
SL(n,R) = {A € GL(n,R) : det A = 1}.
Its Maurer—Cartan form satisfies trace w = 0.

Definition 2.3. A Lie group G acts smoothly on the left of a smooth manifold N if
there is a smooth map p : G x N — N, which we denote by j(g,x) = gx, with the
properties 1x = x, for any x € N, where 1 € G is the identity element, and

(g182)x = g1(g2x),

for any g1,g2 € G and x € N. The action is from the right if we write p(g,x) = xg
and this satisfies x1 = x and x(g;g2) = (xg1)g>. Forany g € G, the map g : N - N
given by x — gx (respectively, x — xg) is a diffeomorphism whose inverse is given
by the action of g~!. The action is free if, for any g € G unequal to the identity
element 1 of G, this diffeomorphism has no fixed points. The action is effective if 1
is the only element of G that acts as the identity element. The action is transitive if,
for any points x,y € N, there exists g € G whose action sends x to y.

The adjoint representation of G is a smooth left action of G on its Lie algebra g.

An action of the additive group of real numbers R on a manifold N is a global
flow. A global flow 6 : Rx N — N generates a smooth vector field X on N, called the
infinitesimal generator of the flow, by X(,,) = % | ,—o 0(t,m). For each fixed m € N,
the curve 6,,(tr) = 6(¢,m) is the integral curve of X starting at m. Conversely, any
smooth vector field X on N generates a flow 6 : W — N, where W C R x N is an
open set containing {0} x N. See [16, pp. 127 ff] or [110, pp. 438 ffl. If W = R X N,
then the vector field X is called complete.

A left-invariant vector field X on a Lie group G is complete and generates the
global flow

0:RxG—G, 0(tg) = gexp(rX),

where the exponential map exp(tX) = ¢'* is the matrix exponential for any matrix
group G. The curve exp(tX) is the integral curve of X through 1 € G. This is also
the integral curve of the right-invariant vector field whose value at 1 is X(jy. A right-
invariant vector field generates the global flow 0(z,g) = exp(1X)g.

If G acts smoothly on the left (respectively, right) of N, then any X € g defines
the global flow on N,

0:RxN—>N, 6(tm)=exp(X)m,
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(respectively, 8(z,m) = mexp(zX)). This flow generates a vector field X on N, called
the vector field induced by X on N. If X (my = 0 at some point m € N, then its integral
curve through m must be constant, by the uniqueness of the integral curve through
a point. This means that m is a fixed point for exp(zX), for all # € R. In particular, if
the action is free, then X has no zeros on N ,forany X #0e€eg.

Right actions play a fundamental role in the idea of principal bundles.

Definition 2.4. A principal H-bundle over N with smooth toral space P and smooth
base space N is a smooth, surjective submersion 7 : P — N and a free, right action
of the Lie group H on P such that for each point m € N, if p is a point in the fiber
over m, w~'{m}, then this fiber is the H-orbit of p,

7 Ym} = pH.

The map 7 is called the projection of the bundle. A local section of the bundle on
an open subset U C N is a smooth map ¢ : U — P such that r oo : U — U is the
identity map. A local trivialization of the bundle over U is a smooth diffeomorphism

F:UxH—n'UcP,

satisfying F(u,h) = F(u,1)h for any (u,h) € U x H. Any local section 0 : U — P
defines a local trivialization

F:UxH— n"'U, F(u,h)=o)h.

If X € b, the Lie algebra of H, then the vector field X it induces on P is the
fundamental vertical vector field on P induced by X.

Remark 2.5. A smooth map 7 : P — N is a submersion if the rank of dm, equals
the dimension of N at every point p € P. If w : P — N is a submersion, then r is
an open map and every point of P is in the image of a smooth local section of .
(See, for example, [110, Proposition 7.16, p. 169]). In particular, for any point p € P
in the total space of a principal H-bundle & : P — N, there is a local section whose
image contains p. Moreover, given any point n € N, there is a local section defined
on a neighborhood of n.

2.2 Transitive group actions

Suppose G acts smoothly on the left of the manifold N. Choose a point 0 € N, and
call it the origin of N. Then the projection map

n:G—N, n(g) =go
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is smooth. The action is fransitive if and only if 7 is surjective for any choice of
origin o € N. If X € g induces the vector field XonN, then the integral curve of X
through o € N is exp(tX)o = 7 oexp(zX). In particular, X(o) = dm X. The isotropy
subgroup of G ato € N is

H={geG:go=o}
It is a closed subgroup of G. The isotropy representation of H is
H — GL(T,N), hwdh,:T,N— T,N. (2.1)

Proposition 2.6. If a Lie group G acts smoothly and transitively on a manifold N,
then for any point o € N, the projection map

m:G—N, n(g) =go 2.2)

is a surjective submersion. If G acts on the left of N and if H is the isotropy subgroup
of G at o, then H acts freely on the right of G by right multiplication and G is a
principal H-bundle over N with projection (2.2). For any X € b, the Lie algebra of
H, the fundamental vertical vector field X induced on G by the right action of H
coincides with the left-invariant vector field X € h) C g on G.

Proof. Suppose G acts on N on the left. For any g € G, let L, : G — G denote left
multiplication by g. This is a diffeomorphism. Then

7o Ly(x) = 7(gx) = (gx)o = g(xo) = gon(x),

for any x € G, shows that m oL, = gom. Since L, : G — G and g : N — N are
diffeomorphisms, it follows that the rank of & is constant on G. Then 7 : G - N
is surjective and of constant rank, so it must be a submersion, that is, its rank must
equal the dimension of N at every point of G. (See, for example, [110, Theorem 7.15,
p. 168]). A similar argument proves the result when G acts on N on the right.

By Definition 2.4, it remains to prove that the right action of H on G is free and
that for any g € G, we have 7~!{go} = gH. This is elementary.

If X € b, and if g € G, then

A d d
X(g) = E Ogexp(tX) = (dLg)l E OeXp(tX) = (dLg)1X(1) = X(g).

|

Corollary 2.7 (Lift Property). Iff: M — N is a smooth map from a manifold M
and if my € M, then there exists a neighborhood U of my in M on which there is a
smoothmap g : U — G, such thatf = mwogonU.
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Proof. There exists a neighborhood V of f(mg) in N on which there exists a smooth
section o : V — G of the submersion (2.2). If U =f~'V,theng =0 of : U — G is
the desired map. O

Corollary 2.8. The kernel of dmy : g — T,N is b, so dmy : g/bh — T,N is an
isomorphism. For any h € H, the diagram

Ad(h)
a/b — g/b
dm | | dm

dh,
TN — T,N

commutes.

Proof. ltis clear that h C kerdm;. Conversely, if X € g, then 0 = dm X = )2(, implies
that the integral curve exp(tX)o of X at 0 must be constant, so exp(tX) € H, for all
t € R, and thus X € h. This proves the first statement. For any X € g and h € H, we
have h='o = 0 and heXh~! = ™" 5o

d d
dh,dmX = hexp(1X)o = 7 hexp(tX)h ™o
0 0

dt

exp(thXh™ Vo = dm Ad(h)X.
0

|

Corollary 2.9. There exists a G-invariant Riemannian metric on N if and only if
there exists an Ad(H)-invariant inner product on g/b.

Proof. By the preceding corollary, there exists an inner product on 7,N invariant
under the isotropy representation of H if and only if there exists an Ad(H)-invariant
inner product on g/h. If N possesses a G-invariant Riemannian metric /, then a
fortiori, I, is invariant under the linear isotropy representation of H. Conversely, if
1, is an inner product on 7,N invariant under the linear isotropy representation of
H, define an inner product on T,,N, for any m € N, by I, = g*I,,, where g € G is any
element for which gm = o. This is independent of the choice of such g because of
the invariance of /,,. |

Example 2.10 (O(3) acting on S?). Label the standard basis of R> by ¢;, for i =

0,1,2 and the entries of a matrix A € O(3) by A}, for i,j = 0,1,2. The standard

action of O(3) on R? induces a transitive action on the unit sphere S> C R? (by
the Gram—Schmidt orthonormalization process). The isotropy subgroup of O(3) at
€ €S?is

H= {((1) 2) L Ac0(2)} = 0(2).
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Its isotropy representation is just the standard representation of O(2) on
R’ = e(f C R3. Consider the vector space direct sum 0(3) = h @ m, where

h = {(g ;) X €o02)} = o(2)

is the Lie algebra of H in 0(3), and
_t
m:{(z OX) :xe R’} = R%

Then m = 0(3) /6. The adjoint action of H on m is

10} /0—%\(1 0\ (0 —(Ax)
0A)\x 0 J\oa™!) \ax o )’
which is just the standard action of O(2) on R? under the above isomorphisms. In

particular, m is invariant under the adjoint action of H. The Maurer—Cartan form of

0Q3)is
w=A""dA = (),

where a); + wii =0, for all i,j = 0,1,2. The structure equations are

2

i _ i Nk

dw; = E W AN ;'
k=0

The only Ad(O(2))-invariant inner products on m 2 0(3)/h = R? are the constant
positive multiples of

(X,Y) = trace’XY = 2x -y,

if X <> x and Y < y. Up to constant positive multiple, these inner products induce
the Riemannian metric on 8> C R? induced from the standard inner product on R>.

Example 2.11 (Grassmannians). For m < n, let R be the set of all n x m
matrices of rank m. Consider the equivalence relation on R”* given by X ~ Y
if and only if ¥ = XA, for some A € GL(m,R), if and only if the columns of X span
the same subspace of R” as do the columns of Y. Let [X] denote the equivalence class
of X € R The Grassmannian of m-dimensional subspaces of R" is the set of all
equivalence classes G(m,n) = R / ~. Left multiplication action of GL(%, R) on
R™™* preserves the equivalence relation, so induces an action on G(m,n) given by
B[X] = [BX], for any B € GL(n,R) and [X] € G(m,n). This action is transitive, since
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it takes the origin Py = [I(’)”:| to any designated point of G(m,n), because any basis
of a given m-dimensional subspace can be extended to a basis of R". The isotropy
subgroup of GL(n,R) at Py is
Go = {(g b) € GL(,R) :a € GL(m.R), c € GL(n—m,R)}.
C
Example 2.12 (SL(2,R) — CT). Consider the smooth transitive action of
SL(2,R) = {(’ s) Sru—ts =1}
tu

on the upper half-plane C* = {z = x+iy € C:y > 0} given by

rs\__ rz+s

tu = tz+u

Choose i € C™ for origin to define the submersion

7 :SLQ.R) — C*. n(rs)_rl—i-s_rt—i-su i

= — - + )
tu ti+u P24+ur 2+u?

The isotropy subgroup H of SL(2,R) at i is

HZ{(r s) IS =i}={(;_rt) P4 =1) = S0(2).

tu) tit+u

Its Lie algebra b has an Ad(H)-invariant complementary subspace

m={X= (’yf Y ) :x,y € R} 2~ 5[(2,R)/b.

Then, under the identification 7/SL(2,R) =~ h ®dm,
dny:m—>T,Ct=R?, dmX= 2ye| + 2xe;.
The only Ad(H)-invariant inner products on m are

(X,X) = ¢ trace’XX = 2¢(xi + y§) = %(de) (dm %),

the standard dot product on T;C* = R?, where ¢ is any positive constant. Taking
¢ = 1/2, we get for the metric on T,.Ct,

I; = dx* + dy* = dzdz,
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where z = x+iy. Identify all tangent spaces of C* with R?. If A = (; s) eSL(2,R)
u

is regarded as a diffeomorphism A : C* — C™, then the matrix of its differential at
i 1s dA;, which in the standard basis is

1 (W=7 2w w*—r 2
dAi =7 ) dAl = ’
k ( —2tu u*— tz) (dA:) ( 2 U — tz)

where k = (> 4+ u?)?. For any v,V € T,;CT = R?, and A € SL(2,R),
Li(v.¥) = L((dA) 'V, (dA) V) =k v-¥,
and y(Ai) = 1/, so

_ dx* +dy?

I
Z y2

(2.3)

atany point z = x +iy € CT. This Riemannian metric / on C™ is the upper half-plane
model of the hyperbolic plane, which is discussed further in Example 16.

2.3 A slice theorem

In this section, group actions will be from the left, unless stated otherwise. Let G be
a Lie group acting smoothly on a manifold N. The orbit of a point x € N is

Gx = {gx:g € G},
which is an immersed submanifold of N. The isotropy subgroup of G at x is
G, ={geG:gx=ux},

which is a closed subgroup of G. If x and y = gx are points in the same orbit, then
their isotropy subgroups are conjugate in G, namely,

G = ngg_1 .

An orbit is of type G/H, where H is a closed subgroup of G, if the isotropy subgroup
at any point of the orbit is G-conjugate to H. We let Ny denote the set of all points
in N lying on orbits of type G/H.

If H is a closed subgroup of G, then the set G/H of left cosets of H is a smooth
manifold on which G acts smoothly and transitively (see [16, Theorem 9.2,
pp 166 ff]). For any point x € N, the orbit of G through x is an immersed submanifold



16 2 Lie Groups

of N diffeomorphic to G/G,, whose dimension is dim G — dim G,. Since conjugate
subgroups have diffeomorphic quotients, it follows that any orbit of type G/H is
diffeomorphic to G/H.

The smooth map

n:G—G/H, n(g)=gH, 2.4)

is the projection map of a principal H-bundle, where H acts freely on the right on G
by right multiplication. If H acts smoothly on the left on a manifold ¢/, then H acts
smoothly on G x % on the right by

(g.v)h = (gh.h™'y),

forany y € %, g € G, and h € H. Denote the orbit space of this action by G xy %/,
the rwisted product of G with % over H. Denote the projection map

p:GxY —Gxy¥, gy =gyl (2.5)

so [gh,h™'y] = [g.y] for any h € H. Then G xy % is a smooth manifold, x4 is smooth,
and the smooth map

v:Gxy % — G/H, v[g,y]=gH

is the projection map of the fiber bundle over G/H with standard fiber & associated
to the principal H-bundle (2.4). A local section

0:UCG/H—G
of (2.4) defines a local trivialization of G xy ¢, which is a diffeomorphism
0 UX v 'UCGxy ¥, ¢y =][o),y].

For details see [100, pp 54-55]. Now po(0,ide ) = ¢, for any such section o, shows
that u of (2.5) is a submersion.

Definition 2.13. A slice of the smooth action of a Lie group G on a smooth
manifold N is a pair (¥, H), where ¢ is a regular submanifold of N with dim%" <
dimN and H is a closed subgroup of G such that

1. HY =%,

2. G¥ is an open submanifold of N,

3. % is closed in G%/, and

4. F:Gxp ¥ — G¥, Flg,y] = gy is a diffeomorphism.

Item (1) means that H is a subgroup of the stabilizer of %, which is the subgroup
{g€ G: g% =%} of G. If we call a submanifold % a slice, without mention of the
subgroup H, then it is to be understood that H is its stabilizer.
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Remark 2.14. For most group actions in this book, a slice % exists for which the
isotropy subgroup G, = H, for all y € %/. In this case the orbit space has a global
trivialization G Xy % = (G/H) X ¥ .

The following characterization of a slice involves derivatives only at points of %/.

Theorem 2.15 (Slice Property). If all assumptions of Definition 2.13 through
items (1), (2), and (3) hold, and if

(4a) g€ Gand (g% )N # @ implies g € H,
(4b) the Lie algebra of the isotropy subgroup Gy is Y, for every pointy € %, and
(4c) TyN =T, (Gy) ® T, ¥, foreveryye ¥,

then (% ,H) is a slice of the action of G on N.

Proof. We must prove that the map F of item (4) in Definition 2.13 is a diffeomor-
phism under the present hypotheses. F is certainly smooth and surjective. It remains
to prove that it has a smooth inverse.

For any y € %/, the dimension of the orbit Gy is dimG/G, = dimG/H, by items
(4a) and (4b). The tangent space to the orbit Gy at a point y is

Ty(Gy) = {X() : X € g},

where X is the vector field induced on N by the action of G, so X o= % | 0 €Xp(X)y.
The dimension of G xg % is thus dimG/H + dim% = dimN, by item (4c).

If Flg,y] = F[g.9], then g7'gy = y € # implies g~'g = h € H, by item (4a).
Then g = gh, so gy = ghy implies hy = y. Hence, [3,7] = [gh.h™'y] = [g.)], so F is
injective. So the inverse of F exists, and will be smooth if dF is an isomorphism at
every point of G xg %. Being a linear map between spaces of equal dimension, dF
is an isomorphism if it is surjective.

Consider the composition Fou : Gx% — N, where i is defined in (2.5). For
any (g,y) € GX %', we have Fo u(g,y) = gy = gFou(l,y), so

d(F o ) (gy) = dgyd(F o (t)(1y),

and dg, : TyN — Tg,N is an isomorphism. It follows that d(F o 1) (g, is surjective,
for any (g,y) € Gx %/, provided that d(F o [t)(1 y) is surjective for any y € %. This
latter map is surjective, since for any (X,v) e g® T, % =T(1 )(Gx %),

d(F o p)1,)(X,v) =X() +v € T,(Gy) ® T, ¥

is surjective, and the image is T,N, by item (4c). It follows then that dFj, , is an
isomorphism at every [g,y] € G xg ¥'. O

Remark 2.16. The reduction procedure in the method of moving frames requires an
explicit slice of some action at each step. Our requirement that dim% < dimN in
the definition of slice ensures that each step of the reduction is nontrivial. It also
implies that the action of a discrete group G has no slice.
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The following action occurs in each of the space form geometries. It is the most
complicated action in this book.

Example 2.17. Consider the action of G = O(2) x O(1) on the vector space .¥ of
all 2 x 2 symmetric real matrices,

GxY — %, (A €)X =cAXA,
where € = £1. Notice that trace(A, €)X = etraceX. From elementary linear algebra
we know that for each S € ., this action will diagonalize S. In the language of

group actions, every G-orbit meets the hyperplane of all diagonal matrices & in .7,
which is the hyperplane z = 0, if we make the identification of vector spaces

7 =R, (x Z) = (x,7,2).
Yy

Consider the line .Z = {tI; : t € R} of scalar matrices in .¥ and consider the
submanifold

@:@\z:{(’g;’):m}

of all nonscalar, diagonal matrices in .%. Let

01 0-1
K={th I, + + : 2.
{£h. 6, (1 0), (1 0)} (2.6)

a closed subgroup of O(2), so H = K x O(1) is a closed subgroup of G. It is a useful
exercise to prove:

(1) H is the stabilizer of 7.
(2) Foranyp = (g O) € %, the tangent spaces 7,. = .,
y

x 0 01
T,(G = : R},
g (Oy)) {Z(l 0) el
since %ioe’X ()(; S) e =z(x—y) ((1) (1)), for X = ((Z) _()Z) €0(2), and

T, = {(g (3) ‘uv € R,

(3) By Theorem 2.15 one proves that % is a slice of this action.
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Note that G.Z = .%, and the action of G on .Z is the standard action of O(1)
on R.

Theorem 2.18 (Factor Property). Let G be a Lie group acting smoothly on the
manifold N. Suppose that (% ,H) is a slice of this action. Given a point my in a
smooth manifold M, if f : M — N is a smooth map such that f(my) € G¥, then for
any go € G and yo € % for which f(mo) = goyo, there exists a neighborhood U of
myg in M and there exists a smooth map

(g,y):U—>Gx¥,

such that f(m) = g(m)y(m), for every m € U, and g(my) = go, y(mo) = yo.

Proof. Let F : Gxyg % — G% C N be the diffeomorphism of item (4) in the
definition of slice. Suppose go € G and yo € ¥ satisfy f(my) = goyo. These exist,
since f(mp) € G¥' . Since u of (2.5) is a submersion, it has a local section 7 : V —
G x % on aneighborhood V C G xy % of [go, yo] such that t[go, o] = (g0, ¥0). Then
wort =idy, U=f"'F(V)is a neighborhood of mg in M, and

(g.y)=t0F lof 1 U—Gx¥
is a smooth map satisfying
g(m)y(m) = Fopo(g,y)(m)=FopotroF ' of(m)=f(m),

for every m € U, and (g,y)(mo) = t(F~'(x0)) = t[g0,Y0] = (20, Y0)- O

2.4 Distributions

Knowledge of smooth distributions on a manifold is a prerequisite of this book.
In this section we will review the terminology and principal results of this theory
in preparation for our use of it throughout the book. There are many excellent
references, including Conlon [53, Chapter 4], Lee [110, Chapter 19], and Warner
[166, pp 41-50].

Definition 2.19. Let M be an n-dimensional smooth manifold. Let k be an integer in
the set {1,...,n}. A k-dimensional distribution 9 on M assigns to each pointp € M a
k-dimensional subspace Z(p) of T,M. The distribution is smooth if each point of M
has a neighborhood U on which there exist smooth vector fields Xi,..., Xy, which
span Z(p) at every point p € U. Such a set is called a smooth local frame of 2.
A smooth vector field defined on an open subset of M belongs to 7 if X, € Z(p)
for every point in the domain of X. In modern terminology, a smooth, k-dimensional
distribution is a smooth, rank k subbundle & of the tangent bundle 7M.
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The smooth distribution & satisfies the Frobenius condition if whenever a pair of
smooth vector fields with a common domain belong to &, their Lie bracket belongs
to 2. An integral manifold of a smooth k-dimensional distribution Z is a one-to-one
immersion f : N¥ — M such that

dfip)T,N = 2(f(p)).

for every p € N. An integral manifold is maximal if it is connected and not a proper
subset of any other connected integral manifold.

There is a dual way to define a distribution in terms of equations rather than
spanning sets. If & is a k-dimensional distribution on M”", then the subspace
9(p) C T,M has an annihilator 2 (p) C T;M, which is a subspace of dimension
n—k of the cotangent space of M at p. A smooth 1-form 0 defined on an open subset
U of M belongs to 7+ if O € P (p), for every p € U. A smooth local coframe for
P+ isaset 051, ... 0" of smooth 1-forms on an open set U C M that spans 2+ (p)
at each point of U. & has smooth local frames if and only if 2+ has smooth local
coframes. In modern terms, 2+ is a smooth, rank n — k subbundle of 7*M. In this
dual formulation, a one-to-one immersion f : N* — M is an integral manifold of 2
if and only if f*6 = 0 for every smooth 1-form in 2.

Lemma 2.20. A smooth k-dimensional distribution 9 on M" satisfies the Frobenius
condition if and only if any local coframe 0*F1,... 0" of D on U C M satisfies

do* = Y 0° Ao, (2.7)
B=k+1
for « = k+1,...,n, for some smooth I-forms a)g on U. We shall express the

conditions of (2.7) by
df* =0 mod 2.

We shall also call (2.7) the Frobenius condition for 9.
Proof. If 0 is a smooth 1-form on an open set U C M, then for any smooth vector
fields X,Y on U,

do(X,Y) =X0(Y)—-Y0(X)—0([X,Y]).

The proof follows from this formula. O

The Frobenius Theorem has a local and a global part. For the local part we use
Warner’s formulation [166, Theorem 1.60]. A coordinate chart (U, x = (x!,...,x"))
of a manifold M" is cubic if x(U) is the open unit cube (0,1)" C R".

Theorem 2.21 (Local Frobenius). Let & be a smooth, k-dimensional distribution
satisfying the Frobenius condition on the smooth manifold M". Let p € M. There
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exists a cubic coordinate chart (U, (xl, ...,X")), centered at p, such that the integral
manifolds of 9 contained in U are precisely the slices x* = c¢*, for arbitrary
constants 0 < c* < 1, fora =k+1,...,n

A k-dimensional distribution Z is called completely integrable if for each point
p € M, there exists an integrable manifold of & containing this point. Theorem 2.21
shows that if & satisfies the Frobenius condition, then it is completely integrable.
The converse is also true (see any of the references cited at the beginning of this
section).

We use the following version of the global Frobenius theorem. It is stated as
follows, with a complete proof, in Warner [166, pp. 42-49]. A one-to-one immersion
t: Y — M is quasi-regular if, for every smooth map f : Z — M such that f(Z) C «(Y),
the induced map F : Z — Y is smooth, where to F = f.

Theorem 2.22 (Frobenius). Let M™ be a smooth manifold endowed with a
k-dimensional distribution 9 C T(M) satisfying the Frobenius condition. Then
for each point p € M there exists a unique maximal connected integral submanifold
Y C M, such that p € Y. Moreover (this is the nice part of the Warner approach) Y
is quasi-regular.

A fundamental application of the Frobenius Theorems is to the correspondence
between Lie subgroups of a Lie group G and Lie subalgebras of the Lie algebra g
of G. See any of the three sources cited above for proofs of the statements in the
following example.

Example 2.23. Let G be a Lie group of dimension n, with its Lie algebra g of
all left-invariant vector fields. A Lie subalgebra f of g of dimension k defines a
k-dimensional smooth distribution & on G. Note that a vector field X can belong to
2 but not be left-invariant. An example of such would be a linear combination
of vectors in h with smooth, nonconstant function coefficients. & satisfies the
Frobenius condition, since h is a Lie subalgebra of g. The maximal integral
submanifold of & through the identity element 1 € G is the connected Lie subgroup
H of G whose Lie algebra is h. The maximal integral submanifold through a point
g € G is the right coset gH.

In the dual formulation, an (n — k)-dimensional subspace h* of g*, the space of
all left-invariant 1-forms on G, defines the k-dimensional smooth distribution 9+
on G. It satisfies the Frobenius condition if and only if d8 =0 mod h*, for every

0 € h*.

2.5 Cartan-Darboux

The Maurer—Cartan form w of a matrix Lie group G C GL(n,R) is a left-invariant
1-form on G with values in the Lie algebra g C gl(n,R) of G. More generally, let
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a, B be any smooth g-valued 1-forms on a smooth manifold M™. These are just
n x n matrices of ordinary 1-forms on M, satisfying the linear relations defining
g C gl(n,R).

Their wedge product, o A B, is the gl(n,R)-valued 2-form defined on M by
matrix multiplication of & and 8, where elements multiply by the wedge product of
1-forms. In general, & A § is not g-valued. The bracket defined by

@B = 5 (@ Af+ )

is g-valued. To see this, let eq,...,e; be a basis of g. Then g-valued 1-forms on M
have expansions

! !
a=Yue. =Y fe;
1 1

where o and B/ are ordinary 1-forms on M. Then

1
@ fl =5 e Aplene]

ij=1

is g-valued, since [e;,ej] € g, for i,j = 1,...,I. Notice that [, ] = [B,«] and
[0,0] =a Ac.

Let f : M — G be a smooth map from a smooth manifold M into a Lie group
G with Lie algebra g and Maurer—Cartan form w. Then f*w is a g-valued 1-form
on M. If eq,...,e; is a basis of g, with dual basis wl,..., 0!, then w = le w'e;,
ffo =Y (f*o)e;, and we easily verify that

1
df*o =) fdo'®e =f*do =—f*o Af*o. (2.8)
1

If n =f*w, a g-valued 1-form on M, then
dn=-nAn. 2.9

If we start with a g-valued 1-form 7 on M, then (2.9) is a necessary condition for the
existence of a smooth map f : M — G such that n = f*w.

Observe that if f : M — G is a smooth map such that f*w = 7, and if a € G, then
Lyof : M — G is a smooth map such that (L, of)*w = f*Liw =1, since L w = .

Theorem 2.24 (Cartan—Darboux Congruence). Let M be a smooth connected
manifold, let G be a Lie group with Lie algebra g and Maurer—Cartan form w.
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Iff,h: M — G are smooth maps such that f*w = h*w, then there exists an element
a € G suchthath = L,of.

Proof. Let g : M — G be the smooth map defined by g(p) = h(p)f(p)~"!, where
f(p)~" denotes the map M — G given by p > f(p) ™', the inverse of the matrix f(p).

From d(f(p)~") = —f(p) "' dfi,nf (p) " and (F* @)y =f(p) " df(), we find dg = 0 at
every point of M. Thus, g is constant, say g(p) = a foreveryp e M,and h = L,of.
O

To prove the Cartan—Darboux Existence theorem we use the global version of the
Frobenius Theorem 2.22.

Theorem 2.25 (Cartan-Darboux Existence). Let G be a connected Lie group
with Lie algebra g and g-valued Maurer—Cartan form o. If X is a smooth manifold
endowed with a g-valued 1-form o satisfying

doa = —a A,

then for every po € X and every g, € G there exist a connected open neighborhood

U of po and a unique smooth map A : U — G such that A*(w) = « and A(po) = go-
If, in addition, X is simply connected, then for every po € X and every go € G

there exists a unique smooth map A : X — G such that A* () = « and A(po) = go.

Proof. We divide the proof into three steps :
Step 1:  Proof of the local statement.

The first part is just an application of the local Frobenius theorem. Consider on
M = X x G the r = dimX dimensional distribution defined by the equation

f=w—a=0.
From
do =—wAw, do=-—-0Aa,
we get
df = —[0 +a.0]+[o—0.0] =—[0.0+a].

This implies that our equations define an r-dimensional distribution satisfying the
Frobenius condition. For every py € X, there exists a unique connected maximal
integral submanifold Y, such that (pg, 1) € Y. Restriction to Y of projection onto the
first factor gives the smooth map

F:YCXxG—X, F(pg =p.

F*a = o = w on Y implies dF has maximal rank at every point of Y. Thus, F'is a
local diffeomorphism, so there exists an open neighborhood W C Y of (po, 1) such
that F': W — X is a diffeomorphism onto the image. Set U = F(W) C X and consider
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Flw) ":UcX—>WCYCXxG.
This map is necessarily of the form
(Flw)':peU— (pA(p) €Y,
where A : U — G is a smooth map. Then 6 pulled back to Y C X x G is zero, so
0= ((Flw) H*0 =A*0w—a.

Moreover, A(py) = 1, since (pg, 1) € Y. The uniqueness of A follows at once from the
uniqueness of the integral manifold passing through (po, 1). For any g € G, the map
Ag =Lg0A: U — G is the unique map on U satisfying A7w = & and A;(po) = g,
since left multiplication L, : G — G preserves w.

Step 2: The map F is surjective.

Let us now prove that F : Y C X x G — X is surjective. Take any other point
p1 € X and let y : [0,1] — X be a smooth path from py = y(0) to p; = y(1). For
each t € [0, 1], Step 1 implies there exists a connected open neighborhood U; of y(r)
in X and a unique smooth map A, : U, — G such that A¥w = « and A,(y (1)) = 1. In
particular, the graph of A,,

{(p.Ai(p)) :p € Ui},

is an integral manifold of our distribution. Use the Lebesgue number § > 0 of
the open covering {y~'U}se0.1] of the compact metric space [0,1] to construct
a partition 0 =9 < t; < --- < t, = 1 such that for each k = 1,...,n there exists
t(k) € [0,1] with y[ti—1,#] C Uy . For information about the Lebesgue number, see
[122, Lemma 27.5 on page 175].

Then y[to,11] C Uiny. Let go = A,(l)()/(t())) € G and let

Bl = Lgo—l °Ar(1) : U,(l) — G.

Then B (po) = Bi(y(t)) = 1. The graph of By : U1y — G is a connected integral
manifold passing through (py,1) € M, so must be contained in Y. In particular,
(y(11).B1(y (1)) € Y. Nextlet g1 = Ay2)(y(11)) € G and let

By = Lp,(y(n)) © Ly;1 0 An2) : Unz) = G.

The graph of B; : U5y — G is a connected integral manifold passing through the
point (y(t1),B1(y(t1))) € Y, so it must lie entirely in Y. Proceeding inductively in
this way define maps By : Uy — G, for k = 1,...,n, for which one concludes that
the point (p,B,(p1)) € Y, which shows that p; is in the image of F. Hence, F is
surjective.
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Step 3:  F'is a covering map.

We need to prove that X is evenly covered by F. We do this by finding the group
of deck transformations of this covering. Left multiplication of G on itself gives a
left action of G on X x G by

a(p,g) = (p,ag),

for any @ € G and (p,g) € X x G. The form 6 is invariant under this action,
a*0 =a*w—a =6, since w is left-invariant. It follows that aY is a maximal integral
manifold for any a € G. If (p,g) € Y, then aY is the maximal integral manifold
through a(p, g) = (p,ag). The stabilizer of Y,

Gy={aeG:aY =Y},
is a closed Lie subgroup of G. For any (p,g) € Y, the above comments imply that
Gy={aeG:ap,g) e’}
and thus

F~{p} =Gy(p.g). (2.10)

The action of Gy on Y is smooth, since Y is quasi-regular. Since F' is a local
diffeomorphism, the fiber F~!(p) is discrete and hence Gy is a discrete subgroup
of G. Write Gy = {g;}jes, where J/ C N.

Given a point xp € X, we want to find a neighborhood U of x( that is evenly
covered by F. There exists (xo,go) € Y, since F is surjective. There exist open
neighborhoods W C Y C X x G of (x9,g0) and U C X of x such that F|y is a
diffeomorphism of W onto U. Then

FI,):UCX—>WCY, Fl'(p)=@.AP)),
where A : U — G is a smooth map and A*w = «. For any p € U,
F~Y{p} = Gy(p.A(p)) = Ujesgi(p. A(p)),
by (2.10). This, with W = {(p,A(p)) : p € U}, implies
F'U=UjegW, gWngW =90, i#j

F invariant under the action of Gy on Y implies F maps each open set' g;jW C Y
diffeomorphically onto U. Hence, F evenly covers U.

We have proved that F : Y — X is a covering whose group of deck transformations
is Gy.

!"To ensure that gW is actually an open subset of Y requires the quasi-regularity.
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Conclusion
If X is simply connected, then the covering F : Y — X must be a diffeomorphism
whose inverse is of the form

Fl:X>YCXxG, Fl'(p)=@pAp)eY,

where A : X — G is a smooth map satisfying A*(w) = «. The uniqueness of A with
specified value gg at a specified point py is a consequence of the uniqueness of the
maximal integral submanifold passing through a given point of X x G. O

Griffiths [79, pp 780-782], Malliavin [116, pp 167-172], and Sharpe [150,
pp 116-125] contain other proofs. Spivak [154, Volume I, Chapter 10] proves the
local result.

Problems

2.26. Prove thatif & : P — N is a principal H-bundle, then for any p € P,
ker(dm,) = {}2(,,) : X e b},

where X is the fundamental vector field induced on N by X € h. See Definition 2.4.

2.27. Use the notation of Example 2.11. Prove the following: The orthogonal group
O(n) acts transitively on the Grassmannian G(m,n). Its isotropy subgroup at Py is
Gy = O(m) x O(n —m). An Ad(Gy)-invariant subspace of o(n) complementary to
go = o(m) @ o(n—m) is

_t

m= {(0 X) : X e RUmmxmy

2.28 (Poincaré disk model). Consider the Lie group
SU(L 1) = {A € GL2,C) s Al A = Iy 1} = {(Z ”_”) e = 13,
w Z
10 . .

where I} = o—1) Following Example 2.12, analyze the action of SU(1,1) on
the unit disc D = {¢ € C: |¢| < 1}, given by

(Z W) = ZH{; @2.11)
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Prove the following: This action preserves the Riemannian metric

dede du® + dv?

P T T ey

on D, where ¢ = u+ iv and u,v € R. The Cayley transform

z—1i

f:Ct —D, f&=—

pulls Ip back to the upper half-space metric / on C* defined in Example 2.12. The
pair (D, Ip) is the Poincaré disk model of the hyperbolic plane. It is discussed further
in Example 4.54.

2.29. The Iwasawa decomposition of SU(1,1) = KAN (see [84, p. 234]) says that
any element of SU(1,1) can be expressed as such a product of elements from the

subgroups
k=% ). cry
TN et ’
cosht sinht
A= :te R},
{(sinht cosht) ;

N_{it+1 —it 1R}
o it —it+1)° ‘

Describe the orbits in D of each of the subgroups K, A, and N, for the action (2.11).
2.30. The Iwasawa decomposition of SL(2,R) is KAN, for the subgroups

K =S0(2),
A:{(B’JL) .1ER), N:{((l) i) 1R}

Describe the orbits in CT of each of the subgroups K, A, and N, for the action of
SL(2,R) on C™ discussed in Example 2.12.

2.31. Prove that if H is the stabilizer of a submanifold % of N, and if % is closed
in G¥, then H is a closed subgroup of G.

2.32. Consider the standard matrix multiplication action of O(2) on R?. Prove the
following: The isotropy subgroup at any point of % = {re; : r > 0} is H = {I,11 1},
where I, is the 2 x 2 identity matrix and /; ; was defined in Problem 2.28. % is a
slice of this action for H. & = {re; : r # 0} with the subgroup K = {1, =1}
also is a slice.



Chapter 3
Theory of Moving Frames

We present here an outline of the method of moving frames for any submanifold of
an arbitrary homogeneous space. We explain how a Lie group acting transitively on
a manifold N is related to the principal bundle of linear frames on N. We present a
general outline of the frame reduction procedure after first describing the procedure
for the elementary example of curves in the punctured plane acted upon by the
special linear group SL(2,R).

Elie Cartan’s Method of Moving Frames determines when two immersions X, X :
M — N are G-congruent, where G is a Lie group acting smoothly and transitively
on N, and G-congruence means there exists an element g € G such that X = gox.
The chapter concludes with basic theorems that characterize when a submanifold of
a homogeneous space is itself homogeneous.

A general outline of the method is abstract and covers a multitude of cases. Its
conceptual overview will guide an understanding of what is being done in the many
applications given in the subsequent chapters. This book is about using the method
of moving frames to study submanifolds of homogeneous space. It is not a text on
the theory of moving frames.

Cartan [32] gave an elegant introduction to moving frames with emphasis on the
notion of contact. Subsequent expositions, with additional examples, are in Griffiths
[79] and Jensen [93].

3.1 Bundle of linear frames

Let a Lie group G act transitively on a manifold N”*. Choose an origin o € N, and let
Go = {g € G : go = o} be the isotropy subgroup of G at 0. The smooth map

w:G—>N, n(g) =go 3.D
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is the projection map of a principal Gy-bundle over N, by Proposition 2.6. Let g be
the Lie algebra of left-invariant vector fields on G. Use evaluation at the identity
element 1 € G to identify g with TG, the tangent space of G at 1. In the present
context we will usually denote left multiplication on G by an element g € G by
L, : G — G, in order to distinguish it from the diffeomorphism g : N — N defined
by the action of G on N.

Exercise 1. Prove thatif g€ G, thengomr =moL,: G— N.

Let go denote the Lie subalgebra of g that is the Lie algebra of Gy. If g is
identified with T Gy, then gy is the kernel of the linear map dmy : T1G — T,N.

Recall that if F: P — Q is any smooth map between smooth manifolds, then
the derivative map dF : TP — TQ is a smooth map between their tangent bundles.
A smooth vector field along F is a smooth map X : P — TQ such that y o X = F,
where we denote the bundle projections by ¢ : TP — P and ¢ : TQO — Q. An
important class of smooth vector fields along F are those obtained by pushing
forward by F a smooth vector field X on P, to get the vector field X* along F
defined by

XF =dFoX:P—TOQ.

In detail, X(‘;) =dF,X) € Trp)Q, for any p € P. Applying this to our smooth map
7w :G— N, we get from any X € g a smooth vector field X* = dm o X along 7.

Exercise 2. Use Exercise 1 to prove that, if X € g, then the vector field X™ along &
has value at any point g € G given by

T o
X(o) = d8oX{i):

Let mo be any vector subspace of g complementary to go, S0 g = mo @ go, as a
vector space direct sum. The restriction, dmry : mg — T,N, is a linear isomorphism.
Choose a basis

El?""En (32)
of my and call it the reference frame.

Exercise 3. Prove that for any reference frame (3.2), the vector fields evaluated at
any g € G,

T T
Ef(g)y -+ Engg)

form a basis of T, N. In particular, their values at 1 € G form a basis of T,N. We
also call this basis of T,N the reference frame.

If h € Gy, then dh, : T,N — T,N. Let A(h) = (A’l:) € GL(n,R) be the matrix of
dh, relative to this reference frame of 7,N. By Exercise 2,

dhoEj,y =Y ALET, fori=1.....n.
j=1
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Thus, A(h) is the matrix of the isotropy representation (2.1) relative to this reference
frame. It follows that

A:Gy— GL®#,R), h A(h), 3.3)

is a homomorphism. It is the linear isotropy representation of G relative to this
reference frame.

Lemma 3.1. The linear isotropy representation (3.3) equals the adjoint represen-
tation of Gy on g/go = my relative to the basis Ey, ... ,E, of g/ go.

Proof. 1f h € Gy, then for any g € G, we have
homn(g) = (hg)o = (hgh™")o = 1o Cy(g),
where Cj, : G — G, Cj,(g) = hgh™!, is conjugation by . For each E;,
Ad(WE; =Y BJEj+Fifori=1.....n,
J=1

for some constants Bi and some F; € go. Using (2.1), we get

> A(E! o) = dhoET ) = d(hon) E; = d(w o CyE;
j=1

= dm (AdWE) =) BET .
=1
so Ad(WE; =}, A(h)ij mod go, for every h € Gy. O

Exercise 4. Recall the principal GL(n, R)-bundle of all linear frames on N, denoted
W : L(N) — N in Kobayashi-Nomizu [100, Example 5.2 pp 55-56]. The right action
of A € GL(n,R) on a frame (vy,...,v,) of T,N is

(Vi,...,v)A = (Xn:viAi,...,Xn:viAi,).
1 1

The projection map p sends a linear frame at p € N to the point p € N. We also have
the principal Go-bundle v : G — N of (3.1). Prove that the map

F:G—L(N), F(g)=(Efy.--- Eny)

is a principal bundle map, with the homomorphism between the structure groups
being the linear isotopy map A : Gy — GL(n,R) of (3.3). This requires proving that
F(gh) = F(g)A(h), for any g € G and h € Gy. Prove F is a bundle monomorphism
if the linear isotropy representation of Gy is faithful.
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3.2 Moving frames

Consider an immersion x : M — N". This could include the case of the inclusion
map of an open submanifold of N. Assume M connected.

Definition 3.2. Anelement g € G is a frame at p € M if go = x(p). A moving frame
or frame field along x on an open subset U C M is a smooth map

e:U—G (3.4

such that roe=xon U.

Exercise 5. Apply the Lift Property of Corollary 2.7 to the action (3.1) to prove
that if p € M, and if g € G is a frame at p, then there exists a neighborhood U of p
in M on which there is a moving frame e : U — G such that e(p) = g.

Why is this called a moving frame? The answer requires a choice of reference
frame (3.2). For any smooth vector field X on G, we have a smooth vector field
X" =dm oX along m, and its composition dr o X oe : U — TN is a smooth vector
field along m oe = x: U — N. It follows that

e =Ejoe,....e,=E oe (3.5)

is a collection of vector fields along x whose value at any point p € U is a basis of
Txp)N.

Exercise 6. Prove that if e : U C M — G is a smooth moving frame along x, then
any other smooth moving frame along x on U must be given by

e:U—G, é(p)=-e)h(p).

where i : U — G is any smooth map. Prove that the frame (3.5) determined by the
element ¢ = eh € G, for some h € Gy, is

&= AWej.....& =Y A(h)e. (3.6)

J=1 j=1

where A : Gy — GL(n,R) is the adjoint representation of Gy on g/ gy relative to the
reference frame (3.2).

The vector space direct sum g = my @ go decomposes the g-valued Maurer—
Cartan form w = g~ 'dg of G as

W = W, + Wgy,
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where the subscript denotes projection into that subspace. Then

omy =Y 0'E;, (3.7)
1

for some left-invariant 1-forms w'!

g(J)- in the dual space of g.

,...,o" on G. They form a basis of the annihilator

Proposition 3.3. Ife: U C M — G is a moving frame along X, if p € U, and if
v € T,M, then

n
dXI,v = Z(e*a)") (U)ei(p) ,
i=1

where ey,...,e, are the vector fields along x defined in (3.5). Evaluated at p € U,
the 1-forms e*w', ... e*w" span the cotangent space M.

Proof. 1f g,h € G, then w o L, = go i, by Exercise 1. If X € T, G, then by definition
of the Maurer—Cartan form, w(X) € g = TG is the left-invariant vector field whose
value at g is X, so X = dL,w(X). Now w oe = x on U and go = ker(dr;) imply that

dx,v = d(m 0 e),v = dep) 0 depyv = de(p) © dLepyw(depv)
=d(moLep)1(e*w)(v) = d(e(p) o ) 1(€" wm, + " 0gy) (V)

= d(e(p))odi(* 0y (v) = d(e(p))oodmy Y _(e* ') (v)E;
1

=Y (€ ) (W)d(e(p))oodmE; =Y _(c* o) (v)eiy).
1 1

Since dx,, is injective, e*w',...,e*w" is a spanning set at each point of U. O

Given a moving frame e : U — G along x, Exercise 6 asserts that any other
moving frame e : U — G along x on U is given by e = eh, where h : U — Gy can be
any smooth map. A frame field e : U — G pulls back the Maurer—Cartan form of G
to the g-valued 1-form e*w = e~'de on U.

In the special case when Gy = {1}, which means G acts simply transitively on
N, then effectively G = N acting on itself by left multiplication. In this case, an
immersion X : M — G is itself the only frame field along it. The congruence problem
is solved here by the Cartan—-Darboux Congruence Theorem 2.24, which states that
immersions x,X : U — G are congruent if and only if X 'dx = X~ 'd% on M. If M
is simply connected, the Cartan—Darboux Existence Theorem 2.25 states that if 7
is any g-valued 1-form on M, then there exists an immersion X : M — G satisfying
x~!dx = nif and only if dn = —n A 7.
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In the general case when Gy is nontrivial, if X,X : M — N are immersions for
which there exists g € G such that X = gox, and if ¢ : M — G is a frame field along
X, then ¢ = ge is a frame field along X for which

¢~ de = (ge)'d(ge) = ¢ 'de

on M, since dg = 0 on M. Thus, congruence implies the existence of frame fields
along each immersion that pull back the Maurer—Cartan form of G to the same
g-valued 1-form on M.

Conversely, if e : M — G is a frame field along x and ¢ : M — G is a frame field
along X such that

e lde = e 'de (3.8)

on M, then the Cartan—Darboux Uniqueness Theorem 2.24 implies there exists
g € G such that ¢ = ge, and thus X = gox on M. Frame fields satisfying (3.8)
determine the element g, since the map g : M — G defined by g(p) = é(p)e(p)™",
has derivative

dg, = dé(P)e(p)_l — é(p)e(p)_lde(‘u)e(p)_l
=2(p)(2(p)~'dé ) —e(p)~'de())e(p) ™' =0

on M, so g is constant. The ambiguity of the frame field along x, however, prevents
this from being a satisfactory solution to the congruence problem. If e : M — G is
a frame field along x, then any smooth map % : M — G gives another frame field
¢ =eh: M — G along x, and

¢ lde = (eh)'d(eh) = Ad(h™ Y oe 'de+h~'dh +# ¢ 'de (3.9)

in general. To use the Cartan—Darboux Uniqueness Theorem 2.24 to decide if an
immersion X : M — N is congruent to x, we need to find some frame field e : M — G
along X, and some frame field e : M — G along x, such that

¢ lde = e Vde. (3.10)

The method of moving frames gives a frame reduction procedure for removing
the ambiguity in the choice of frame field along x. This is a finite sequence of steps
that produces the (nearly) unique Frenet frame field along x. We think of the Frenet
frame field as the best frame field along x in a sense that is related to order of contact.
It determines a coframe field w', ..., ®" in M and a set of functions {ki,o...kj: M —
R} called the invariants of x. Inmersions x : M™ — N and X : M™ — N are congruent
if and only if (3.10) holds for their Frenet frame fields.
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3.3 Frame reduction procedure

Here is an outline of the frame reduction procedure. We begin with a simple example
from centro-affine geometry.

Example 3.4 (Centro-affine curves). For recent research on this topic see Musso
[125] and Pinkall [137]. Let R* = R?\ {0}. The special linear group SL(2,R) acts
transitively on R2 by its standard matrix multiplication on R?. Choose € to be the
origin of R2. The isotropy subgroup of SL(2,R) at €] is

Goz{((l)th):ueR}.

We have the principal Gy bundle projection
7:SL2,R) > R?, 7(A)=Ae, =A,

where A; denotes the first column of A as a vector in the standard basis of R2.
Choose

my ={(Z _Ou) cu,v € R} Csl(2,R)

as a vector space complement of go, so

g =mo + go. (3.11)

E1=10 B = OO.
0-1 10

The adjoint representation of Gy on g/go relative to the basis Ej,E, is the
homomorphismA = (A;:) : Go — GL(2,R) defined by

Choose as a basis of my

2
Ad(K)E; =Y " AJE; mod go.
j=1

For K = ( M) € Gy we calculate A(K) = (1 M)

1
01 01
The vectors E; € my generate vector fields E7 along 7 on R2. If A € SL(2,R),
then
ET 4 =dAedm Ei = A, (3.12)

1
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11
for i = 1,2. Let w = (a)12 wzl) be the Maurer—Cartan form of SL(2,R), so
Wy —w,

o!, o}, o) are linearly independent, left-invariant 1-forms on SL(2,R). The

decomposition (3.11) gives the decomposition @ = wn, + wg,, Where a subscript
indicates projection onto that subspace. Then

_fol O (0w
Wmy = wlz_wll » gy = 00/

and using our basis of my we have
— ! 2
Wy = 0 E1 +wiE>.
Letx : R — R? be a smooth immersed curve. We shall carry out the frame reduction
procedure for x. A frame field along X is a smooth map ¢ : R — SL(2,R) such that
X = woe = e,. Thus, the frame field must have the form e = (x,y), wherey : R — R?

is a smooth map such that det(e) = 1. Let ¢ be a coordinate function on R so that
e*w| = X} dt for some functions X : R — R, for i = 1,2. Then

2
dx = () _(e*0)E)T,) = ((X|E1 + X{E)dn)T,). (3.13)
i=1
by (3.12). Since x is an immersion, the image of the linear map

e*om, = (X|E1 +X?Ey)dt : TR — my (3.14)

is a 1-dimensional subspace of my.
Any other frame field along x must be given by ¢ = eK, where

1u
K= :R
(01) —)G()

is an arbitrary smooth map. Then é*w = Ad(K~!)e*w + K~'dK implies
é*wmo = (Ad(K_l)e*wmo)mm

since K~'dK € go. Thus

2
S om = Y 0| AdKE = (O XIAK ) E))dr
1

= ((X| —uX})E\ + X{E>)dt.
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The change of first order frame changes the coefficients of the 1-dimensional
subspace that is the image of the linear map (3.14) relative to the fixed basis E|, E>
of my. In effect, we have an action of Gy on the space RP! of 1-dimensional
subspaces of R?, given by

GyxRP' > RP', (K, [ﬂ) > A(K) m = [xt”y}, (3.15)

if K= ((1) ';) The goal of the first step of the frame reduction is to make the

coefficients as simple as possible in the sense that we choose a slice for this action.
This action has two orbit types. It has the fixed point |:0:| and it acts transitively on

the complement of this point. A pointz € R is radial for x if e*w} = 0 at 7. Otherwise
t is a nonradial point. We consider two types of curves. It is nonradial if every point
of R is nonradial. It is radial if every point of R is radial for x.

For the first type there exists a smooth map K : R — Gy such that &*w] =0 onR.

In fact, let u = X] /Xlz. To see the general picture, we regard the point [?i| € RP!

as a slice of the action (3.15) on the complement of |:(1):| It is a single point here

because the action is transitive on this set. In addition, the isotropy subgroup of Gy
at this point is the trivial group G| = {1}. We call a frame field e : R — SL(2,R)
first order if it satisfies

* 2 * 01
ew; #0, e w =0.

First order frame fields exist and are unique, since g; = {0}. The frame reduction
procedure ends here. The first order frame field is called the Frenet frame along the
curve (Figure 3.1). Then e*w} is a coframe field in R. In terms of the standard
coordinate on R we have e*wl2 = A(f)dt, where A = det(x,X) is never zero. A
solution s of ds = Adt is a centro-affine arclength parameter of x. The remaining
component of e*w is e*w,, which we express as e*w) = ke*w?, for some function
k : R — R, which is called the centro-affine curvature of x.

For the second type of curve, e*a)l2 = 0, for any frame field e = (x,y) along x, so
x=X 11x, by (3.13), where dot indicates derivative with respect to the coordinate 7.
Such a curve is radial.

For the general case, let G be a Lie group acting transitively on a smooth manifold
N of dimension n. Choose a point 0 € N as the origin and let Gy be the isotropy
subgroup of G at o. Let

7:G—N, nm(g)=go (3.16)
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Fig. 3.1 First order
centro-affine frame at a point
of a non-radial curve x.

be the resulting principal Gy-bundle projection map. Let g be the Lie algebra of G,
and let gy C g be the Lie algebra of Gy. Let my C g be a vector subspace complement
to go, SO g = mg + go is a vector space direct sum. Let Ey,...,E, be a basis of
my. The adjoint representation of Gy on g/go relative to the basis Ey,...,E, is the
homomorphismA = (Aj’:) : Go — GL(n,R) defined by

Ad(K)E; = A(K)E; =Y _AlE; mod go. (3.17)
j=1
fori=1,...,n. The vectors E; € m, generate vector fields E7 along 7. At a point

g€qG,

Ef(g) = dg,,dﬂlEi,
where dg, denotes the differential of the diffeomorphism g : N — N at the point o.
Let w be the Maurer—Cartan form on G. The direct sum g = mgy + go decomposes
 into the sum @ = wn, + wgy,, where subscripts indicate projection onto that
subspace. Then wy,, is a left-invariant 1-form on G taking values in my, and wy,
is a left-invariant 1-form on G taking values in go. Restricted to the subgroup Gy it
is the Maurer—Cartan from of Gy. Using our basis of m(, we have

for some left-invariant 1-forms ' on G.
Let x : M — N" be an immersion with m < n. We shall carry out the frame
reduction procedure for x. A local frame field along x on an open set U C M is a
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smooth map e : U — G such that 7w o e = X; that is, e is a local section of the bundle
(3.16). Such a section is called a zeroth order frame field along x. Let ¢',...,¢™ be
a coframe field on U and set

m
e*wL=§ :lez e
a=1

for some smooth functionth’; :U—R,fori=1,...,.nanda=1,...,m. Then

omy =YY XiE@*:T,M —my (3.18)

i=1 a=1

is a linear map. Since x is an immersion, this linear map sends the tangent space
of M at a point of U to an m-dimensional subspace of my. The chosen basis of mg
identifies it with R”. The image is the point [X] € G(m,n), where X = (X}) € R™"
has rank m. The matrix X is determined only up to multiplication on the right by
an element of GL(m,R), because we allow an arbitrary choice of the coframe field
@',...,¢"onU.

We are using here the terminology and notation for the Grassmannian G(m,n)
of m-dimensional subspaces of R” discussed in Example 2.11. There G(m,n) =
R™"* /GL(m,R), where R is the space of all n x m real matrices of rank
m, on which GL(m,R) acts by right multiplication. If X € R™™*, then [X] is its
equivalence class in G(m, n). GL(n,R) acts transitively on the left of G(m, n) by left
multiplication: A[X] = [AX], for any A € GL(n,R) and X € R™"*,

Any other frame field along x on U must be given by ¢ = ¢K, where K : U — Gy
is an arbitrary smooth map. Then é*w = Ad(K~")e*w + K~'dK and K~'dK is go
valued implies that

n m
E*wmo = (Ad(K_l)e*wmo)mo = Z ZA(K_IX:X;EJ'(,D” : TpM — my,
ij=1a=1

where we have used the adjoint representation (3.17) of Gy on my relative to the
basis Ej,...,E,. This sends the tangent space of M at a point of U to the point
[A(K~1)X] € G(m,n). The goal of the frame reduction at this step is to simplify the
coefficients X in the sense that we seek a slice of this action of Gy on G(m,n). In
general there can be more than one orbit type, in which case the reduction method
requires one to assume that the points [X(p)] € G(m,n) are of the same orbit type
forallpe U.

To simplify the exposition at this stage, we assume that all points [X(p)] lie in the

orbit of the point Py = [I(')”i|, where 0 is the (n —m) X m matrix of zeros.

Definition 3.5. A first order frame field along x is a frame field e : U — G along x

for which
" = =" =0, *o'AAefO"#£0 (3.19)

at every point of U.
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First order frame fields e : U — G exist by the Factor Property of Theorem 2.18.
They are characterized by the fact that the map X : U — R™ that it defines in
(3.18) has the property that [X] = Py at every point of U.

Let G; be the isotropy subgroup of the action of Gy on G(m,n) at the point P.
This means that A(K)Py = Py, for any K € Gy, which implies that A(K) has the

block form A(K) = (1?)1 32), where A € GL(m,R), A3 € GL(n—m,R), and 0 is
3

the (n—m) x m matrix of zeros. Let g; denote the Lie algebra of G;. We assume
that g; # {0}. If, to the contrary, g; were zero, then the frame reduction is complete.
This is what happened in our centro-affine curve example.

Choose a decomposition gy = m; + g;, where m; is a vector subspace of go.
Then g = mp + m; + g; is a vector space direct sum which gives a decomposition
W = Wmy + On, + wg,. The second assumption required for a continuation of the
frame reduction at this step is that

*wm, # {0}, (3.20)

at each point of U, for any first order frame field e along x. If ¢* wy,, = {0} identically
on U, then the reduction stops here. Examples of this exceptional case are provided
by totally umbilic immersions of a surface into a space form.

Assume (3.20) for any first order frame field e along x. Let E,,44,...,E, be a
basis of m;. The adjoint representation of G on g/g; =~ my + m; relative to the
basis Ei,...,E,, is the homomorphism A = (A}) : Gy — GL(n1,R) defined by

ny
Ad(K)E; = A(K)E; =Y _AlE; mod g;. (3.21)

Jj=1
fori=1,...,n;. Then A(K) must have the block form
A1 A O

AK)=|04;50]. (3.22)
Ay As Ag

where A; € GL(m,R) and Ag € GL(n; —n,R). Using this basis of m;, we also have
the expansion

ny
Om, = E wtE,,
pu=n+1

where w*, for u =n+1,...,n;, are left-invariant 1-forms on G.
Lete: U C M — G be a first order frame field along x. Then e*w!,... ,e*®™ is a
coframe field on U and e*w® =0, fora =m +1,...,n. Set

et = ZXL’fe*a)“, (3.23)
a=1
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foru=n+1,...,n;. Atapoint p € U, the image of the linear map
" (Omy + Om,) : TyM — mp +my (3.24)

is an m-dimensional subspace. With the given basis, it is the point

In
0 | € G(m,ny),
X
where the smooth map
X = (X/) e Rim—mxm (3.25)

is defined in (3.23). By our assumption (3.20) above, X is not the zero matrix.

Any other first order frame field along x on U is given by ¢ = ¢K, where K : U —
G, is an arbitrary smooth map. Then the linear map e*(wy, + @, ) is related to the
map (3.23) of e by the adjoint action of K~! on g/g;. Using the block form (3.22)
for A(K™"), we see that the image becomes

Ilﬂ
0 € G(m,ny).
(A4 +AcX)AT!

The goal of the frame reduction at this step is to simplify the coefficients X of the
map (3.24) in the sense of finding a slice of the action of G| on R? =" given by

AK)X = (Ay +AcX)AT. (3.26)

The conditions defining the previous order of frames, in this case equations (3.19),
restrict the possible values of X to an affine subspace of R =" which is
invariant under the action (3.26). We describe this affine subspace as follows. Let
Ey 41,...,E, be abasis of g;, where r = dimG. Then

Eq.Eq . E, Eq (3.27)

is a basis of g = my @ m; @ g;, where we introduce the index ranges

l<ab<mm+l<a,f<nn+l1<puv<n,m+1<or1t<r (3.28)
Consider the structure constants Cy = —Cj; of g relative to this basis. These are
defined by the equations ‘

[E]s Ek] = Cl:kEis (329)
J

i=1
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for j,k € {1,...,r}. The Maurer—Cartan structure equations of G are expressed in
terms of the structure constants by

1 < ‘ .
do* = -3 Z Cg»a)’/\w’,
ij=1

forall k € {1,...,r}.

Lemma 3.6. Relative to a first order frame field e : U — G along X, the map X =
(X;:) : U — RU=XM iy (3.25) takes values in the affine subspace

ny
2 ={(X})):Co+ Y (CLX)—Cp,XM) =0}, (3.30)
pn=n+1
wherea,b=1,.... manda =m+1,...,n.

Proof. These restrictions on the entries of X come from the exterior derivative of the
equations e*@® = 0 defining a first order frame field. The forms e*w®, a =1,...,m
constitute a coframe field on U, and the pull-back of the remaining forms must be a
linear combination of these. Then

m

0=-2de*w* = Z (C, + Co. X} — Ch X" 0 Ae* o,
a,b=1

since all other structure constants are zero. In fact, Cj;, = €}, = €7, = 0 because
E,,E; € go and [go, go] C go, so the brackets [E,,,E,], [E,, E;], and [E,, E;] have no
E,-components.

Finally, the coefficients C; = 0 because G fixes Py. For, if K € Gy, then
Ad(K)E, has no E, components, by (3.22). Then E, € g, implies exp(tE,) € Gy,
forall t € R, so

d
[Es,E,] = ad(E,)E, = dAd(E,)E, = = Ad(exp(tEy))E,
0

has no E,-component. See [110, Theorem 20.12, p 529] for information about the
adjoint representations Ad : G — GL(g) and ad : g — gl(g). O

As in the previous step, in order to proceed farther we must assume that the values
of the map X : U — 2~ C R~ are all of the same orbit type under this action
of G;. Given that assumption, we then choose a slice of the action. To simplify this
general exposition, we assume that there is a slice # C 2" for which the isotropy
subgroup is the same subgroup G, of G; at every point. We then define a second
order frame field e : U — G to be a first order frame field whose coefficient map

X:U—>%C 2 cRm=mxm

takes its values in the slice. We summarize this as follows.
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Definition 3.7. A second order frame field along x : M — N is any frame field
e: U CM — G along x for which

1. e*w® =0,fora =m+1,...,n;and e*w' A--- Ae*w™ # 0, (first order);
2. ot =" Yietw  foru=n+1,...,n,

where Y = (Y4) € % at every point of U.

The Factor Property of Theorem 2.18 applied to the action (3.26) ensures the
existence of a second order frame field on some neighborhood of any point p € M
at which the map (3.25) satisfies X(p) € G,%/; i.e., x is of type (G2, %) at p.

The next step of the frame reduction proceeds in the same way as the preceding
step. Let g; = my + g» be a vector space direct sum. The frame reduction is complete
at this point if either g, = {0} or if e*wy, = {0}, for any second order frame field.
In either case we then express the component forms of wg, in terms of the coframe
field e*w', ..., e* o™, like this

m
o o _* _.a
O)ZEKaea),
1

where the smooth functions «J : U — R are the invariants of x. The result of the
final frame reduction is called a Frenet frame field along X.

We conclude our general description of the frame reduction process here.
Additional contingencies will be exhibited in the many examples that follow in the
book. For more details about the theory of the method of moving frames see Cartan
[32], Chern [45], do Carmo [30], Green [77], Jensen [93], and Fels and Olver [67].

Proposition 3.8. Let x : M™ — N and X : M™ — N be immersions with Frenet
frames of the same type e : M — G and ¢ : M — G, respectively. If F : M — M
is a diffeomorphism that pulls back the coframe field of e to the coframe field of e,
and pulls back the invariants of e to the invariants of e, then there exists an element
g € GsuchthatXoF = gox.

Proof. Tt is evident from the frame reduction procedure that under the given
hypotheses, F*¢*w = e*w. Application of the Cartan—Darboux Uniqueness
Theorem to the maps eo F: M — G and e : M — G yields the result. O

3.4 Homogeneous submanifolds

We continue with our smooth manifold N" acted upon transitively by the Lie
group G. We choose the point o € N as the origin.

Definition 3.9. An embedding x : M" — N" is homogeneous if there exists a Lie
subgroup H of G that stabilizes x(M) and acts transitively on this set.
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If x: M — N is a homogeneous embedding, we may assume, up to an action by
an element of G, that there is a point py € M such that x(pg) = o. Then

x(M) = {ho: h € H} = n(H),

where m : G — N is the bundle projection (3.16). Let Hy C Gy be the isotropy
subgroup of H at o. Given a point p € M, there exists a neighborhood U C M of
p such that there exists a smooth section e : U — H of the principal Hp-bundle
projection 7 : H — x(M). Because x is an embedding, we may identify M with
x(M) C N as smooth manifolds. Let h C g be the Lie algebra of H, and let ho C go
be the Lie algebra of Hy. If my C b is a vector space complement of h in b, then

dmy i mg — T,x(M) (3.31)

is a linear isomorphism. Moreover, we have the direct sum of vector spaces

g=mp+ho+b, (3.32)
where b’ is a vector space complement of b in g. Let E,, fora = 1,...,m be a
basis of my, let E,, for @ = m+1,...,r be a basis of §/, and let wy, denote the

ho-component of the Maurer—Cartan form of G under the direct sum (3.32). Then
we have an expansion

m r
w = Za)”Ea+ Z W*Ey + Wy,
a=1 a=m+1
where w',... " are left-invariant 1-forms linearly independent on G. With this
preparation we can state the property of a frame field along x that takes values in H.

Proposition 3.10. Given a point p € M, there exists a local frame fielde : U C M —
H C G along x. It has the properties

1. e*(w' A--- Aw™) # 0 at every point of U,
2. fw* =0, fora =m+1,...,r, and
3. the k-dimensional distribution defined by

2 =spanf{w® o =m+1,...,r},

satisfies the Frobenius condition, where k = dimb = dim(g) — (r —m).

Proof. The first item follows from the fact that the linear map (3.31) is an
isomorphism. The second item follows from the fact that e : U — H and the v®
annihilate h. For the third item we observe that the distribution & is spanned by
left-invariant 1-forms on G and 9+ = h, which satisfies the Frobenius condition
because it is a Lie subalgebra of g. O
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The following proposition is an important converse to Proposition 3.10. It is
applied in Proposition 4.39, Theorem 5.15, Problem 6.49, Theorem 12.51, the
classification of totally umbilic submanifolds of the space form geometries, and
in Theorem 15.51, which classifies all nonumbilic Dupin immersions in Euclidean
space. It is the method Cartan [32, p. 155] developed to characterize homogeneous
submanifolds of a homogeneous space. See also Jensen [93, pp. 41-44] and Sulanke
[157, Theorem 4.1, p. 702].

Proposition 3.11. Let G be a Lie group of dimension n, with Lie algebra g and
space of left-invariant 1-forms g*. Let o', ..., @" be a linearly independent subset
of g*. Let e : M — G be an immersion of a connected manifold M of dimension
m<r Let 0 =e*w', fori=1,...,mand let 1% = e*0®, forao =m+1,....r. If

1. 0" A~ A O™ £ 0 at each point of M, if
2. % = ZZV;IA?‘@" on M, for constants A?, for eacha =m+-1,...,r, and if
3. the (n—r 4 m)-dimensional smooth distribution 9+ defined by the subspace

bt =span(w“—ZAf‘wi:oz =m+1,...,r)Cg"

i=1

satisfies the Frobenius condition, then

h={Xeg:oX)=0Vocht}

is a Lie subalgebra of g and e(M) C gH, for some g € G, where H is the connected
Lie subgroup of G whose Lie algebra is b.

Proof. The integral manifolds of & are the right cosets gH, forevery g € G. If r = n,
then it is clear that e : M — G is an integral manifold of 2, and thus is contained
in some right coset gH of H. If r < n, then it is still true that e*w = 0 for every
smooth 1-form w in 2. The local Frobenius Theorem then implies that e(M) must
be contained in some integral manifold of 2. O

Proposition 3.12. Let x : M — N" = G/Gy be an immersion with Frenet frame
field e : M — G. If the invariants of X are all constant on M, then there exists a Lie
subgroup H of G such that e(M) is an open subset of the right coset gH, for some
g € G, so x(M) is congruent to an open subset of the homogeneous submanifold
w(H) C N, where w : G — N is the principal bundle projection (3.1).

Proof. Suppose the Frenet frame field is of order k > 1. Let
g=mo—+ -+ my— + 0y + gk
be the decomposition obtained from the frame reduction procedure. Let

Ei,... E,



46 3 Theory of Moving Frames

be the basis of the Lie algebra g obtained from bases of each component chosen
during the reduction, with the last dimg; vectors being a basis of gi;. Then the
hypotheses of Proposition 3.11 are satisfied and our result follows from that. See
the comments preceding Proposition 3.11 for specific applications occurring later in
the book. O

In the following chapters we will use the method of moving frames to study
surfaces in the classical Euclidean, spherical, and hyperbolic geometries, with
applications to a selection of important problems. The final four chapters use the
method in classical Mobius geometry and Lie sphere geometry. This represents only
a small number of important applications of the method.

It has been widely used in projective geometry, both real and complex. For a
sample of this area see Liao [112], Jensen-Musso [95], and Yang [174].

For its use in Grassmannian geometries, real or complex, see Griffiths [79], Yang
[173], Zheng [175], and Jensen-Rigoli [96].

Problems

3.13. Letx: R — R? be a centro-affine curve of Example 3.4. Prove that a point 7 is
radial if and only if A(¢) = det(x(z),%x(¢)) = 0, where dot is derivative with respect to
the standard coordinate ¢ in R. In the nonradial case, prove that the first order frame
field along x is e = (X, %5{), that the centro-affine arclength parameter s satisfies
ds = e"‘a)l2 = Adt, and that the centro-affine curvature x = A—E(X, X). Prove that if
a curve X is radial, then x(¢) = f(r)a, where a € R? is constant and f is a positive
function.

3.14 (Parabolas). If p is a nonzero real constant, then the centro-affine curve
2

x(1) = (p ! t+ 1) is a parabola. Find any radial points. Off the radial points, find

its centro-affine curvature.

3.15 (Constant affine-centro curvature). Find the centro-affine curves in Rz, up
to SL(2, R) congruence, that have constant centro-affine curvature «.

3.16. Sketch some of the curves found in Problem 3.15. On the sketch, draw the

centro-affine Frenet frame at several points. Give a geometric interpretation of
A = det(x,X).



Chapter 4
Euclidean Geometry

We begin with a standard elementary introduction to the theory of surfaces
immersed in Euclidean space R3, whose Riemannian metric is the standard dot
product. Section 4.2 will be review for readers who have studied basic differential
geometry of curves and surfaces in Euclidean space. Geometric intuition is used
to construct Euclidean frames on a surface. Section 4.3 repeats the exposition,
but this time following the frame reduction procedure outlined in Chapter 3. The
classical existence and congruence theorems of Bonnet are stated and proved as
consequences of the Cartan—Darboux Theorems. A section on tangent and curvature
spheres provides needed background for Lie sphere geometry. The Gauss map helps
tie together the formalism of Gauss and that of moving frames. We discuss special
examples, such as surfaces of revolution, tubes about a space curve, inversions
in a sphere, and parallel transforms of a given immersion. These constructions
provide many valuable examples throughout the book. The latter two constructions
introduce for the first time Mobius, respectively Lie sphere, transformations that
are not Euclidean motions. The section on elasticae contains material needed in our
introduction of the Willmore problems.

Euclidean space is R® with the Riemannian metric given by its standard dot
product. The Euclidean group E(3) is the set of all isometries of this space.
Euclidean geometry is the study of properties of subsets invariant under isometries.
Immersions x,X : M — R? are congruent if there is an isometry 7 € E(3) such that
X = T ox. In Chapter 10, the related notion of equivalence plays a prominent role.
Immersions X : M — R? and & : M — R3 are equivalent if there is an isometry
T € E(3) and a diffeomorphism F : M — M such that Ro F = Tox : M — R®, that
is, X o F is congruent to x. In the case when x and X are embeddings, equivalence
implies Tx(M) = f(([l;l), which is Euclid’s notion of congruence.
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4.1 The Euclidean group

An isometry of R? is a diffeomorphism T : R? — R3 whose differential dT preserves
the dot product at each point. An example is T = (v,A) € R* x O(3), where
(v,A)x = v + Ax,
and the orthogonal group
0(3)={AeGL(3,R):'AA=1}.

Exercise 7. Prove that any isometry of R3 is of the form (v,A), for some v € R3
and A € O(3).

The set of all Euclidean isometries forms a Lie group, E(3), called the Euclidean
group. As a manifold,

E3)=R>x0(3),
and the group structure defined by composition of maps is

(v,A)(w,B) = (v+Aw,AB),

which is a semi-direct product, R? x O(3), with R? as the normal subgroup. The
inverse transformation of (v,A) is

v,A)7'=(=A"v,A™h),
and conjugation by E(3) on its normal subgroup R? is
(v.A)(w.)(v.A)~" = (Aw.D),

which is the standard action of O(3) on R3. The connected component of E(3)
containing the identity element is the subgroup E. (3) = R*xSO(3), which is called
the Euclidean group of rigid motions. The Euclidean group E(3) has the faithful
representation in GL(4),

EG) = {()1( 2) . Ac0@), xR,

so it is a matrix Lie group. Its Lie algebra &(3) is faithfully represented in the Lie
algebra gl(4,R) by

00

£3)= {(X X

):Xeo(3), x e R}
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where the Lie bracket is the usual matrix commutator. As vector space,
3 00
&3)=R’+0(3), <X < (x,X). “4.1)

The adjoint action of O(3) on R = &(3)/0(3) is
Ad(0,4)(x,0) = (Ax,0),

which is the standard action of O(3) on R3. The Lie bracket is given by matrix

()G = G0 EY)-CDE)

. 0 0
T \Xy-YxXy—vXx)’
which, in the identification (4.1), is
[(XsX)s (yv Y)] = (Xy - YXs [X, Y]),
where [X, Y] = XY — YX is the Lie bracket in 0(3) C gl(3,R). In particular,
[(0.X).(0.Y)] = (0.[X.Y]),
[(0.X).(y.0)] = (Xy.0), (4.2)
[(x.0). (y,0)] = (0.0) = 0.

The Maurer—Cartan form of E(3) is the &'(3)-valued left-invariant 1-form

00\ _(10\" (10y_( 0 0
bow) \xA xA) \A7ldxA7'dA)’

s0 0 = (w') is R*-valued and w = A™'dA = (w;) is 0(3)-valued. Differentiation of
these forms gives the Maurer—Cartan structure equations of E(3),

df =d(A7"dx) = —A"VdAAT Adx = —w A6,
do =d(A7'dA) = —AT'dAAT' NdA = —w Ao

In terms of the left-invariant component 1-forms on E(3), this is

3 3
do' = — E w;/\a)’, da); = — E w,‘(/\wlk
j=1 k=1
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The isometric action of E(3) on R? is transitive, so the E(3)-orbit of the origin
0 € R? is all of R?. The isotropy subgroup Gy of E(3) at 0 is

Go=1{(0,A)cE3):A€0(3)} 2 0(3).
By Proposition 2.6, E(3) is a principal O(3)-bundle over R* with projection
7:EG3)—>R?® 7(v,A) = (v,A)0=v. 4.3)

For reference frame at 0 choose the standard basis €, €2, €3 of R>. Then any element
(v,A) € E(3) defines a frame

d(v,A)o(€1,€2,€3) = (A1,A2,A3)
at (v,A)0 = v € R3, where A; denotes column i of A. Every orthonormal frame on

R’ is obtained in this way. The basis of my = R? C &(3) that projects by d; onto
the standard basis of R? is

Ei=(€,0), i=1,2.3. (4.4)
The adjoint representation of Gy = O(3) on g/go = R3 relative to E;, E,, E; is the

standard representation O(3) C GL(3,R). An orthonormal frame field on an open
set U C R? is a smooth section

(x,¢): U—EQ3)

of (4.3). It must be of the form (idy,e), where idy : U — U is the identity map
of U and e : U — O(3) can be any smooth map. Smooth local sections exist on a
neighborhood of any point of R*.

4.2 Surface theory of Gauss

Let M be a surface and let
x:M— R

be an immersion in the three dimensional Euclidean space R3. If u,v are local
coordinates on M, then x(u,v) is a smooth vector valued function. The condition
that it is an immersion is that the tangent vectors X, and x, be linearly independent
for every (u,v). The unit normal vector

X, X Xy

e3(u,v) = :|:|X x
U v
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is then defined up to sign. Gauss [72] based his theory of surfaces on the first and
second fundamental forms

[ = dx-dx = Edu* + 2Fdudv + Gdv?,
Il = —dx-de; = Ldu* + 2Mdudv + Ndv?,

which are symmetric, bilinear form fields on M. The form I is positive definite and
the form /1 is defined up to the choice of sign in e3. The ratio II/I = ky(u,v, Z—Z),
which depends on the point (u,v) and a tangent line 7 through it, is called the
normal curvature. Geometrically it is equal to the curvature at (u, v) of the curve of
intersection of the plane spanned by the normal e3 and 7 with the surface. Explicitly,
if the line T at (u,v) is tangent to the nonzero vector X = ax, + bx,, then the
corresponding normal curvature is

1(X.X) _ La®>+2Mab + Nb?
I(X,X)  Ea*>+2Fab+Gb?’

ky(u,v,T) =

If X is multiplied by any nonzero number ¢, then ky remains unchanged, which
shows that it depends only on the line 7 and not on the choice of vector tangent to
the line.

Let the point (u,v) be fixed. The critical values of ky as a function of the line T
are called the principal curvatures, which we denote by a and c. Their elementary
symmetric functions

1
H:§(a+c) and K = ac

are called the mean curvature and Gaussian curvature, respectively. A Weingarten
surface, or W-surface, is one satisfying a functional relationship

fla,c)=0 4.5)
between its principal curvatures. Special cases are

H = 0, minimal surfaces,
H = nonzero constant, constant mean curvature (CMC) surfaces,

K = constant, constant curvature surfaces.

If the surface is given as a graph

z=2z(x,y),
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then
_1a + 222 — 2022y + (1 + 222y we)
2 (142242232
and
Zaelyy = 22

T + 224222

The Weingarten equation (4.5) is essentially a geometric expression of a nonlinear
partial differential equation in two independent variables. For example, the minimal
surface equation H = 0 is a quasi-linear elliptic PDE.

4.2.1 Surface theory of Darboux, Cartan, and Chern

A frame field (x,e) in Euclidean space R* defined on an open set U C R? consists

x!

of the position vector x = | x> | and smooth vector fields e;, e,, €3 on U such that

3

they form an orthonormal basis of R? at each point. The exterior differential of each
of x,e;,e,,e3 can be expressed as linear combinations of the orthonormal frame
e = (ey,e;,e3), where the coefficients are smooth 1-forms defined on U. Namely,

3 3
dx = Za)"e,-, de; = Zw{ej,
1 1
where the coefficient 1-forms w’ and a)j’ are given by the dot products
o' =dx-e;, w,’ = de;-e;.
Differentiating e; - €; = ;;, we find that
w{ + a); =0,

for 1 <i,j < 3. Since ddx = dde; = 0, we arrive at the structure equations
3 3
i i i ik
do' = —ijAw’, da)j = —Za)kAa)j. 4.7
j=1 k=1

The latter equations show that the curvature forms of Euclidean space are zero,

3
Q=doj+) wjrof=0. ij=123.
1
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Let M be a surface and let
X
x=|2]|:M->R
X

be a smooth immersion. The differential of x at p € M can be expressed as

dx[l,
dx, = | de | : T,M — R,

dx,

9%}

where each dx' is the ordinary differential of the function x' : M — R. The condition
that x be an immersion is that dx has rank two at each point of M; that is, the
dimension of the span of {dx',dx?,dx3} is two at every point of M.

A Euclidean frame field along x on an open set U C M consists of smooth vector
fields e; : U — R3, i = 1,2,3, such that e = (e1,e;,e3) is an orthonormal frame of
R3 at each point of U. Denote such a frame field by (x,e), where e = (e, e;,e3).
Then dx can be expressed in terms of e by

3
dx = E w'e;,
1

where each ' is a smooth 1-form defined on U, given by
o =dx-e;.

It is a linear combination of the d¥ with coefficients being the smooth function
entries of e;. Suppose that we can choose ez to be a unit normal vector to the surface
at each point. Such a smooth vector field exists on all of M if and only if M is
orientable, in which case the normal is determined up to sign (assuming that M is
connected). With such a choice for e; it follows that the tangent plane, which is the
image of dx, must be the span of e; and e,. Hence, choosing e; normal at every
point is equivalent to the condition that

w>=0 (4.8)
at every point of U. By the immersion condition, it follows then that ', »? must be
linearly independent at every point of U, and hence they form a coframe field on U.
Frame fields (x,e) satisfying this condition will be called first order frame fields

along x. By the structure equations (4.7), exterior differentiation of (4.8) gives

v A0 + 03 0? =0 (4.9)
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Lemma 4.1 (Cartan’s Lemma [32], pp. 218-219). Let o',...,a” be p linearly
independent elements in a vector space V of dimension n. If p elements ¢1,. .., ¢, of
V satisfy the equation in A,V

P
Z“j N =0,
j=1

then ¢; = Zj;l hijod, for some scalars hy; satisfying hy = hy, forall i,j =1,...,p.

Proof. Complete al,...,aPtoabasisal,...,af,a?t! ... " of V. Then

i = Zhiﬂj,
=

for some scalars 4;;, and

ij>
p P n

OZZ(XLAgoi: Z (hij—hji)oz‘/\oﬂ+z Z hi/(O(l/\Oék,
i=1 1<i<j<p i=1k=p+1

so hjj—h;; =0and hy =0, fori,j=1,....pandk=p+1,...,n, sincethe’@—i—
p(n—p) bivectors

aAed, i=1,...p, j=1,....n, i<},

are linearly independent in A, V. O

The following exercise is also called Cartan’s Lemma.

Exercise 8. Let w!,...,®" be smooth 1-forms on a manifold N such that they are
linearly independent at every point of N. Let 6,...,6, be smooth 1-forms on N
such that

zn:a)i/\ei =0,
1

at every point of N. Then 6; = Z]’.’:l hija)f ,foreachi=1,...,n, for smooth functions
hjj on N satisfying h;; = hj;.

By Cartan’s Lemma, a first order frame field satisfies
2
0)13 :Zhija)j, fori=1,2,and hi, = hoy. (4.10)
j=1

Comparing the situation with Gauss’s formalism, we see that for our first order
frame field (x,¢),

[=dx-dx=w'ow'+ 0’0’ (4.11)
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is the first fundamental form and
Il = —dx-de; = wla)l3 —}—wza)g’ = h“a)la)1 + 2h12a)1a)2 +h22a)2a)2 4.12)

is the second fundamental form. The first fundamental form is a Riemannian metric
I on M. It is called the Riemannian metric induced on M from the dot product
by the immersion x : M — R3. If (x,e) is a first order frame field on an open set
U C M, then (4.11) shows that o', ®? is an orthonormal coframe field on U. From
the structure equations (4.7) and (4.8)

do' = —a)zl/\a)z, dw? = —a)lz/\a)l,
from which it follows that the Levi-Civita connection form relative to this orthonor-
mal coframe field is

1__ 2
w, = —wy.

Taking the exterior derivative of this, using the definition of the Gaussian curvature
of 1, and using the structure equations (4.7) we arrive at the Gauss equation for the
Gaussian curvature K,

Ko'Ao? = dw) = 0} A@; = (hi1hy — ) o' Ao?, (4.13)

where the last expression on the right is essentially Gauss’s definition of curvature
in terms of the second fundamental form. This proves Gauss’s Theorema Egregium
[72]: the Gaussian curvature depends only on the first fundamental form. The Gauss
equation can be expressed as

K =det S,

where the 2 x 2 symmetric matrix S is defined by

hit hlz)
S= ) (4.14)
(h21 h

This is the matrix of the shape operator (also called the Weingarten map)
—de; : TxyM — TxyM

relative to the orthonormal basis e;,e,, as can be seen from (4.12). Making the
identification dx(7,,M) = T, (m)Sz, we see that the shape operator is the differential
of the Gauss map —es : TyM — S2. Gauss defined curvature to be the Jacobian of
this map. The mean curvature is half the trace of the shape operator

1 1
H= -t S = —(h11 + hn).
2race 2( 11 22)
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The principal curvatures are the principal values of S, thus the roots a and c of the
quadratic equation in ¢,

det(S—11,) = 0.

Definition 4.2. The Hopf invariant h relative to a first order frame field (x,e) on
U C M is the smooth function

1
h:U—)C, hzz(hll—hzz)—ihlz.

For any first order frame field (x,e) we have
W} —iw3 = h(®' +i0?) + H(o' —iw?),

where £ is the Hopf invariant relative to (x,e) and H is the mean curvature.
Here are some of the basic properties of the Hopf invariant.

Exercise 9. Let .7 be the real vector space of all 2 x 2 symmetric matrices and let
L be the real linear transformation

1
L:¥Y—C, L) = 5(511—522)—1'512. (4.15)

The Hopf invariant is then & = L(S), where S is given by (4.14). Prove the
following:

1. The kernel of L is the set of all scalar matrices, that is, scalar multiples of the
identity matrix.

2. L(S) is real if and only if S is a diagonal matrix.

3. If

A= (cost—smt) 4.16)

sint cost

is rotation through the angle ¢, then L('ASA) = e™'L(S).

4. If
B—A 10 _ c9st sint ’ 4.17)
0-1 sint —cost
is a rotation through an angle # composed with reflection through the horizontal
axis, then L(BSB) = e~ 'L(S).

Since § of (4.14) is symmetric, its principal values are real and are called the
principal curvatures of x at the point. The principal vectors of § are called the
principal directions of x. These are orthogonal whenever the principal curvatures
are distinct. A point of M is called an umbilic of x if the principal curvatures are
equal at this point. At an umbilic, every direction is principal.



4.2 Surface theory of Gauss 57

Definition 4.3. A smooth curve y : J — M, where J C R is an interval, is a line of
curvature of X, if its tangent vector y is a principal direction at each point of J.

Lemma 4.4 (Lines of Curvature). If (x,e) is a first order frame field along x on
an open set U C M, then a smooth curve y : J — U is a line of curvature if and only
if at every point of J

Y (0'w; —w’o]) =0.

Proof. For the first order frame field (x,e) on U we have w? = Zle hijo’. Then

7 =o0'(y)e; + w?(y)e; and Se; = ij=1 hj;e;, so y is a principal vector if and only
if Sy = Ay, for some A € R, that is,

2 2 2 2

0} (e =) hiw' (e =Y o'()Se;i=5y =1y =1Y_ /(e

j=1 ij=1 i=1 Jj=1
if and only if wf’())) = A&/(p), for j = 1,2, if and only if

Loy m2(v
det (‘“3@ w_o,(lf)) =0,
wi(y) @3(7)

which is equivalent to the statement of the lemma. O

The two remaining structure equations are
dw} = —w) A3, dw; = vy Ao (4.18)

If we take the exterior differential of the equations w; = Zf:l hij’, and again apply
Cartan’s Lemma, we obtain the Codazzi equations

2 2 2
dhi;— Z hikwf - Z hyjo; = Z hira", (4.19)
k=1 k=1 k=1

where h;; are smooth functions on U, totally symmetric in all three indices,
1 <ij,k<2.

Given a first order frame field (X,e) on a connected subset U C M, any other is
given by

€; =ce3, € = elA% +92A%, € = elAé + ezA%, (4.20)

where € = +1 and A = (A;:) : U — O(2) is a smooth map. In matrix notation we
have ‘

(€1,€2) = (e1,e2)A.
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From dx = &'é, + ®%é, = w'e; + w?e, we see that

o' =Ale" +AV?, o’ =AD" +ALD?,

() =4(5).

Under this change of frame, the area form changes by

which in matrix notation is

o' A0 = det(A) ' A&

Since A € O(2), we know that det(A) = %1, so the orientation of M is preserved if
and only if A € SO(2). In the new frame, (4.10) becomes

2
& = hyd, @.21)
j=1
fori =1,2. From cbf = de;-e3 = —¢€;-de3, we have
2 .
@ =y Ao} (4.22)
j=1

By (4.10), (4.21) and (4.22) it follows that the 2 x 2 symmetric matrices S = (iz,;j)
and S = (h;j) transform by

S = eASA. (4.23)

From linear algebra we know that at a point in U, we can diagonalize S by this
action. The resulting diagonal entries are the principal curvatures of x at the point.
If the principal curvatures are equal at the point, then S and S are scalar matrices
and the point is umbilic. The principal values of S are € times the principal values of
S. Therefore, replacing the unit normal e; by —e;3 reverses the sign of the principal
curvatures and the mean curvature, but leaves the Gaussian curvature invariant. By
Exercise 9, the Hopf invariants relative to each frame are related by

h=ee*n, (4.24)

if A is rotation by an angle 7 € R given in (4.16), and by

h=ece h,

if A is the matrix B in (4.17).
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Definition 4.5. A second order frame at a point p € U is a first order frame (x, e) at
p for which e (p) and e,(p) are principal directions of x at p.

That is, (x,e) is of second order at p if the matrix S of its shape operator, defined
in (4.14), is diagonalized at p:

where a,c € R are the principal curvatures of x at p. This is equivalent to the
conditions at p:

= 0, a)13 = awl, a)23 = cw?.

If @ = c, then the point is umbilic and any first order frame is automatically of
second order there, because every vector in T,M is then a principal vector of the
shape operator.

A change of frame (4.20) at p preserves the second order property of (x,e) at p
if and only if the matrix S in (4.23) is also diagonalized. At a nonumbilic, there are
just a finite number of changes of second order frame. See Problem 4.60.

A second order frame field along x : M — R? is a first order frame field on an open
set U C M that is of second order at every point of U. Figure 4.1 shows a second
order frame at a nonumbilic point of an ellipsoid with distinct principal axes.

Fig. 4.1 A second order
frame on a generic ellipsoid.
The blue points are umbilics.
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Lemma 4.6 (Existence of Second Order Frame Fields). For the immersed sur-
face x : M — R3 suppose that the point p € M is nonumbilic. Then there exists an
open neighborhood U about p on which there is a smooth second order frame field.

Proof. Let (x,e) be a smooth first order frame field on an open neighborhood V of
p and let S be the coefficient matrix of the second fundamental form with respect to
this frame field. The entries of S are smooth functions, and thus the mean curvature
H= % trace S and the Gaussian curvature K = det S are smooth functions on V. The
principal curvatures are the solutions of the quadratic equation in ¢

0=det(S—t) = > —2Ht+K
whose solutions a and ¢ are
H+VvH?-K, H—-vH?-K. 4.25)

The smooth function H> — K on M is nonnegative and the umbilic points are
characterized by the equation

H>*—K=0.

In particular, the set of umbilic points is closed in V and the set of nonumbilic points
is open. The functions a and ¢ are continuous on V, and smooth on the open set of
all nonumbilic points. Let U C V be an open neighborhood of p consisting only of
nonumbilic points. It is standard linear algebra to verify that unit principal vectors
corresponding to a and c are

11 /

& = 7 ((5(h2—hn) = VH?> = K)er —hyey).
-1 1 v

& = 7 (“hize1 + (G (hn = h) + VH —K)e),

where
5 hi1—h 2
L= (hj,+ T+«/H2—K )2.
We have a smooth map A : U — SO(2) given by

a1 —(3(h11 —h») + VH>—K) —hi2
L —hia 5(hi1—hy) + VH?—K

and (€;,€;) = (e1,ey)A, €; = e; defines a smooth second order frame field along x
on U. O
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4.3 Moving frame reductions

In this section we apply the method of moving frames, as outlined in Chapter 3, to
surfaces immersed in Euclidean space. We believe it is instructive to see how this
method arrives at the same invariants as we found in the preceding section.

Let x : M — R be an immersion of a surface M. A frame field along x is a smooth
map (X,¢) : U — E(3) from an open subset U C M such that 7 o (x,e) = x, where
7 is the projection (4.3). In brief, the diagram

EQ3)
(x,e) /|7
USR3

commutes. Given a point m € M and a point (v,A) in the fiber 7' {x(m)}, the Lift
Property of Corollary 2.7 guarantees the existence of a neighborhood U C M of m
on which there is a frame field along x that passes through (v,A). Let

(x,e): UCM— E(3) (4.26)

be a smooth frame field along x. The pull-back of the Maurer—Cartan form of E(3)
by this frame field is

(x,e)7'd(x.e) = (¢ 'dx,e7 de) = (@), (@), ij=1.2,3,

now an &(3)-valued 1-form on U C M. Here, and throughout the rest of this book,
we omit (x,e)* when writing the pull-back of forms to M. The same symbol is
used for the form on E(3) and for its pull-back to M. The context will indicate the
correct interpretation. We now carry out a reduction of the frames following the
general procedure outlined in Section 3.3. We have g = &(3) and go = 0(3). As a
vector subspace complement of g we choose my = R*. The vector space direct sum
g = mg + go decomposes the Maurer—Cartan form of E(3) into 6 + w, where

3
0 = Za)"e,-
1
denotes the my component and
o=(w)), ij=12.3,
denotes the gy = 0(3) component. As we did in (4.4), we choose E; = ¢;, for
i =1,2,3, for a basis of m,. The adjoint representation of Gy = O(3) on g/go = R?

relative to Ej,E,,E3 is the standard representation of O(3) C GL(3,R), as we
observed in Section 4.1 above. Then
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3
dx = Zwiei(m)

i=1

on U, where e}, e,,e; are the columns of ¢ € O(3). We saw in the preceding section
that the frame can be chosen so that e; and e, span the tangent plane dx,,T,,M at
each point m € U. Let us see how that is accomplished through the general frame
reduction procedure. If ¢!, ¢? is a coframe field on U, then

2
o' =) Xlg" i=123,
a=1

where X = (X!) : U — R¥?* is a 3 x 2 matrix whose rank is two at each point, since
the linear map

3 2
= ZZXie,xp“ :TyM — myg
i=1 a=1

has rank two at every point p € U, since X is an immersion. Its image at a point of U
is a 2-dimensional subspace of mo = R>. It is the image of the map

[X]: U — G(2,3), 4.27)

where G(2,3) = R**?* /GL(2,R) is the Grassmannian of 2-dimensional subspaces
of R3. Any other frame field along x on U is given by

(x,e) = (x,e)(0,A) = (x,eA),

where A : U — O(3) is any smooth map. The pull-back of the Maurer—Cartan form
by this new frame field is

00\ _(10\" (10y_(10)" (10
6 & Xe xe) \xeA xeA)’
s00 =A"'0 and @ = A~'wA + A~'dA. Then

le =0 = ZA @& = ZZA’X/ (4.28)

a=1 a=1 j=1
shows that AX = X. The action

03)xG(2,3) > G(2.3), (A.[Y]) — [AY]
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of O(3) on the Grassmannian G(2, 3) is transitive. Choose Py = |:I(§:| to be the origin

of G(2,3). The isotropy subgroup of O(3) at Py is

G =0Q2)x0(1)={A= (g S) €03):ac0(2),e==%l1}, (4.29)
whose Lie algebra is
g =o0(2) = {(ﬁ g) co(3):Ze o)) (4.30)

Then O(3) is a principal G;-bundle over G(2, 3) with projection map
7:003)—G(2,3), n(A)=AP,,

which has local sections.

Definition 4.7. A first order frame field along x : M — R? is a frame field (x,e) :
U — E(3) on an open subset U of M for which [X] = Py. This is equivalent to the
conditions

w =0, a)l/\a)zgéO,

at every point of U.

Proposition 4.8. Given any point m € M, there exists a neighborhood U of m in M
on which there is a first order frame field along x.

Proof. There exists a frame field (4.26) on a neighborhood U of m. Apply the Lift
Property of Corollary 2.7 to the smooth map [X] : U — G(2,3) in (4.27), to get a
neighborhood V of m in U on which there is a smooth map A : V — O(3) such that

APy = [X],
on V. If (x,2) = (x,eA), then [X] = [A~'X] = P, by (4.28), 50 (x,2) : V —> E(3) is a
first order frame field along x. O

A first order frame field (x,e) : U — E(3) has w® = 0 and w',w? a coframe
field on U. This coframe field is orthonormal for the Riemannian metric I = dx-dx
induced on M by x. Let

00x§
m;={] 0 0x3|€o(3)}.
x?x%O
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be a vector space complement to g; (defined in (4.30)) in go = 0(3). For a basis of
m; we choose

00-1 000
E,=|000 ], Es=]|00-1
100 01 0

The direct sum of vector spaces
EB)=g=mo+m +g
decomposes the Maurer—Cartan form of E(3), to 0 4+ wn, + @g,, Where
W, = a)f’E4 + a)g’Eg.

Relative to a first order frame field (x, ¢) : U — E(3), the Maurer—Cartan form pulled
back to U satisfies w> = 0 and !, w? is a coframe on U, and

2
j=1

We now consider the rank two linear map

2 2
0 +om, = (1 + Zhi1E3+i)91 + (€2 + Zhi2E3+i)92 : TPM — my+m;y.
1 1

4.31)

Its image is a 2-dimensional subspace of mo +m; = R®, represented as a point

I
0 | € G(2,5),
h

where h = (h;) € R¥2. The exterior derivative of @® = 0 on U, combined with the
structure equations of E(3), gives (4.9) Y.Jw? Aw’ = 0, since w® = 0. By Cartan’s
Lemma 4.1, we saw (4.10) a)? = Zf:l h,;iaﬂ , for i = 1,2, and the smooth functions
hii - U — R satisfy h;; = hj;. Let

S=(hy):U—.7, (4.32)

a smooth map into the vector space . of all symmetric 2 x 2 matrices. It follows
that the map (4.31) takes values only in the subspace

I
0 | CG(2,5).
5%
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Any other first order frame field on U is given by (x,¢) = (x,¢)(0,A), where A :
U — G; = 0(2) xO(1) is smooth of the form

A= (B 0) ’
0e
where B: U — O(2) is smooth and € = =+1 is locally constant. They pull back the
Maurer—Cartan form of E(3) to (6,®) = (A™'6,A7'wA +A7'dA) =

1 1
B! (“’2) B~ (0 w2)B+B 'dB B~ ( 2)
) ) w? 0 05 )
0 €(w},w3)B 0

from which we conclude that

~1 1
(22) =B (Zz), (@},@3) = e(0},w3)B,

and
= (det B)w? 4 7?2, (4.33)
_2
where B~'dB = ( 02 gl ) and rlz is a closed, smooth 1-form on U. This shows that
T
the adjoint representation of G; on &(3)/g; relative to the basis Ej, ..., Es is
B0 O
AdA)=|0¢€e 0
00¢€B

The image of the map (4.31) thus transforms by

L I
0|=AdAaYH]|o|,
S S
which implies
S = ¢BSB. (4.34)

This is the action (B, €)S = ¢BS B of O(2) x O(1) on . analyzed in Example 2.17.
From there we know that a slice of this action is the set % of all nonscalar diagonal
matrices in . together with the closed subgroup

G, =KxO0(1) C G, (4.35)

where K is the finite subgroup of O(2) defined in (2.6). Following Definition 3.7 we
would define second order frame fields along x as follows.
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Definition 4.9. A second order frame field along x is a first order frame field (x,¢) :
U — E(3) for which the map S: U — . of (4.32) takes all values in #'. The second
order invariants of X on U are the nonzero entries of this map.

In simpler terms, a second order frame field (x,e) : U — E(3) is characterized by

0’ =0, o'Aw?#£0, (first order),

a)13 =aw', a)g = cw?, (second order),

for smooth functions a,c : U — R for which a # ¢ at every point of U. These
functions are the second order invariants and are called the principal curvatures
of x at each point of U. It is traditional to call the frame field second order even
when a = ¢ at some points of U. These are the umbilic points of x in U. If all points
of U are umbilic, then x is of a different type. This case is discussed below.

Lemma 4.10. Let mg be a point in M. If mg is nonumbilic, or if there is an open set
of umbilic points containing my, then there exists a smooth second order frame field
on some neighborhood of my.

Proof. There exists a smooth first order frame field (x,e) : U — E(3) on some
neighborhood U of my. If there is an open neighborhood V of m in U consisting
entirely of umbilic points, then this frame field is of second order on V.

The smooth function H> — K : M — R is zero precisely at the umbilic points of x,
so the set of umbilic points is closed in M. If mg is nonumbilic, then we may shrink
U, if necessary, so that U contains only nonumbilic points. Consider the map (4.32)
associated to the frame field (x,e). Let ag # co be the principal curvatures at my.
Using the notation of Example 2.17 for the slice ¢ of the action of G| on ., we
know that S(U) C G % . Apply the Factor Property of Theorem 2.18 to get an open
neighborhood V of mg in U and smooth maps

A=(B.):V—G =0@2)x0(l), D= (g (C));v—>@,

with a(mg) = ag and c(mg) = ¢y, such that
S = (B,e)D =e¢BDB
on V.If (x,€) = (x,eA) : V — E(3), then
S=¢eBSB=D,

on V, with S(mg) = D(my). Hence (x,2) is a second order frame field. O
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It is possible that a smooth, even continuous, second order frame field may not
exist on any neighborhood of an umbilic point. Consider the following example, for
which the origin in M = R? is the only umbilic point.

Example 4.11 (Nonexistence). Consider the embedding of the circular paraboloid
2 4 2
Z=x"+y

x:R2 SR x(ny) ="(x,y,2 +)7).

In terms of polar coordinates x = rcost and y = rsint away from the origin, we can
parametrize this surface as an immersion of revolution (see Example 4.40)

x(r.1) = (rcost,rsint, r?).

If w = +/1+4r2, then

1[ . t .
e; = —'(cost,sint,2r), e, ='(—sint,cost,0), e;=e| Xe;
w

is a second order frame field for all » > 0 (see Example 4.40 below). Thus e; is a
principal vector field at every point of R?\ {0} and for any fixed 7,

1
lime; = lim ———=/(cost,sint,2r) = '(cost,sint,0),

r—0 r—>0 m

which depends on 7. Thus e; cannot be extended continuously to the origin. Any
second order frame field along x on a neighborhood of the origin must include +e;
away from the origin, so it cannot be extended continuously to the origin.

The obstruction to the existence of continuous second order frame fields is more
subtle than just the existence of umbilic points. Example 4.41 in the next section has
a second order frame field defined everywhere, even though there are whole curves
of umbilic points.

Remark 4.12. If (x,e) : U — E(3) is a second order frame field on an umbilic free
domain U, then any other second order frame field on U is given by (x,eA) : U —
E(3), for any smooth map A : U — G,, where G;, is the finite subgroup of G| defined
in (4.35). Since g, = 0, the Frenet frames are the second order frame fields. The
remaining Maurer—Cartan form of a Frenet frame is

a)lz =po' + qw?, (4.36)

where the functions p,q : U — R are the third order invariants.
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4.3.1 Summary of frame reduction and structure equations

Let x : M — R? be an immersed surface. At a nonumbilic point there exists a smooth
second order frame field e : U — E(3) on a neighborhood of the point. Its pull-back
of the Maurer—Cartan form of E(3) satisfies:

w =0, (first order), o' Aw? #0

do' =po'ro?,  do* = qo' Ao?

o} =aw', 3 =cw?, (second order)

w12 =pw' +qw?, (third order).

The structure equations of the immersion are the Codazzi and Gauss equations,
which, because w! Aw? # 0 at each point, can be written as

ap = (a—c)p, c1 = (a—c)q, (Codazzi equations),
(4.37)
p2—q1 —p*—q* = K = ac, (Gauss equation),

where da = Z%aiwi, de = Z% ciw', dp = Z%pia)", and dg = Z%qiwi, and K is
the Gaussian curvature of the metric induced on M. The functions a and c are the
principal curvatures of X. They are continuous functions on M, smooth on an open
neighborhood of any nonumbilic point.

If x is totally umbilic on U, then any first order frame is automatically second
order and the above equations with a = ¢ give the structure equations for such a
frame.

Exercise 10. Prove that for any first order frame field (x,e) : U — M the structure
equations of E(3) imply

do' =po' Ao, do* =qo' A Ae?, (4.38)
where p,q : U — R are smooth functions satisfying
w12 =pow' + qo?. (4.39)

If (x,e) : U — M is of second order, prove equations (4.37).

4.3.2 The criterion form

It is useful here to make use of the Hodge star operator, which we shall define only
for a very specialized situation. For a fuller treatment of this operator, see [110,
p 385].
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Definition 4.13. The Hodge star operator * : A'(M) — A'(M) is a linear operator
on the space A!(M) of smooth 1-forms on an oriented Riemannian surface (M,I)
given relative to a positively oriented orthonormal coframe ', w? by

x0' = w?, 0’ =-—-o'.

Exercise 11. Prove that the Hodge star operator does not depend on the choice of
positively oriented orthonormal coframe.

Definition 4.14. The criterion form of a first order frame field (x,¢) : U — E(3) is
the smooth 1-form

o =—*wl

where U is oriented by the orthonormal coframe field o', w? of (x,e). Thus, if a)f =
po' + gw? as in (4.39), then « = go' — pw?.

Remark 4.15. From (4.38) and the structure equations, the criterion form of a first
order frame field (x,e) : U — E(3) is characterized by the equations

do! =oz/\a)1, dw® = a A2,

Exercise 12. Prove that if « is the criterion form of a first order frame (x,¢) : U —
E(3), then the criterion form & of any other first order frame (x,e) = (x,e¢A), where

A= (g O), B:U — 0(2), and € = %1, satisfies
€
@ = a + (detB)*t?,

where * is the Hodge star operator defined by the orientation induced by the coframe

)
field of (x,e), and B~'dB = (02 gl) defines the 1-form 77, as in (4.33). In
31

particular, @ = « if B: U — O(2) is locally constant. Note: & = >T<a312, where %
is the Hodge star operator defined by the orientation of the orthonormal coframe
field of (x,e).

The criterion form of a second order frame field is independent of the choice of
second order frame field. See Problem 4.62.

4.4 Bonnet’s existence and congruence theorems
We reformulate Proposition 3.8 as follows for Euclidean geometry.

Proposition 4.16 (Congruence). If (x,¢),(X,¢) : M — E(3) are second order
frame fields along immersions x,% : M — R3, respectively, on connected M such that
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at every point of M, @' = 0", @*> = w* a=a, ¢ =c, p = p, and § = q, then there

exists an isometry (v,A) € E(3) such that (x,e) = (v,A)(x,e), so X = (v,A)ox =
v+Axon M.

Note that the isometry is determined explicitly by the Frenet frames evaluated at
any point of M, since (v,A) = (X,2)(x,e)”! must be constant. In the light of (4.38),
this proposition remains true without the hypotheses p = p and g = ¢. Congruence
follows from equal Frenet coframe fields and equal principal curvatures. From
Problem 4.62 we see that the hypotheses can be relaxed to requiring the coframe
fields be related as in (15.58) or (15.59). Ideally, one wants hypotheses that are
global in that they would not require the existence of a Frenet frame field on all
of M. For example, if M is assumed oriented, then we can specify the normal
vector e3 in any frame and thus the principal curvatures are functions on M. Would
the proposition remain true if we assumed equal principal curvatures and equal
first fundamental forms, I = w'w! + w?w?? This question, known as the Bonnet
Problem, remains unresolved. It is the subject of Chapter 10. In 1867 Bonnet
formulated congruence and existence theorems in terms of the first and second
fundamental forms. These are Theorems 4.18 and 4.19 below.

Proposition 4.17 (Existence). Given a coframe field o', w? and smooth functions
a and ¢ on a contractible domain U C R?, define smooth functions p and q on U by

do' =po' Ao?,  dw® = go' Ao

Ifda= a0 +aw?, dc=cio' +c0?, dp = pro' +pr0?, and dg = 0" + g0
satisfy

ay=(a—c)p, c=(a—c)q, pr—qi=ac+p’+q (4.40)

on U, then there exists an immersion X : U — R® with principal curvatures a and ¢
and induced metric I = o' o' + w’w?.

2 1 2 _ 1,3 1 1 3 _
Proof. Let wi = pw' +qw* = —w,, 0] = aw’ = —w;, and w; = cw

define the &(3)-valued 1-form on U

2=—wi, to

1 11
1) 0 w, wsy
n=|o?|.|0} 0 o?
0 ] 3 0

Then dn = —n A n, by (4.40), so Theorem 2.25 implies the existence of a smooth
map (x,e) : U — E(3) such that (x,e)"'d(x,e) = non U and x : U — R? is the
desired immersion. O

Theorem 4.18 (Bonnet’s Congruence Theorem [15]). Let x,X : M — R> be
smooth immersions of a connected surface M. Let I .1 be the first fundamental forms
of X and X, respectively. Let e; and €3 be unit normal vector fields along x and X,
respectively, and let

Il = —des-dx, I = —de;-dx
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be the second fundamental forms of X and X relative to e3 and €;, respectively.

If there exists an element (v,A) € E(3) such that X = (v,A) oX on M, then &; =
€Aes, wheree = £1, 1 = i, and Il = €Il on M.

Conversely, if I =1 and 1 = ell, where € = £1, then there exists an element
(v,A) € E(3) such that X = v+ Ax and €3 = €Ae;.

Proof. 1f there exists an element (v,A) € E(3) such that X = Ax + v, then dX = Adx,
which implies that I = dx-dx = Adx-Adx = dx-dx = [ on M. In addition, both €3
and Ae; are smooth unit normal vector fields along X on the connected surface M,
S0 €3 = €Aez on M, where ¢ = £1. Thus,

11 = —dé; - dX = —eAde; - Adx = —edes - dx = €ll

onM.

Conversely, suppose [ = I and I = eﬁ on M, where ¢ = £1. If e = —1, replace
€; by —e€3, which will change 11 to —1I. Thus, for the converse it is sufficient to
suppose that I = TandII =T on M.

Let p € M, and let U be a connected open neighborhood of p on which there
exists a first order frame field (x,¢) : U — E4(3) whose third vector is e3. Then
dx = w'e; + w?e,, where w!, w? is an orthonormal coframe field for 7 on U. Since
I1=1 , it follows that @', w? is also an orthonormal coframe field for X on U. There
exists a first order frame field (X,¢) : U — E(3), with third vector equal to €3, such
that dx = '€, + w?&,; that is, @' = 0! and ®* = ®? on U. Then @) = w} on U,
by (4.38) and (4.39), and

a)la) +w2a) —II—II—a)la) +a)2a)2

implies that @} = »? on U, for i = 1,2. Then (x,e) and (X, ¢) satisfy
!
xe)ldxe) = [ [? | (@) | = ® &) a2
0

on U. By the Cartan—-Darboux Congruence Theorem 2.24, there exists an element
(v,A) € E(3) such that (x,e) = (v,A) o(X,e) on U. In particular, x = v+ AX and
e; = Aes on U.

There is no loss of generality in replacing X by the congruent immersion v + AX,
in which case we then have the same hypotheses holding and now

(x,e) = (x,¢)

on U. This proves the theorem for the case when M possesses a global frame field.
The existence of a global frame field on M implies M has a nowhere vanishing
smooth vector field, and thus the Euler characteristic of M must be zero. In general,
then, so far we have proved only a local result.
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Let g be any point of M. We want to prove that (X(q),€3(q)) = (x(q).e3(q)). For
this purpose, let y : [0,1] — M be a continuous path from p = y(0) to g = y(1).
For each r € [0, 1], apply the argument above to the point y(f) € M to conclude that
there exists a connected neighborhood U; of y(¢) on which there are frame fields
(x,e,),(X,¢,) : U, — E(3), with third vector equal to e; and €3, respectively, and an
element (v;,A;) € E(3) such that

(x,e) = (v,Ar) o (X,€;)

on U;. By a standard argument using the Lebesgue number of the open covering
{y~'U }eo.1) of [0,1] (see [122, Lemma 27.5 on page 175]), there exists a partition
0=t <t <:-+<try1 = 1, and connected open subsets Uy = U, Uy,..., Uy of M
such that

o yltiti] C U, fori=0,...,k;
* there exists an element (v;,A;) € E(3) such that

X=V;+AX, e =A;€;

on Uj, fori =0,...,k. By assumption, vo = 0 and Ay = I5.

Letp; =y(t;),fori=0,...,k+1,s0 po = p and py4+ = q.
On Uy wehavex =X and e; = €3 andon U; wehavex =v; +A;Xand e; = A;€3.
Thus, on the open neighborhood Uy N U, of p; we have

X=vVv|+AX, e3=Ae;,
)
(I5—A)dx=0, (I3—A)e; =0,
at every point of Uy N U,. Therefore, A; = I3 and then v; = 0, and

X=f(, e3=é3

on Uy U U,. Repeating this argument for U,,..., Ui, we reach the conclusion that
X = x and €; = e3 on Uy, so X(q) = x(g) and e3(q) = e3(q), as desired. We have
proved that X = x and €3 = e3 on all of M. O

Theorem 4.19 (Bonnet’s Existence Theorem [14]). Ler (M,I) be a simply con-
nected Riemannian surface with Gaussian curvature K. Let II be a symmetric
bilinear form field on M. Suppose that Il satisfies the Gauss and Codazzi equations
in the sense that for any orthonormal coframe field 01, 0% in U C M, with Levi-Civita
connection form a)21 = —a)lz, the smooth function coefficients hy = hj;, i,j = 1,2 of
11 defined by

I =hy160'0" +2h1,0' 6 + 11y 0262,
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satisfy the Gauss equation

K = hithy — 12, (4.41)
and the Codazzi equations
2 2 ) .
> (dhi—Y " (hye), + hye)) AO* =0, (4.42)
k=1 j=1

for i = 1,2. Then there exists a smooth immersion X : M — R3 with unit normal
vector field e3 such that I = dx-dx and Il = —de3 - dx.

Proof. It is known that a simply connected surface M is homeomorphic to the plane
R? or to the sphere S?.

If M is homeomorphic to R?, then it possesses a global orthonormal coframe
field 6,62 for I, with corresponding Levi-Civita connection form a)21 = —a)lz. Let
hij = hj; be the smooth coefficients of /I relative to this coframe field on U, and
define smooth 1-forms on U by

fori = 1,2. Consider the matrix valued 1-forms on M,

6! 0 w) wi
6=160*]. o=|w? 0 w?
0 w} w3 0

Then (0,w) is an &(3)-valued 1-form on M. The Gauss and Codazzi equa-
tions (4.41) and (4.42) imply that

(db,dw) = (—o A 0,—w Aw).
By the Cartan—Darboux Existence Theorem 2.25, there exists a smooth map
(x,e) : M - E;(3) =R*xS0(3),
such that (e~'dx,e~'de) = (8, ). In particular,
dx =0'e; + 0%, de;=wie +wie,,

shows that x : M — R? is an immersion with smooth unit normal vector field e,
such that on M,

2
dx-dx =Y 0'0'=1. —des-dx= 0" =h;0'0) =II. (4.43)

i=1
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In the case when M is homeomorphic to 8%, we know that for any point m € M,
the complement U = M \ {m} is homeomorphic to R?, so the above proof gives a
smooth map (x,e) : U — E, (3) satisfying (4.43). Taking the complement U of a
different point /i € M, we obtain a smooth map (%,&) : U — E (3) satisfying

dx-dx=1 —deé;-dx=II.

Apply the Bonnet Congruence Theorem 4.18 to (x,e3) and (X,€3) restricted to
UNU, to getan element (v,A) € E(3) such thaton UN U,

X =V+AX, €;=Ae;.
If we replace (x, e) by (v,A)(x, e), then (4.43) continues to hold on U, and on UN U

we have i~: x and €3 = e3, thus showing that x and e; extend smoothly to all of
M = UUU and satisfy (4.43) on M. O

Remark 4.20. By Cartan’s Lemma, the Codazzi equations (4.42) are equivalent to
the equations

hije = higg

for all i,j, k, where the functions h; = hjy are defined by (4.19).

4.5 Tangent and curvature spheres

Example 4.21. The oriented sphere with center p € R? and signed radius 0 # r € R
is

S/(p) = {x R x—p|> =1’}
with unit normal vector field n(x) = (p—x)/r. Thus, the orientation is by the inward

pointing normal when r > 0, and by the outward normal when r < 0. The unit sphere
is S1(0), which we denote by S?. Its default orientation is by the inward pointing

normal n(x) = —x. The spheres S, (p) are immersed surfaces. In a neighborhood of
any point on S,(p) there is a first order frame field (x,¢) with e3 =n = %(p —X).
Then de; = dn = —%dx, which implies that @} = —%wi, for i,j = 1,2, and the

principal curvatures are both 1/r. The second fundamental form is

1 1
I = wfa)l +a)§’a)2 =—(0'o'+w’w?) = -1.
r r

The Gaussian curvature is K = 1/7? and the mean curvature is H = 1/r.
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Example 4.22. Fix n € S? and h € R. The oriented plane in R® with unit normal n
and signed height h is

ITy(n)={xeR®: x-n=h}.

These are immersed surfaces. There is a first order frame field (x, ¢) on all of IT,(n)
with e; = n, which is constant, so a)l3 =0= a); , the principal curvatures are zero,
and the second fundamental form is identically zero.

Theorem 4.23 (Totally umbilic case). Suppose that every point of a connected
immersed surface X : M — R3 is umbilic. Then either Xx(M) is an open subset of
a sphere or it is an open subset of a plane.

Proof. We may assume that the immersion X possesses a smooth unit normal vector
field n : M — S2, for if it does not, then there is a double cover Q: M — M for
which the immersion xo ¢ : M — R3 possesses a smooth unit normal vector field,
and the images x(M) = x o ¢(M). We consider now only first order frame fields
(x,e) : U — E4(3) for which e3 = n on U. If x is totally umbilic, then for such a
first order frame field we have @} = aw', and ®; = aw?, where a: U — R is the
principal curvature function. Taking the exterior derivative of these equations and
using the structure equations of E4 (3), we find that a must be constant on M.

Ifa # 0, then d(x+n/a) =0, so x+n/ais constant on M and x(M) is a subset of
the oriented sphere S;,,(x 4+ n/a). This result has a more abstract proof, which we
present now. It can be applied to submanifolds of homogeneous spaces whenever
the invariants are constant. The equations

13 213

w3:O, wlz—wl, w° = —w;,,
a

define a 3-plane distribution on E (3) whose dual vector description

s/a 0—r—s
b={(|t/a|.|r O —t]):r.s,teR} CE?)
0 st 0

is a Lie subalgebra, since the defining equations are all left-invariant 1-forms on
E(3). We have a Lie algebra isomorphism

€
03) b, X< (—X—.X).
a
Its corresponding Lie subgroup, obtained by exponentiation,

H={((I-4)=.4):4 €SOQ)}.
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is the maximal integral submanifold of h passing through the identity element
(0.1) € E(3). Its projection by 7 : E+ (3) — R? is

1
HO = Sl/a(geﬁi)-

Right cosets of H are the other maximal integral submanifolds of . The set of all
first order oriented frames over x is a connected 3-dimensional integral submanifold
of b, so it must be contained in a right coset of H. For a point m € M, this coset must
be (x(m),e(m))H, for a first order frame (x,e)(m) € E4(3). Then

1 1
x(M) C (x(m),e(m))HO = (X(m),e(m))Sl/a(aQ) = S1/.(x(m) + ;n(m)).

If a = 0, then § is defined by the equations w3 =0, a)13 =0, a)g =0, soitis a Lie
subalgebra of E (3) whose Lie subgroup is

A 0
H={]¢]. 0 15,1 R, A eS0O(2)}.
1

0 00

The set of all oriented first order frames along x must then be a coset (x(m), e(m))H,
for a first order frame at a point m € M. Then

x(M) C {x(m) 4 se;(m) + tey(m) : s,t € R},

which is the plane through x(m) with unit normal n(m), that is, I1,(n(m)), where
h = (x(m) + se;(m) + te;(m)) -n(m) = x(m) -n(m). O

Definition 4.24. An oriented tangent sphere to an immersion x : M?> — R? at a
point m € M, with unit normal vector n at m, is any oriented sphere or plane through
x(m) with unit normal n at x(m).

The set of all oriented tangent spheres to x at m with unit normal n is
{S,(x(m)+rn) : 0 # r € R} U {ITyx(my(m)}.

Each of the oriented tangent spheres has its center on the oriented normal line
{x(m) +rn:r € R}. It is convenient to refer to all the elements of the set of oriented
tangent spheres as spheres, with the oriented tangent plane being thought of as an
oriented sphere with infinite radius.

Definition 4.25. An oriented curvature sphere at m € M of an immersion x : M? —
R® with unit normal n at m is an oriented tangent sphere at m whose principal
curvature is equal to a principal curvature of x at m for the normal n.
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If m € M is nonumbilic for x, then there are two distinct oriented curvature
spheres at m for a given unit normal vector n. If m is umbilic, then there is only
one, but we say it has multiplicity two. If a is a non-zero principal curvature of x at
m relative to n, then

1 /a(x(m) + i“)

is an oriented curvature sphere at m. If 0 is a principal curvature of x at m, then the
oriented plane

Hx(m)-n (n)

is an oriented curvature sphere at m. If the unit normal vector n of x at m is replaced
by —n, then the curvature spheres at m remain unchanged, but with opposite
orientation, as they will now have the orientation that equals —n at m.

For r # 0, and for first order frame field (x, e) along x on U, the smooth map

S=x+re;:U—R> (4.44)

determines the family S,(x + re;) of oriented tangent spheres at the points of U
relative to the unit normals e3;. The smooth map

S=e;:U—R? (4.45)

determines the oriented tangent planes IT.,.x(e3) with these normals.

Proposition 4.26. If a family of oriented tangent spheres is determined by a smooth
map (4.44) or (4.45), then it is an oriented curvature sphere at a point m € U if and
only if dS at m has rank less than two.

Proof. 1f S is given by (4.44), then

2
dS = dx+rde; = Z(a)i + rwé)ei,
1

which has rank less than two at a point m € U if and only if o' + ro} = 0 at m,
for i = 1 or i = 2, which holds if and only if 1/r is a principal curvature of x at m
relative to e3(m). The proof is similar for the case of the map (4.45) O

Example 4.27 (Curves on S?). Consider the transitive action of SO(3) on the
unit sphere 8> C R? obtained from the standard matrix multiplication action of
SO(3) on R3. Let €, be the origin of S? and let 7 : SO(3) — S? by the projection
7w(A) = Ae;. Let 0 : J — S? C R? be a curve on the unit sphere, parametrized by
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arclength x, where J is an interval in R. Its unit tangent vector is T = ¢, where dot
indicates derivative with respect to x. The unit normal vector is N = o x T. The
frame field e = (o, T,N) : / — SO(3) along o satisfies

0-10
elde=110 —«
0k O

for some smooth function « : J — R, called the curvature of o in S2. This is called
the Frenet frame along o . Its Serret-Frenet equations are

6=T, T=-0+«kN, N=—«T. (4.46)

Reversing the orientation of o, by reversing the sign of x, reverses the sign of k.
Example 4.28 (Cones). A general cone in R? is defined as follows. We may assume
that the vertex is at the origin and the profile curve, which is the intersection of the
cone with the unit sphere, has arclength parametrization o : J — 8%, where J is some
open interval. We use the notation of Example 4.27. If M = J x R, then the cone is
the immersed surface
x:M—>R, x(x,y)=eo(x).

Then

dx =e Yo (x)dx—eady 4.47)
from which we calculate the first fundamental form

I =dx-dx = e 2 (dx* + dy?).
The dual coframe field is
2

o' =eVdx, o’=edy.

We can also see from (4.47) that an oriented first order frame field along x is given
by (x,e), where the columns of e are

e =0, e =-—0, €e3=¢e Xe =0 X0.
Then 6 = e, + k(x)es3, by (4.46), so the second fundamental form is

Il = —dx-de; = k(x)e’dxdx = k(x)w' o',
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from which we see that the principal curvatures are a = k(x)e’ and ¢ = 0,
respectively. The Hopf invariant % relative to (X, e) and the mean curvature H are

b k(x)e¥ _g
2

The oriented curvature spheres at (x,y) € M relative to e3 are
1
Si(x+-e3) and [l (e3). (4.48)
a a

The oriented plane passes through the origin, since x-e3 = 0.

4.6 The Gauss map

Let n be a smooth unit normal vector field along the immersed surface x : M — R>.
The smooth map

n:M-—>S>cR?

is called the Gauss map of x. It is defined up to sign for a connected oriented surface.
For an unoriented surface it is defined only locally, or must be regarded as a map
into the real projective plane RP>. If (x,e1,ey,e3) is a first order frame field along x
on U C M, with e; = n, then

de; = wie| + wle; (4.49)

shows that (n,e;,e;,e3) is a first order frame field along n. The Gauss map need not
be an immersion. In fact, dn has rank two if and only if

0 # wirw? = Koo' Aw?;

that is, if and only if K # 0. The first fundamental form of n (restricting ourselves
to the points of M where K is nonzero) is

1l = des - des,

which is called the third fundamental form of x.

Theorem 4.29. Let x : M — R> be an immersion of a connected surface M, and
suppose X has a globally defined unit normal vector field n : M — S?. Its Gauss map
is conformal if and only if the mean curvature of X is identically 0 on M or X is
totally umbilic.
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Proof. That the Gauss map is conformal means that it pulls back the metric on the
sphere to a multiple of the metric induced on M by x; that is, /II is a multiple of /
on M. In general, KI —2H Il 4 III = 0 on M (see Problem 4.69), so /I is a multiple
of I if and only if 2H II is a multiple of /. This last condition is true if and only if
at each point of M either H = 0 or x is umbilic. In particular, if H is identically 0
on M, or if x is totally umbilic, then the Gauss map is conformal. Conversely, if the
Gauss map is conformal, suppose that H is not identically O on M. Then

W={meM:H(m)+# 0}

is a non-empty open subset of M. On a connected component W, of W, we must have
x totally umbilic. Consequently, its principal curvatures and H must be constant
on Wy. This constant H must be non-zero, and it must be the value of H on the
closure of Wy in M. Therefore, Wy must equal its closure, so Wy = M and x is
totally umbilic on M. O

Remark 4.30. Equation (4.49) and the structure equations (4.18) show that a)21 is
the Levi-Civita connection form of /1] with respect to this frame field along n = e;.
Thus, altering our view of the Gauss equation (4.13) slightly, we interpret dw; =
o) /\a)32 to mean that the Gaussian curvature of I/1 is 1. Looking again at the Gauss
equation, we see that

w3 A0 =K o' ro?, (4.50)

which shows that K is the ratio of the area element of III to the area element of /.
This is a modern version of Gauss’s definition of K in [72].

Definition 4.31. The fotal curvature of an immersion x : M — R3 of a connected,
compact, oriented surface M is
/ K dA,
M

where dA is the area form of the induced metric on M.

Ifn: M — S? is the Gauss map of x, then a first order frame field (x, (e}, e;,e3))
on an open subset U is positively oriented if e3 = n and dA = o' A w? on U.
Equation (4.50) implies that the total curvature of x is related to the area of the
image of the Gauss map. In fact, recall a basic feature of integration on manifolds.
If g : M — N is a diffeomorphism between connected oriented surfaces and if v is a
smooth 2-form on N with compact support, then

/g*v::t/v,
M N

where the sign is + if g preserves orientation and is — if g reverses orientation. To
apply this to the Gauss map of an immersion x : M — R3, which is generally not a
diffeomorphism, we need the concept of the degree of a map between surfaces.
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Let M? and N? be compact, connected, oriented surfaces and let g : M — N be
a smooth map. A point y € N is a regular value of g if g~'{y} contains no critical
points, where x € M is a critical point of g if the rank of dg, is less than two. Note
that if y is not in the image of g, then it is a regular value, since the empty set
contains no critical points of g. Regular values exist by Sard’s Theorem (see Conlon
[53, p. 80]). By the inverse function theorem, if y € N is a regular value of g, then for
x € g~ '{y} there exists a neighborhood U of x that g maps diffeomorphically onto a
neighborhood of y. In particular, g must be one-to-one on U, so U N g~ {y} = {x}.
Thus, g~'{y} is a set of isolated points in M, so is finite, since M is compact.

For a regular value y € N of g, suppose g~ '{y} = {x1,...,x:}, for some whole
number k > 1. Let

o +1, if dng preserves orientation,
/ -1, if dng reverses orientation,

forj=1,...,k
Definition 4.32. The local degree of g at the regular value y € N is

k
deg, () = 3 ¢,
1

if g7'{y} # 0. Otherwise, the local degree of g at y is zero.

The following is a special case of [53, Proposition 8.7.2]. To prove it, we shall
assume the result that for any compact, connected, oriented surface M, the linear
functional defined on de Rham cohomology

/M:HZ(M)—>R, /M[M]=/MM

is an isomorphism. Here p is a smooth 2-form on M representing the cohomology
class [u]. See Corollary 8.6.5 in [53] for a proof. One consequence of this result is
that if 4 and v are smooth 2-forms on M such that [, u = [}, v, then there exists a
smooth 1-form o on M such that u —v = do.

Proposition 4.33. Let M and N be compact, connected, oriented surfaces and let
g:M — N be a smooth map. If v is a smooth 2-form on N, and if y € N is a regular

value of g, then
[ gv=dgego [ v
M N

Proof. Given the regular value y of g, let g™'{y} = {xi,...,x;}, for some k > 1. The
case where y is not in the image of g will be left to Problem 4.70. There exists an
open, connected, neighborhood V C N of y such that

g_1V= U1U"'UUk,
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a union of disjoint open sets such that x; € U; and the restriction g; = g|y, maps U;
diffeomorphically onto V, forj = 1,...,k. There exists a smooth 2-form ¥ on N such
that the support of ¥ is a subset of V and [, ¥ = fNU. Thus v — ¥ = d, for some

smooth 1-form & on N. Now g*¥ = Z’{ wj, where the support of the smooth 2-form

wj is a subset of U;, and w; = g;.“f), forj=1,...,k. Since dgjx/_ = dng, we have
/ a)jzej/f):ei/f),
U v "IN
forj=1,...,k. Using Stokes’s Theorem, we have

|

Remark 4.34. Since the two integrals in Proposition 4.33 are independent of the
choice of regular value y of g, it follows that deg,(g) is independent of y and we can
write simply deg(g) = deg,(g), for any choice of regular value of g.

Corollary 4.35. Ifn: M — S? is the Gauss map of an immersion x : M — R> of a
compact, connected, oriented surface, then the total curvature of X is the degree of
the Gauss map times the area of S*:

/ K dA = 4w deg(n).
M

4.7 Isoparametric, Dupin, and canal immersions

Definition 4.36. An immersion is isoparametric if its principal curvatures are
constant. A principal curvature satisfies the Dupin condition if it is constant along
its lines of curvature. The immersion is canal if one of its principal curvatures
satisfies the Dupin condition. It is Dupin if both principal curvatures satisfy the
Dupin condition. A cyclide of Dupin is the image of a Dupin immersion.

A slight variation of Proposition 4.26 gives the following characterization of the
Dupin condition in terms of oriented curvature spheres.

Proposition 4.37. Let x : M — R3 be an umbilic free immersion with unit normal
vector field es. A principal curvature, a say, satisfies the Dupin condition if and only
if the oriented curvature sphere S = X + %e3 has rank one at every point of M.
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Proof. Let (x,e) : U C M be a second order frame field along x whose normal vector
is e3. Then

ds =

where da = a;0' + axw? and ', @? is the coframe field dual to (x, e). From this we
see that dS has rank one if and only if a; = 0 on U if and only if a satisfies the Dupin
condition on U. Since any point of M is in some such U, the proof is complete. 0O

Example 4.38 (Plane curves). A smooth curve y : J — R2, y(t) = f(t)e; + g(t)e>
in the oriented plane R? is regular if

on the open interval J/ C R. An arclength parameter s = ft:) w(u)du satisfies % =w.
The unit tangent vector field along p is

d 1d .
Yo~ et e

T:': =
Y ds w dt

where dot denotes derivative with respect to s. The principal normal of y is the unit
vector field N along y obtained by rotating T by 7z/2 in the positive direction,

N =—ge; +f62.
The curvature of y is

f‘/ " __ /f‘//

—T.N=1% &/
K W3

where prime denotes derivative with respect to ¢. The Euclidean group E(2) = R? x
O(2) acts transitively on R? by (a,A)x = a + Ax. A Frenet frame field along y is
(y,e) : J = E4(2), where the columns of ¢ € SO(2) are

e = T, € = N.

It pulls back the Maurer—Cartan form to

(x.e)ld(x.c) = (((1)) , (2 _0")) ds,

where « is the curvature of p.
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Proposition 4.39 (Isoparametric surfaces, nonumbilic). If x : M — R3 is a
connected isoparametric surface with unit normal vector field n : M — S?, whose
principal curvatures a and c are distinct with |a| > |c|, then ¢ = 0 and x(M) is an
open subset of a circular cylinder of radius 1/|al.

Proof. The proof is a special case of Proposition 3.11. Replacing n by —n, if
necessary, we may assume a > 0. Having no umbilic points, x has a second order
frame field about any point of M. Let(x,¢e) : U — E4(3) be the second order frame
field with e; = n and

i =aw' and ;= co’.
By the structure equations (4.37), ac = 0, so ¢ = 0. The components of the pull back
of the Maurer—Cartan form now look like

0*=0, w3=0, o =av', w;=0 4.51)

where a is a positive constant, and w!,w? is an orthonormal coframe field on U.

Regard (4.51) as the equations defining a 2-dimensional distribution h on E4(3).
The structure equations imply that f satisfies the Frobenius condition. Because the
equations of fj are given in terms of left-invariant 1-forms with constant coefficients,
it follows that it is a Lie subalgebra of £(3),

) 00 —as
h= t1.1]00 0 :s,teR
0 as0 0

If H is the maximal integral submanifold of f) through the identity element of E4 (3),
then H is the Lie subgroup of E(3) given by exponentiation of b,

%sinas cosas 0 —sinas
H={ t , 0 1 0 :s,t € R}.
1(1—cosas) sinas 0 cosas

The other integral surfaces of h are the right cosets of H. There is a second order
frame field (x,e) : M — E_ (3) for which e, is the principal direction of the positive
principal curvature and e; = n, because it is unique at each point. Since M is
connected, we have (X,e)(M) contained in a right coset of H, which must be
(x(my), e(mg))H for a point my € M. Hence

X(M) = (x(mo), e(mo))HO = (x(mo). e(mo))C(a)

where C(a) is the circular cylinder x> + (z— 1)> = 5 C R?, since

1 1
C(a) = HO = {{(-sinas,t, — (1 —cosas)) : s,t € R}.
a a
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4.7.1 Surfaces of revolution

Example 4.40 (Surfaces of revolution). In the half-plane given by the x'x3-plane
of R3 where x! > 0, oriented by dx! A dx® > 0, consider a regular, smooth profile
curve y(u) = (f(u),0,g(u)), for u in a connected open interval J, where f > 0 on J.
The surface of revolution obtained by revolving this curve around the x3-axis is the
immersion

x:JxS' >R x(u,v) =" (f(u)cosv, f(u)sinv,g(u)). (4.52)

Notice that v is a local coordinate on the complement of any point of the circle S!
and that dv is a smooth 1-form defined on all of S!. Then

dx = X,du + x,dv = '(f cosv,fsinv, &) du +'(—f sinv, fcosv,0) dv.

where x, = g_; and x, = g—’; A first order frame field along x is given by
1 1, . o 1 o
e = —Xx, = —'(fcosv,fsinv,g), e =-Xx, ='(—sinv,cosv,0),
w w f

where w = /2 + g2, and unit normal vector
e;=e; Xe, = :—v’(—gcosv,—gsinv,f).
The corresponding coframe field is
o' = dx-e; = wdu, w? = dx-e; =fdv,
and then

fe—&f | ' 2

g
W =K, a)g’:dez-egz—w,
wf

a)f’ =de;-e3="
W

where k (1) is the curvature of the profile curve (see Example 4.38). This frame field
is second order, smooth on all of J x R/2m. The principal curvatures are

g
a=k, c=—.
wf
The induced metric and the second fundamental form on J x S' are the symmetric
bilinear form fields

I =o'+ w’w? = wdi* +f2dv?
301 3.2 L1, & 55 (@.53)
II=wjo +w,0" =k 0o +—0"w

wf
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The level curves of u are called circles of latitude or parallels of latitude. The
level curves of v are called meridians (all congruent to the profile curve). Tangents
to these level curves are principal directions. These level curves are thus lines of
curvature of X. The Gaussian and mean curvatures are
Kg 1 g

K=—=, H=-kK+>).
wf 2 wf
An immersion of revolution possesses a globally defined smooth second order
frame field. This is possible because our definition of immersion of revolution
has excluded the possibility that the immersion meets the axis of rotation. See
Example 4.11 for what can happen when the surface meets the axis of rotation.

The following example has a second order frame field defined everywhere, even
though there are whole curves of umbilic points.

Example 4.41 (Curves of umbilics). Fix L > 0 and rotate the curve x! = L/(1 +
(x*)?) about the x3-axis. This is parametrized by the immersion of revolution

x:RxS' - R?  x(u,v) =

v, sinv, u),

l—i-uzcos 1+u?

with profile curve y (1) = H_Luzel + ues, u € R. Using the formulas in Example 4.40,
we find the principal curvatures to be

Y —2L(3u?>—1)(1 +u?)? . (14+u?)?
Sl (1+ud))32T T LAL2AWR + (1 +u)h)l/2

(4.54)

Therefore, when u = 0
a=2L, c¢=1/L.
If L = 1/+/2, then the circle of latitude u = 0 consists entirely of umbilic points. As

with any surface of revolution, however, the second order frame field constructed in
Example 4.40 is defined at every point of this surface.

Exercise 13. Prove that when u is arclength parameter of the profile curve of a
surface of revolution, then

wy = —fdv

and the Gaussian curvature

7
K=-1. 4.55
7 (4.55)
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Example 4.42 (The pseudosphere). By (4.55), the surface of revolution, with profile
curve parametrized by arclength, has constant Gaussian curvature equal to —1 if and
only if f(u) satisfies the differential equation

.]'(" _f = Os
whose general solution is
f(u) = Acoshu + Bsinhu,

where A and B are arbitrary constants, subject only to the requirements f > 0 and
fz <1 on the interval J. Without loss of generality we may assume 0 € J so that A =
£(0) and B = f(0) are the initial conditions on f. The pseudosphere is the solution
obtained in the case A = B = 1, in which case f(u) = ¢* and

g2:1_f2:1_eZL¢

requires that / = —oo < 1 < 0, and thus 0 < f < 1. There is no loss in generality in
assuming the initial condition g(0) = 0. For convenience we assume that g > 0 on
J, which amounts to taking the minus sign

b=V P=—iem

This profile curve y(u) = f(u)e, + g(u)es is called the tractrix. Since df = fdu and
dg = —+/1 —f2du, the tractrix satisfies the differential equation

It is a simple exercise to show that 1 is the length of the segment of the tangent line
at y(u) from y(u) to where it meets the €3-axis, for every u € J. In order to solve
for g, we abandon the arc-length parameter u and make the substitution f = sint,
0 <t < m/2,in which case we get

2t
g:—/ Cs(:t dt:/(sint—csct)dt:—cost+log|csct+cott|+C. (4.56)
i

The constant of integration C = 0 in order to have g = 0 when f = 1, that is, when
t = /2. We arrive at the pseudosphere x : J x S' — R? given by (4.52) for f(t) =
sint and g(#) given by (4.56).

Remark 4.43. An immersion x : M?> — R whose induced metric has constant
Gaussian curvature K = —1 is called a pseudospherical immersion. By an 1875
theorem of Bécklund, these occur in pairs whose corresponding points are joined by
tangent line segments of a fixed length and making a fixed angle with the normals.
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This correspondence is related to the Béacklund transformation of the sine-Gordon
equation. For details and references see Chern [46] or Chern and Tenenblatt [49].
Mary Shepherd [151] used the method of moving frames to study the Bécklund
correspondence from the point of view of surfaces immersed in the four-dimensional
space of all lines in R?, on which E(3) acts transitively.

Example 4.44. In 1841 Charles Delaunay [59] found all surfaces of revolution
whose mean curvature is constant. The profile curve in Delaunay’s examples is a
roulette of a conic, which is the trace of a focus of a conic section as it rolls without
slipping along one of its tangent lines. These consist of a catenary (from a parabola),
undulary (from an ellipse), nodary (from an hyperbola), a straight line parallel to the
axis (from a circle), or a semicircle centered on the axis of revolution (from a line
segment).

Theorem 4.45 (Delaunay). The complete immersed surfaces of revolution in R?
with constant mean curvature are those obtained by rotating about their axes the
roulettes of the conics.

See, for example, Eells [63] for a modern exposition, with proofs, of these
examples. Given constants a > b > 0, the parametrized ellipse x(f) = acost + bsin¢

has eccentricity e = —V“Za_bz, 800 < e < 1. In the limit as e — 0 the ellipse becomes a
circle, and as e — 1 it becomes a line segment. Figures 4.2 and 4.3 show unduloids
coming from an ellipse with eccentricity close to 0 through eccentricity close to 1,

respectively.

¢

Fig. 4.2 Unduloids from an
ellipse with e = 0.222205 and
e = 0.484123, respectively.

Fig. 4.3 Unduloids from an

ellipse with e = 0.661438 and f

ey

e = 0.866025, respectively.
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4.8 New immersions from old

Given an immersion x : M> — R3 whose image is contained in an open subset
V c R, and given a diffeomorphism F : V — F(V) C R3, one obtains a new
immersion X = Fox : M — R>. With a few exceptions, the geometry of X will be
quite unrelated to the geometry of x. One exception is when F is an isometry of R?,
in which case the geometry of X is the same as that of x, except for orientation
dependent concepts, which generally change sign if F is orientation reversing.
Another important exception is when F is inversion in a sphere.

Example 4.46 (Inversion). Inversion in the unit sphere 8 is

7 R\{0) >R, F(x)= &

Then .% o . = .7 shows that .¥ = .# ! and .7 is a diffeomorphism. Its differential
at a point x € R*\ {0} is

1 2(x-d
A7 = g 20
[x]? |x|*
Then
1
d Yy -d Iy = —dx-dx
|x|*

shows that .7 is a conformal diffeomorphism, as it satisfies Definition 12.1. Thus,
d.7 preserves angles and multiplies lengths by 1/|x|?.

Example 4.47 (Inversion of a surface). Suppose an immersion x : M?> — R? never
hits the origin of R?. Then we have the new immersion

. X
X=7ox=—:M—R.
x|?

If (x, (e1, e, e3)) is a first order frame field along x on an open subset U C M, let

- 2X-€;
& = [x|’d S e = ¢ — ——'x,

x|
for i = 1,2,3. Then (X, (€},€;,€3)) is a first order frame field along X on U. From
the calculation

2 2
~ i X-e3 2x-e3 ;
de3=Zw3ei—2d — |x— Za) €;

1 IxP2 X 4
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we get

- 2x-e3
a)f:a)f—}— E o',

for i = 1,2. If the functions a and c are the principal curvatures of x, and if (x,e) is
a second order frame field with w] = aw' and w3 = cw?, then

@) = (alx*+2x-e)d", @3 = (c|x|*+2x-e3)@”

shows that (X, ) is a second order frame field along X, the principal curvatures of
X are

a=alx)?+2x-e;5, ¢=c|x|>+2x-e,

and x has the same lines of curvature as x. It also follows from these formulae that
m € M is an umbilic point of x if and only if it is an umbilic point for X, provided that
m is in the closure of the set of non-umbilic points of x. Any point in the complement
of this closure must be contained in an open set of umbilic points, on which there is
thus a second order frame field and so again the statement is true.

If x is a canal immersion, say with a constant along its lines of curvature, which
are the w? = 0 curves, then da = a 0" + a,w? implies that a; = 0 on the domain of
the second order frame field (x, ¢), and thus

da = (|x’a; +2(a—c)x - ex)w?

shows that a; = 0, so X is a canal immersion also. By the same reasoning, if x
is a Dupin immersion, then X is a Dupin immersion. Inversion of a nonumbilic
isoparametric immersion is not isoparametric, for if a # ¢ are constant on M, then
a and ¢ are constant on M only if |x|? is constant, which is not possible if x is
nonumbilic. An isoparametric immersion is, a fortiori, Dupin, so its inversion is
Dupin.

Example 4.48. The circular cylinder of radius R > 0,
x:S'xR—R? x(s,1) = (Rcoss,Rsins, 1),

is isoparametric with principal curvatures a = —1/R and ¢ = 0 relative to the normal
in the direction of x; x X,. The axis of this cylinder passes through the origin. Its
inversion is the immersion of revolution whose profile curve is the circle of radius
1/R with one point omitted, y(s) = ’(1%(1 + coss),0,sins), where —r < s < 7, as
shown in Figure 4.4.

If the cylinder is translated so that the origin lies outside of it, say it becomes
the circular cylinder x(s,f) = /(2 + coss,sins, ) then its inversion is illustrated in
Figure 4.5.
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Fig. 4.4 Inversion of
X(s,1) = (Rcoss, Rsins, 1),
opened to show detail.

Fig. 4.5 Inversion of the
cylinder
x(s,1) = (2 + cos s, sins, f)

4.8.1 Parallel transformations

Let x : M — R? be an immersion with a smooth unit normal vector field n. For any
constant r € R, the parallel transformation of this oriented immersion by r is the
map

X=x+m:M—R> (4.57)
In general, a parallel transformation of x does not come from composing a

diffeomorphism of R* with x. It is a special case of a Lie sphere transformation.
These are discussed in detail in Section 15.3.
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We begin with a determination of when X is an immersion. If (x,e) is any first
order frame field along x on U C M, with e3 = n on U, then

dx = dx + rde; = (w' + ra);)el + (a)2 + ra)_%)ez =o'e +d’e,
shows that X is an immersion at any point where
0# &' AD* = 0' A0 + r(0' A03 + 03 AD?) + Pl A03
= +2K—2rH) o' \0>.

Thus, » must not be a root of Kr> —2Hr + 1 = 0. These roots are

H+VH—K _ fa+o£,/1@@+c)?—ac

9
K ac

which are % and %, for +/— respectively. These are the radii of curvature of x.
Compare this to Proposition 4.26.

Assume that r is not a radius of curvature of x, so that the parallel transformation
x is an immersion. Then (X, ) is a first order frame field along X on U with associated
orthonormal coframe field

1

o' =0'"+rol, @ =o0*+rol. (4.58)

Its induced metric I = dX-dX = @'@' + @2@? is
1=1-2r1+ 71

where Il = de; - de; = wiw) + wlw? is the third fundamental form of x. Since
de; = w31e1 + a)gez is the same for both frames, we have

@ =w!, @ =w. (4.59)
By (4.10) and (4.58), we then have
hyo* = @ = &} = hy@ = hy(o + rwé) = hyj(8jx — rhjp)w*,
which implies that the symmetric matrices S = (;) and S = (h;) satisfy
S =SUI—rS).
We can solve for § provided that det(I — rS) # 0, which is equivalent to the condition

that 7! not be a principal curvature of x. In that case, S = S(I —rS)™", so the
principal curvatures of X are the solutions a and ¢ of the quadratic equation in ¢,
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0 = det(S — 1) = det((T— rS)"" (1 + 1) (S — %ﬂz)).

If a and c are the principal curvatures of x, then

a - c
cC =

a= , .
1—ra 1—rc

(4.60)

In particular, a point m € M is umbilic for the parallel surface X = x + rej if and only
if it is umbilic for x. A frame field (x, e) is second order for x if and only if (X, e)
is second order for X, as can be seen from (4.59) and (4.58). The mean and Gauss
curvatures of x and X are related by

H—-rK - K
K:

H= ————, _. (4.61)
1-2rH+r?K 1—-2rH+r’K

Formulas (4.60) show that the immersions parallel to an isoparametric (respec-
tively, Dupin or canal) immersion are also isoparametric (respectively, Dupin or

canal).

Definition 4.49. A pointy € R? is a focal point of x if y = X(m) = x(m) + res(m)
for some point m € M and some r € R for which dX,, is singular. The multiplicity
of the focal point is the dimension of the kernel of dX,,. The set of all focal points
of x is called the focal locus of x.

We have the following remarkable result of Bonnet’s.

Theorem 4.50 (Bonnet [15]). Letx : M — R? be an immersion with constant mean
curvature H = (a + ¢)/2 # 0 relative to the normal field es;. Consider the parallel
surface X = X + res.

Ifr= ﬁ, then X has constant Gaussian curvature K = 4H>.

If r = 1/H, then X has constant mean curvature H = —H.

If X is a parallel surface of X then X is a parallel surface of X. Consequently, we
can restate the result as follows. If X has constant positive Gaussian curvature K,

then X = x + —Le; has constant mean curvature H=—+ “/—E.
JE 2
Proof. The results follow from (4.61). O

Remark 4.51. In the case of a constant mean curvature immersion X, the mean
curvature H is a principal curvature at a point if and only if the point is umbilic,
while 2H is a principal curvature if and only if the point is parabolic (meaning
0 = a < ¢). In the case of constant positive Gaussian curvature K, we have VK a
principal curvature at a point if and only if the point is umbilic, while —+/K is never
a principal curvature.
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Fig. 4.6 A tube about a
space curve.

4.8.2 Tubes

Let f(s) be a smooth immersed curve in R* parametrized by arclength s € J, for
some connected interval J. Let T = f', N, B be its Frenet frame along this curve.
We assume that the curvature « (s) is positive at every point to insure that the Frenet
frame is defined and smooth on all of J. The Frenet-Serret equations for f are

f=T, T=«N, N=—«T+tB, B=—N (4.62)

where t : J — Ris the torsion. Let r be a positive constant and define the fube about
f of radius r to be the map

x:JxR—> R’ x(s,1) = f(s) + r(costN(s) + sintB(s)). (4.63)

See figure 4.6.
Then

X; = (1 —rkcost)T + rr(—sinzN + costB),
x; = r(—sintN + costB),
X; X X; = —r(1 —rkcost)(costN + sintB).

Assume that r < 1/, so that 1 —rk cost > 0 and x will be an immersion. A first
order frame field (x,e) is defined along x by
e; = —costN—sinfB,
1

e =T= m(xs —TXy), (4.64)

. 1
e, = ez xe; = —sintN +costB = —x;.
r
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Then
X, = (1 —rkcost)e; +rre;, X, =re;

shows that the coordinate curves are orthogonal if and only if 7 is identically zero.
The associated orthonormal coframe field is

o' =dx-e; = (1 —rkcost)ds, w?=dx-e, =r(rds+dr), (4.65)
so that the area form is
o' Aw? = r(1 —rkcost)ds Adt

and the orientation induced on M = J x R is that of ds A dt. If f has finite length L,
then the area of x(M) is

2r  pL
/ o' A? = / / r(1—rxcost)dsdt =2nrL,
JX[0,27] o Jo

a version of Pappus’s Theorem. Moreover,

3 —Kkcost
o] =de;-e3 = —Kkcostds = ———w",
1 —rkcost (4.66)

3 1 2
w5 =dey-e3=dt+ tds = ;a)

imply that the frame field (x,e) is second order along x and the principal curva-
tures are

g= —xcost - _ 1 (4.67)
1 —rkcost r
There are no umbilic points. The principal curvature ¢ is constant on M, so X is a
canal immersion. If f is a simple closed analytic curve, then the tube is a compact,
analytic, canal surface. By (4.65), the lines of curvature of ¢ are the coordinate
curves s = sg, for 5o € J any constant. The lines of curvature of the principal
curvature a are the integral curves of dt + tds = 0, by (4.66).

In general, the focal locus associated to the principal curvature c, of a tube (4.63)
about a curve f, is X + ¢ 'e;, which is just f, the curve we began with. It is
special when a focal locus of an immersion degenerates into a curve. In fact, this
characterizes Dupin immersions. See Problem 4.81.

4.8.3 Curvature spheres along canal immersions

Let x : M — R? be a canal immersion for which the principal curvature a is constant
along its connected lines of curvature. In this subsection we want to prove that the
curvature spheres relative to a are constant along the connected lines of curvature
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of a, and these lines of curvature are just the intersection of the curvature sphere
with x(M). Moreover, x of these lines of curvature are line segments or arcs of
circles. In particular, they are plane curves. These results are easily pictured for the
case of circular tori of revolution, circular cylinders, and circular cones.

Exercise 14. Use the Rank Theorem to prove the following technical result needed
in the proof of the next proposition. If a smooth map f : M?> — N" has rank equal
to one at every point of M, then any connected level set of f is an embedded curve
y :J C R — M for which there exists a non-zero vector v € T,N, where g = f(s) for
every s € J, such that

dfys)TyyM = span v C TyN,

for every s € J. For a statement and proof of the Rank Theorem, see Lee [110,
Theorem 7.13, p. 167]. It is not true, in general, that f(M) is a smooth curve in N.
See Cecil-Ryan [40, Remark 4.7, pp. 143—144] for a counterexample.

Proposition 4.52. Let x : M — R3 be an immersion with unit normal vector field
n: M — S? C R? and with distinct principal curvatures at each point of M. Let
y :J — M be a connected line of curvature for the principal curvature a, where
J C R is connected and contains 0. Then a is constant on y(J) if and only if its
curvature sphere is constant on xo y(J).

If the principal curvature a is constant on each of its connected lines of curvature,
then X sends its lines of curvature to circles or lines in R>.

See Cecil-Ryan [40, Chapter 2, Section 4] for a statement and proof of this
proposition in arbitrary dimensions.

Proof. Let (x,e) : U — E(3) be a second order frame field on a neighborhood U
containing y(J) such that e;(y(s)) = (xoy)'(s) for every s € J and €3 = n on U.
Using the notation of Remark 4.12 and Exercise 10, we have

(xoy)'(s) = dx(y'(s)) = e1(y(5)),
(x0y)"(s) = de1(y'(s)) = (pex + ae3)(y(s))

Suppose that a is never zero on U and consider the focal map

(4.68)

1 1
f:U—>R3, f:x+5n:x+£e3,

whose derivative is, by the structure equations

df = - oles +((1— g)e2 - Z—ie;)wz, (4.69)

a2

where da = ajw' +ayw? on U. Then f(y(s)) = x(y(s)) + Meg (y(s)) is the center

of the curvature sphere through x(y(s)). By (4.69) and the fact that w?(y’) = 0, we
have
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ao 1 '
(foy) =—— yzesoyz( )eaoy
(aoy) aoy

and (aoy) = a; oy on J. Thus, the centers, f(y(s)), of the curvature spheres along
y are constant if and only if their radii, 1/a(y(s)), are constant. But the curvature
spheres along y are constant if and only if their centers and radii are constant.

At a point m € M where a(m) = 0, the curvature sphere at x(im) is the tangent
plane {y € R?:y-n(m) = x(m) -n(m)}. If a(y(s)) = 0 for all s € J, then

(e307)'(9) = —(aoy)(s)(eroy)(s) =0,

for all s € J, which shows that e; oy is constant on J and thus the tangent planes
along x o y are all parallel. It follows that they must coincide along the connected
curve y.

We have now proved that if y : J/ — M is a connected line of curvature of a and if
aoy is constant on J, then xo y(J) C x(M) NS, where S is the necessarily constant
curvature sphere (or plane) along xo y. If aoy is a non-zero constant, then the curve
x o y(J) lies in a sphere. A spherical curve is a circle if and only if it is a planar
curve. By (4.69),

C a
dfyTyM C Span{((l - 5)92 - a_§e3) Q% (4.70)

= span{(ae; —pe3)(y(s))},

since aj oy = (aoy) = 0 on J, and where we use the structure equation a; = (a —
c¢)p in (4.37). From (4.68) we see that (xoy)’(s) and (xoy)” (s) are both orthogonal
to (ae; —pes)(y(s)), so xo y is a planar curve if and only if the vectors

(aex —pe3)(y(s))

are all parallel, for all s € J. Without further assumptions about the principal
curvature a, these vectors are not all parallel, in general. See Problems 4.78 and 4.82.

Assume now that a is never zero and that it is constant on each of its connected
lines of curvature. Then a; = 0 on all of U, and (4.69) shows that the focal map f
has constant rank equal to 1 on M. Use the notation above for a connected line of
curvature y : J — M for the principal curvature a and for a second order frame field
(x.e) : U — E(3), where y(J) C U. Then f(y(J)) = yo € R? is a single point and by
Exercise 14, there is a unit vector v € R? such that

dfy»TyM = Rv,
for every s € J. Then the vectors (ae; —pes)(y(s)) are all non-zero multiples of v,

by (4.70), and therefore the curve xo y(J) is in a plane orthogonal to v. Being also
a curve in the curvature sphere along y(J), this curve must be an arc of a circle.
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We have yet to consider the case when a is constant on each of its connected
lines of curvature and it is zero at some points of M. This case requires a different
proof, which uses the same theorem for surfaces immersed in S* ( Proposition 5.16)
together with stereographic projection (Proposition 5.23). See Problem 5.51.

For now, we will complete the proof under the added assumption that a is non-
zero on a dense open subset M’ of M. Any connected line of curvature of a in M’
must be sent by x to an arc of a circle, by the argument above. From (4.68), the
curvature « of such an arc must satisfy

k? =p*+d*

and be constant on J, so p oy must be constant on J. Hence, p; = 0 at every point
of M, and thus at every point of M, by continuity. This implies that p o y is constant
for any connected line of curvature y. If a = 0 at every point of y(J), then Xxoy is in
the plane orthogonal to the constant normal vector e; o y and has constant curvature
poy,by (4.68). It is thus an arc of a circle, if p # 0, or a segment of a line, if p = 0.

O

Exercise 15. Assume the preceding Proposition proved in general. Prove that if the
principal curvature a is constant on each of its connected lines of curvature, and if
p? +a* # 0 on each such line of curvature, then for each connected line of curvature
y :J — M of a, xo y(J) is an arc of a circle, whose center is the point

1
———(pey +ae :
XOV(S)+p2+a2(P 2 +aes)oy(s)

and whose radius is 1/+/p? + a?, independent of s € J.

4.9 Elasticae

We briefly introduce elasticae here in preparation for their role in the Willmore
problem. They are critical curves of a functional that is a one-dimensional version
of the Willmore functional. Special cases of these curves first arose as solutions to a
problem proposed by James Bernoulli in 1691. The modern definition of an elastica,
given in 1744 by Euler, is

Among all curves y of the same length passing through points A and B tangent to given
lines at A and B, the elasticae minimize |, v K2ds.

For additional history see the dissertation [111] by R. Levien and the expository
article [161] by C. Truesdell.
For our purposes here, the constraint will be a given free homotopy class.
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Definition 4.53. A free elastic curve in a Riemannian surface (M2,1) is a smooth
immersion that minimizes the functional

F(y) = / ds,
Y

over all smooth immersions y : S' — M in a free homotopy class. Here « is the
curvature and s is arclength parameter of y.

Free elastic curves in space form geometries have been studied by Bryant and
Griffiths [22], Griffiths [80], and Langer and Singer [105]. In Euclidean geometry,
acircle o of radius R > 0 has curvature k = +1/R, so

2
F(0) = / P iid
. R

has no minimum on circles. This contrasts rather surprisingly with the situation in
the hyperbolic plane.

Example 4.54 (Circles in the Poincaré disc). The unit disk D* = {(x,y) € R* : x> +
y? < 1} with the Riemannian metric

4

is the Poincaré disk model of the hyperbolic plane. Orient it by dx A dy > 0. For any
angle 0 € R, the radial curve

Y :R—>D, %)= (tanh %)(cos f,sin6),

is the geodesic starting at y(0) = 0 with initial velocity y(0) = (cos6,sin8). If we
fix r > 0, then the hyperbolic circle of hyperbolic radius » and center 0 is

C={y’(r):0 eR} CD?,

which is the Euclidean circle centered at 0 with radius tanh 7. C is parametrized by
the embedding

0:8'=R/27r =D, o()= (tanh%)(cost, sinf), 4.71)

whose arclength parameter is s = (sinhr)?z and whose geodesic curvature is the

constant k = < = cothr. The integral [, x>ds is minimized when r satisfies

sinhr = 1. See Problem 4.83.
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4.10 Willmore problems

In his 1965 paper [171], T. Willmore introduced the non-negative functional ¥ on
the set of all immersions x : M — R? of a given compact oriented surface M,

%@:me

where H is the mean curvature and dA is the area element of the immersion x. He
asked for the infimum of % (x) over all immersions of a given surface M. If a and
c are the principal curvatures of x, then H> = K + %(a —c)? and the Gauss-Bonnet
Theorem imply

%@pﬂmmm+%/m—@%m 4.72)
M

where y(M) is the Euler characteristic of M. A compact oriented surface M is
determined up to homeomorphism by a nonnegative integer g, called its genus,
which is related to its Euler characteristic by y(M) = 2—2g. The Euler characteristic
of M is non-negative only in the cases g = 0, when M is homeomorphic to the
sphere, or g = 1, when M is homeomorphic to the torus 72 = S' x S'.

In the g = 0 case, we conclude from (4.72) that

’VZ(X) >4,

with equality if and only if x is totally umbilic, in which case x(M) must be a
Euclidean round sphere by Theorem 4.23. That this is independent of the radius
of the sphere suggests that the Willmore functional is invariant under homotheties,
that is, under transformations of R? given by multiplication by a positive constant.

In the g = 1 case, Willmore calculated his functional on a circular torus of
revolution and arrived at the following result.

Example 4.55 ([171]). For constants R > r > 0, consider the circular torus of
revolutionx : S! xS' — R3,

x(u,v) = ((R+rcos Z)cosv, (R+ rcos E) sinv, rsin E), 4.73)
r r r

obtained by rotating the profile circle ‘(R + rcos 7,0, rsin %) about the €3-axis (see
Figure 4.7). The calculations of Section 4.40 show that the principal curvatures of x

cos % . .
area=Llandc= L, its area form is dA = (R + rcos %)du A dv, and thus
r R-+rcos - r

— R2 2 27r 1 ]T2 Ry\2
T B[ [ O
4r2 0 0 R+rCOS% (5)2_1

whose minimum 272 occurs if and only if 5; = /2; that is, the right triangle in
Figure 4.7 is isosceles.
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Fig. 4.7 Profile circle of a I
torus of revolution with

R/r=4/2.

Willmore then asked if 272 is the absolute minimum of his functional over all
immersions of a torus. His question is known as the

Willmore Conjecture 1. If 72 is a compact oriented surface of genus 1, then for
any smooth immersion X : T2 — R3,

W (x) > 212,

with equality if and only if x : 72> — R? is a circular torus of revolution (4.73)
with & = /2.

Of course, Willmore also asked what is the minimum value of W on immersions
of surfaces of genus g > 2, but he did not offer a conjectufrg as to the value of these
minima. In the light of (4.72), it seems natural to replace % with the functional

W (x) = /M (H*—K)dA = % /M (a—c)?dA, 4.74)

which is positive for all x except for totally umbilic immersions of the sphere. In
[170], J. White proved that the integrand itself, (H?> —K)dA, is invariant under the
transformation
7 R\{0) >R, F(x)= %

which is inversion in the unit sphere with center at the origin (see Examples 4.46
and 12.5). By the Liouville Theorem 12.7 and Problem 4.84, it follows that
(H? —K)dA is invariant under any local conformal diffeomorphism of R?. The study
of the functional # (x) belongs naturally in Mobius geometry. It is taken up in
Section 13.6.

In his Math Review of [170], Willmore reported that in the 1923 paper [160],
G. Thomsen had proved that the integrand of % is invariant under conformal
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transformations. Actually the concept of the Willmore energy appears already in
the 1821 work of S. Germain [73]. Thomsen proved important results about this
functional, which he called the conformal area. He worked in the context of Mobius
geometry, which we shall do in Chapters 12 through 14. Section 14.5 contains an
exposition of a global version of Thomsen’s results.

In the calculus of variations, the first step in finding the minima of % (x) on
immersions x : M — R, for a given compact oriented M, is to find its critical points.
An immersion x : M — R3 is a critical point of # (x) if for any 1-parameter family
of immersions x, : M — R3, for |t| < ¢, for some € > 0,

d
2wy =o.
dt|—o

Since %Q{) — W (x) is a constant depending only on M, it follows that the critical
points of # are the same as the critical points of % . Thomsen states that x : M — R?
is a critical point of # if and only if the mean curvature H, Gauss curvature K, and
Laplace-Beltrami operator A of x satisfy

AH+2H(H?>—K) =0, (4.75)

on M. This is the Euler-Lagrange equation of the Willmore functional # . In a
footnote containing no publication citation, Thomsen attributes the derivation of
this Euler-Lagrange equation to work done in 1922 by W. Schadow.

Definition 4.56. A Willmore immersion x : M — R of a compact oriented surface
M is a critical point x : M — R3 of #/.

By Schadow’s result, an immersion x : M — R? of a compact oriented surface M
is Willmore if and only if (4.75) holds for x. The condition (4.75) does not require
that M be compact or oriented. The following is Thomsen’s terminology for this
more general case.

Definition 4.57. A conformally minimal immersion x : M — R3 of a surface M
(not necessarily compact or oriented) is an immersion that satisfies (4.75) on M.
Following present usage, we shall use the term Willmore immersion instead of
conformally minimal immersion.

An immersion x : M — R for which the mean curvature H = 0 at every point
of M is called a minimal immersion. We show in Theorem 8.5 that H =0 on
M if and only if x is a critical point of the area functional A(x) = fMdA. A
minimal immersion clearly satisfies (4.75), so it is also a Willmore immersion.
Part of Thomsen’s results discussed in Section 14.5 characterize when a Willmore
immersion is just a conformal transformation of a minimal immersion.

The Willmore problem has evolved into two separate problems: Prove the
Willmore conjecture and Find all Willmore immersions.
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4.10.1 Willmore conjecture

F. Marques and A. Neves [117] have recently confirmed the conjecture using
methods that lie outside the scope of this book. Hertrich-Jeromin and Pinkall [87]
proved the conjecture for all canal immersions of the torus (see Definition 4.36).
Their proof uses the classification up to conformal transformations of isothermic
canal immersions. These are cylinders, cones, and immersions of revolution. Of
these, the only compact ones are immersions of revolution for which the profile
curve is closed. The key to understanding the Willmore functional on immersions
of revolution is to view the profile curve as a curve in the upper half-plane model of
hyperbolic geometry.

Exercise 16 (Geodesic curvature in upper half-plane H?). The upper half-plane
H? = {(x,y) € R? : y > 0} with the Riemannian metric

_ dx® +dy?
T
is the upper half-plane model of hyperbolic geometry. Use the orientation
dxAndy>0.1If

yiJ = HYL y(s) = (x(s).)(5)

is a regular curve on connected J C R parametrized by arclength, then 1 = |y|*> =
2432 . . . .

ad ;;} , where dot denotes derivative with respect to s. Prove that the oriented normal
vector of y is N = —ye| + xe€,, its acceleration vector is the covariant derivative of

y with respect to y,

)'CZ—)')Z

Dy = (X—Ty)él-i‘(y‘f‘ )ea,

and its geodesic curvature k = I(N,D; y) is

y y?

Example 4.58 (Tori of revolution). Recall the surfaces of revolution discussed
above in Example 4.40. Now, instead of regarding the profile curve as living in
the Euclidean x'x*-plane, we shall regard it as living in the upper half-plane model
of hyperbolic space H? given by this same plane with x' > 0, the Riemannian
W, and orientation dx® A dx' > 0. The profile curve y(s) =

'(f(s),0,g(s)) lies in H?. It is parametrized by hyperbolic arclength if its hyperbolic
norm satisfies

metric [ =

2+é

L=y’ = 7
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In Hz,_ its unit tangent vector is T = y = fe| + ge3, the principal normal is N =
g€ —fes, and the hyperbolic geodesic curvature is
_fe-fe g
o
as derived in Exercise 16. Assume now that this curve is periodic of period L > 0,
its hyperbolic length, so the immersion of revolution is

x:R/LxR/27 — R, x(s,1) ='(f(s)cost,f(s)sint,g(s)).
The unit tangent vector fields (in R?)

X, f 7. ¢ X, .
e1=—Y=—costel+—smt€2+—63, €) = — = —sinfte€| 4 costey,

f f

and unit normal
e;=e Xe = _8 coste| — g sinte, +J:e3
f f f

define a first order frame field along x with dual coframe field
o' =fds, w?=fdr
Calculating des, we get

| . .
w% =des- e =J;(K—§)a)1, w% =dey-e; = —fﬁwz,

f 2

so the frame is second order with principal curvatures

1 g g
a=7G0. =5

Here « is the hyperbolic curvature of the profile curve. Thus, the Willmore
functional on x is

1 ) ) 1 L p2n K2 5 be L )
W(X)Z/ —(CI—C w N :—/ / — dsd[:—/ K<ds.
m4 ) 4Jo Jo fzf 2 Jo

By Definition 4.53, a free elastic curve in the hyperbolic plane is a closed curve that
minimizes f K2ds, where k is its hyperbolic curvature. Langer and Singer in [105]
proved that for periodic immersions, this integral is > 4, with equality precisely
for the hyperbolic circle of hyperbolic radius

so =sinh™' 1 = log(1 + JE),

discussed in Problem 4.83.
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Example 4.59 (Tubes). Recall the discussion in Subsection 4.8.2 of the tube x(s, ?)
defined in (4.63) about a given space curve f(s) parametrized by arclength parameter
s in R3. If this curve is closed, meaning that f is periodic of period L, its length, then
the surface M = R/L xR/2x is diffeomorphic to a torus. The principal curvatures
of x are given in (4.67) to be

—K cost

1
a=—————, c=-—.
1—rKkcost r

From this we calculate

1 2 L 1 1 L pn 1
W(x)=— ——dsdt = — —— drds.
) 4r/0 /0 1 —rkcost 5 Zr/O /0 1 —rkcost y

For given s, the inner integral is

T 1 b4
dt = ,
/0 I —rkcost /1—(rk)?

which leads us to

x (t ds
T

In their 1970 paper [152], Shiohama and Takagi prove that for given r > 0, this
integral is minimized over all periodic curves f of length L by a circle of radius
R= %, for which # (x) becomes

72k

Willmore showed the minimum value of this is 2772, achieved when I—f =42.

W (x) =

4.10.2 Willmore immersions

The search for Willmore immersions is an active field of current research. The
goal is to find Willmore immersions x : M — R? of compact surfaces M. Since a
conformal transformation composed with a Willmore immersion remains Willmore,
we want to know whether two Willmore immersions are conformally distinct. We
will do this in the chapters on Mobius geometry.

One collection of Willmore immersions is the stereographic projection of those
Hopf tori in S* found by Pinkall [136] to be Willmore. These are derived in
Sections 5.7 and 5.8.
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Minimal immersions in the space form geometries are Willmore immersions.
Thomsen’s Theorem in Section 14.5 uses the concept of isothermic immersion to
identify when a Willmore immersion is M&bius congruent to a minimal immersion
in a classical geometry. One application of his result is Corollary 14.36, which
verifies that, except for the Clifford torus, none of Pinkall’s Willmore tori is Mobius
congruent to a minimal surface in a classical geometry.

Problems

4.60. If S = (g O) as in (4.2.1), with a # ¢, and if A € O(2) and € = +£1, prove
c

that S = €ASA = ( (3
¢

g ) if and only if

acten (P 0), (90, £(O),
0—1 10 10
Combining this with (4.20), prove that if (x,¢) : U — E(3) is a second order frame

field on an open connected set U of nonumbilic points of x, then any other on U is
given by (x,¢), where ¢ = (€;,€;, €3) is one of the sixteen cases

(Jer.dey,ce3), (Jer,—dey,ce3), (Ser,dep,€e3), (Jey,—ber,ee3),

where § = 4+ and € = +.

4.61. Letx: M — R3 be an oriented immersion with induced metric . Prove that if
(U,z) is a complex chart of (M, ) and if (x,e) : U — E(3) is the frame field adapted
to z = x+ iy, then

d*dt = dtzdx Ndy = (tc + 1yy)dx A dy,

for any smooth function#: U — R.

4.62. If (x,e) : U — E(3) is a second order frame field on a connected, open,
umbilic free subset U, then any other on U is given by ¢ = eD, where the constant
matrix D € G, = K x O(1) C O(3) is one of the sixteen possibilities

§ 00\ [0ps0
De{l0ps0]|., |8 0 0]:8.€.pe{£l}}.
00 € 00 €

The subgroup K C O(2) was defined in Example 2.17. Prove that the criterion form
a = qw' — pw? is independent of the choice of second order frame field on U.
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4.63. Let x: M — R? be an immersion of a connected surface M. Let M’ C M be
the set of all nonumbilic points of x. Prove: If M’ is dense in M and if every point
of M possesses a neighborhood on which there exists a smooth second order frame
field, then the criterion form of x on M’ extends uniquely to a smooth 1-form on all
of M.

4.64 (Space curves). Carry out the moving frame reduction on an immersion X :
J — R3, where J C R is any connected open subset.

4.65 (Cylinders). Let y : J — R2, y(s) = f(s)e; + g(s)€; be a smooth, regular
curve in the plane, parametrized by arclength s. Let T = yp be its unit velocity vector,
N its principal normal, and « (s) its curvature. The cylinder on y is the immersion

x:JxR—>R> x(s.1) = y(s) —te3. (4.76)

Prove that x is always canal. Prove that x is Dupin if and only if « is constant on J
if and only if y is (an open subset of) a circle or a line. Thus, X is isoparametric if
and only if it is an open subset of a plane or of a circular cylinder.

4.66 (Constant curvature). Prove that a smooth connected curve in S? with
constant curvature k can be transformed by an element of SO(3) to an open
submanifold of the circle

S

y :R—>S8%  y(s) = (cos(

. s .
—— )€ + sin(——)e€;) sina + €3 cosa,
sina sina

where 0 < o < 7 satisfies coto = k.
4.67. Carry out the calculations of Example 4.28 for the circular cone, which is the
case when the profile curve is a circle, say

Hsinot (63) N SZ’
for some angle 0 < @ < 7r/2. Show that the center of any nonplanar curvature sphere
of this cone lies on the x*-axis.

4.68. Consider the hyperboloid of one sheet x> —z> = 1 with the parametrization
x:R?> = R3, X(s,7) = '(coshscost,coshssint,sinhs).

Find a second order frame field along x and the principal curvatures. Show that
the oriented curvature spheres at a point x(s, ) are on opposite sides of the tangent
plane there. Show that one of the curvature spheres has its center on the z-axis and
its intersection with the surface is the curvature line through the point x(s, 7). See
Figure 4.8.
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Fig. 4.8 Oriented curvature
spheres and tangent plane at a
point of the hyperboloid.

4.69. Let x: M — R? be an immersion with induced metric 7, second fundamental
form II, third fundamental form III, mean curvature H, and Gauss curvature K.
Prove that IIl = 2H Il — KI.

4.70 (Degree theorem). Prove Proposition 4.33 for the case when the regular value
yis not in the image of g : M — N.

4.71 (Cones). Prove that any cone
x:JXxR—=R’, x(r,y)=¢0(x),

of Example 4.28 is a canal immersion. Prove that it is Dupin if and only if the
curvature k of ¢ is constant if and only if o is a circle. Prove that x is isoparametric
if and only if k = 0 if and only if o is a great circle. See Problem 4.66.

4.72. Prove that a surface of revolution is always canal. Prove that it is Dupin if
and only if the curvature of the profile curve is constant. Describe the possible
surfaces when the curvature of the profile curve is constant. Thus, a circular torus of
revolution is a cyclide of Dupin.

4.73 (Curves of umbilics). Prove that in (4.54) the equation a = ¢ has a solution
for some value of u if and only if L > 1/+/2. Prove that if L > 1/+/2, then there
are two solutions, which means that there are two circles of latitude that consist of
umbilic points.

4.74. Prove that the mean curvature is identically zero for the immersion of
revolution with profile curve given by the catenary f(u) = coshu, g(u) =u onR.
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4.75 (Multiplicity). Prove that X(m) = x(m) + re;(m) is a focal point of x of
multiplicity k > 1 if and only if 1/r is a principal curvature of x of multiplicity k.

4.76 (Parallel surface of a torus). Find the parallel surfaces of a circular torus of
revolution. Find the focal loci.

4.77 (Focal locus). Let x : M — R? be an immersion with principal curvatures a
and c. Consider a focal locus of x, for example, the image of f = x+ %eg. Show that
for a second order frame field (x,e) on U C M,

c a a
df = ((1 — —)62 — —263) (U2 — —;e3wl,
a a a

where da = a;0' + a,w? on U. Explain how to conclude that f is an immersion at a
point m € U if and only if x is nonumbilic at m and a; (m) # 0. Show that if f is an
immersion at a point m € U, then e3(m) is tangent to f at this point. See Figure 4.9.

4.78 (Tubes). For the tube (4.63), use (4.65) and (4.67) to verify that da = a,w' +

arw?, where

K COSt+ Tk sint Ksint

a) = an

(1 —rkcost)? ’ ~ r(1—rkcos)?’

Prove that a is constant along all of its lines of curvature if and only if a; is
identically zero on J x R if and only if the curve f is a line (k = 0) or a circle of
radius 1/k (tr = 0 and « nonzero constant). Prove further that if T = 0 on J, then the
coordinate curves t = #/2 are lines of curvature of a. If also ¥ # 0, then a; # 0 if
t # +m/2, s0 a is constant along only the two lines of curvature t = +m/2, which
are planar curves, but not lines or circles. Compare with Proposition 4.52.

Fig. 4.9 Green and blue
surfaces are the focal loci of
the orange surface.
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4.79 (Dupin tubes). Use Problem 4.78 and (4.67) to prove that a tube about a space
curve is Dupin if and only if the curve is a line or a circle.

4.80 (Constant torsion). Does there exist a closed curve f : R — R? (closed means
periodic) with constant positive curvature, which is not a circle? Does there exist a
closed curve with constant torsion? See [106] or [29].

4.81 (Focal locus of Dupin). Prove that for a Dupin immersion, both focal loci are
curves.

4.82 (Counterexample). Here is a tube on which the principal curvature a is
constant along one of its lines of curvature, but the image of that line of curvature
is neither a line segment nor an arc of a circle in R?. This does not contradict the
last statement of Proposition 4.52, because a is nonconstant along any of its other
nearby lines of curvature. Consider the smooth curve f:J — R?® with Frenet frame
field (T,N,B) : J — SO(3) satisfying the Frenet-Serret equations (4.62), with

k(s) =secs, t(s)=—1, J:{—%<s<%}CR.

It exists by the Cartan—Darboux Existence Theorem 2.25. For any constant
0<r<l1,letx: M =JxR— R?be the tube (4.63) about f.

1. Find the open subset U C J x R consisting of all (s, #) such that the rank of dxs
is two.

2. Show that if U’ is the connected component of U containing (0,0), then {(s,s) :
s € J} C U'. Moreover, prove that if b € J, then the curve y,(s) = (s,b +s) is
contained in U’ on some open interval about 0.

3. For each b € J, prove that yj, is a line of curvature of x for the principal curvature
a. Prove that a is constant along y,, if and only if sinb = 0.

4. Lety = yo:J — U'. Prove that xoy = (1 —r)f + yy, for some constant point
Yo € R3. Conclude that x o y is not a plane curve, in particular, neither an arc of a
circle nor a segment of a line. See Figure 4.10.

4.83 (Circle elastica in H?). Prove that for the circle (4.71), of hyperbolic
radius r > 0,

cosh?r

T,

F (o) = /szs=27'r -

o sinhr
with equality only when sinh7 = 1. Thus, among hyperbolic circles, .% is minimized
by the circle of hyperbolic radius r = sinh™' 1 = log(1 + +/2), whose geodesic
curvature is k = /2. Langer and Singer [105, Theorem 1] prove that this circle
is a free elastic curve in the hyperbolic plane.

4.84 (Homothety invariance of #). Prove that if x : M — R is an immersion of
a compact oriented surface and if r is any positive constant, then

WX =7 (x),
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Fig. 4.10 The curve xoy
satisfies the Dupin condition.

where X = rx : M — R3. Actually, prove the stronger result that

(H*—K)dA = (H*> —K)dA.
4.85 (Inversion invariance of #). Prove that if x : M — R*\ {0} is a smooth
immersion of a compact oriented surface, then X = S ox: M — R3 is a smooth
immersion and

(H? —K)dA = (H* — K)dA

on M. Here H, K, and dA are the mean curvature, Gauss curvature, and area element,
respectively, of X.



Chapter 5
Spherical Geometry

This chapter applies the method of moving frames to immersions of surfaces in
spherical geometry, modeled by the unit three-sphere S* C R* with its group of
isometries the orthogonal group, O(4). Stereographic projection from the sphere
to Euclidean space appears in this chapter. It is our means to visualize geometric
objects in S3. The existence of compact minimal immersions in 8%, such as the
Clifford torus, provide important examples of Willmore immersions. The chapter
concludes with Hopf cylinders and Pinkall’s Willmore tori in S*. Their construction
uses the universal cover SU(2) == S3 of SO(3).

5.1 Constant positive curvature geometry of the sphere

Consider the unit sphere in R*,
S’ ={xeR:|x|=1}

with the Riemannian metric induced from the standard inner product on R*. The
standard action of the orthogonal group O(4) on R* sends S* to itself and acts as
isometries on S3. Using the Gram-Schmidt orthonormalization process, one proves
that O(4) acts transitively on S°. By essentially the same argument used to prove
that E(3) is the full group of isometries of R?, one proves that O(4) is the full group
of isometries of S3.

As an origin of S* we choose the point €y = /(1,0,0,0). The isotropy subgroup
of O(4) at this point is

Go = {((1) 2) . AcO(3) =~ 003)
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Hence, S* = O(4)/Gy = O(4)/0(3) and the natural projection map defines a
principal O(3)-bundle

7:04) =S 7(e) =eey=ey, (5.1)

where e; denotes column i of the orthogonal matrix e, for i = 0,...,3. The Lie
algebra 0(4) of O(4) has a decomposition

o4)=go+m 5.2)

where the Lie subalgebra gy = 0(3) is the Lie algebra of Gy and
0 —'x 3 3
= : R’} =R
m {(X 0 ) x € R’}

is a complementary vector subspace, which is Ad(O(3))-invariant in the sense that
Ad(A)(x,0) = (A" 'x,0) e m.

Using this decomposition, we can write an element of 0(4) as
_t
(x.X) = (0 X),Xeo(s),xeR3 (5.3)
x X

in which case the bracket structure can be described by the formulas

[(0,X).(0,Y)] = (0, X, Y]),
[(0,X),(y,0)] = (Xy,0), (5.4)
[(Xv 0)7 (yv O)] = (Ov —-X ty + y tx)v

which put altogether is
[(%.X).(y. V)] = Xy —Yx,—x 'y +y X+ [X, Y]).

Compare this Lie algebra structure with that of &(3) described in equation (4.2).
The Maurer—Cartan form of O(4) is the 0(4)-valued 1-form

Ow?wgwg
1 11 /
1, o 0wy  (0-0)
de = = = (0, 5.5
¢ w} 0wl 0 o3 (9w ©.0) (>)

3,3 3
wy wi w; 0
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in the notation of (5.3), where

1

w
_ 2 i
O=|w’]|, o= (a)j),
w
where a)l] = —w;, fori,j =1,...,3 and we have introduced the convenient notation
i i 0
W =0y = —w;, (56)
for i = 1,2, 3. The structure equations are
3
- C
dw; = —Za),’(Aa)j (5.7
k=0

fori,j,k =0,1,2,3, which in the matrix notation is
df=—wA0, do=—-owrw+0A0.

We define a local orthonormal frame field on an open subset U of S3 to be a
smooth local section of (5.1). Explicitly, it is a smooth map e : U — O(4) such
that 7w oe = idy. Geometrically, at a point x € U, we have e(x) = (eg,e;,€,€3)
(designating the columns) with ey = x. Since 7xS? is naturally identified with the
subspace orthogonal to X, it follows that e, e,,e3; is an orthonormal basis of this
tangent space. If we abuse notation slightly and retain the same letters for the pull-
back of the Maurer—Cartan form by our frame field e, then we have from (5.5)

dx = dey = w'e; (5.8)
Therefore, the Riemannian metric on S> has the local expression
[=dx-dx=ow'w' =00 (5.9)

and ',w?, w3 is an orthonormal coframe field in U. Any other frame field on U

must be given by e = eK, where

10
K = :
(OA) U—)GO

is a smooth map, so A : U — O(3) is a smooth map, and

(€1,€2,€3) = (e1,ez,e3)A
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while €y = ey = x. In order to compare the pull-back of the Maurer—Cartan form by
each of these frame fields, let us use the decomposition (5.2) to write

0 -0 00

~1

de = .

=57+ (00)

For the pull-back of the Maurer—Cartan forms by e use the same letters with tildes.

Then

e lde = A e (deA + edA)
0—'0 0 0
=A"! A
(9 a)) +(0A—1dA) (5.10)

. 0 —10A
AT AT wA+ATIdA )’
from which it follows that
6=A""6. (5.11)

One consequence of this is that the Riemannian metric of S* comes from the group
O(4) in the sense that, by (5.9) and (5.11) we have

dx-dx =00 =90.

Consider the frame field e : U — O(4) and recall the notational convention (5.6).
From (5.7) again we have

do' = —w;Aa)/, a)]‘ =—w

It follows that w;, for i,j = 1,2,3, are the Levi-Civita connection forms of / with

respect to the orthonormal coframe field ol w?

obtained from (5.7) to be

,w>. The curvature form 2 ; is then

TSR SN BN SN BN SR N
2/ =do; + oy o; = —opAw; = 0'AG

This shows that the metric dx - dx has constant sectional curvature equal to one.
Recall that 2/ = R 0" A, where the functions R}, are the components of the
Riemann curvature tensor. The space has constant sectional curvature c if and only
if R;kl = c(8x8; — 8u8jx), which is equivalent to the condition that .Q]’ = cw'Aw’. For
background reference, see [154, Vol. I].
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5.2 Moving frame reductions

Consider a smooth immersion
x: M-S

of a smooth surface M. A smooth frame field along x on an open subset U C M is
a smooth map e : U — O(4) such that 7 o e = x; that is, €y) = x. We use the evident
geometric interpretation of these frame fields to define a first order frame field along
x to be a frame field for which e; is normal to x (but tangent to S*). This is equivalent
to the condition that dx = dey = w'e; + w2e,, namely, at each point of U

0 =w}=0, o'Aw*#0. (5.12)

Given a point m € M, there exists a neighborhood U C M of m on which there is a
first order frame field along x. See Problem 5.33 below.

Let e be a first order frame field along x on U. The induced metric on M, also
called the first fundamental form of x, is

[=dx-dx=ow'ow'+0v’w?

and thus w!, w?

is an orthonormal coframe field for it. By (5.7) we have
do' = —wIne?,  do* = -0} o' (5.13)

since w® = 0 for a first order frame field. From (5.13) we conclude that a)21 is the
Levi-Civita connection form for I with respect to the orthonormal coframe field
o', w?. Tts Gaussian curvature K is given by an application of (5.7),

Koo' Ao = dw) = —0y 03 — 0y A0 = 0} Aw3 + o' Aw? (5.14)

Taking the exterior derivative of (5.12) and using (5.7) together with Cartan’s
Lemma, we find that

3 1 2 3 1 2
W] =hpo +hpo, w5 =o' +hpw

for smooth functions h; on U such that 15 = hy;. These functions give a smooth
matrix valued map

S=(hy):U—.7

where .7 is the vector space of all 2 x 2 symmetric matrices. Thus,

(1) =5 ()
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The second fundamental form of x is the symmetric bilinear form defined on the
tangent space of M by

1
Il = —dx-de; = a)fa)l +a);’a)2 = (wl,a)z)S (wz)
w

It is clear from the first equality that /] reverses sign when ej is replaced by —e3 and
otherwise does not depend on the choice of first order frame field e. From (5.14) we
obtain the Gauss equation

K =1+ det(S)

where the 1 is coming from the sectional curvature of S*. The mean curvature of X is
1 1
H= Etrace(S) = E(hll + hy2) (5.15)

From equation (5.16) below we see that H depends only on e3, changing sign when
ez changes sign. It otherwise does not depend on the choice of first order frame field.

If e: U— O(4) is a first order frame field along x, then any other is given by
e = eC, where C : U — G is such that e; is normal to dx, so €; = Fe;. Hence
C:U — Gy, where

1 0
G| = O(BO) €Gy:Be0(2),e ==+1
0e¢

From (5.10) with now A = (lg O) we can calculate that

€

~ ~1 1 Lol 3 1
(@)= () 3(@)=e () =)
@ ® @ w5 ®

Therefore,
S=eB'SB. (5.16)

This is the same action as that of (4.34). The principal values a and c of S are the
principal curvatures of x at the point. As in the Euclidean case, each orbit of the
action (5.16) contains a unique element in the set

D:{(g(c)):az|c|}cy
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A point of M is umbilic if a = c and otherwise it is nonumbilic. The set of umbilic
points (a = ¢) is closed in M.

Definition 5.1. A second order frame field e : U — O(4) along x is a first order
frame field for which

0} =a0', ©; =co? (5.17)

for some functions a,c : U — R.

Lemma 5.2. Let m € M. If m is nonumbilic, or if m belongs to an open set of
umbilic points, then there exists a smooth second order frame field on some open
neighborhood of m.

Proof. Same as for the Euclidean case, either Lemma 4.6 or Lemma 4.10. O

Taking the exterior derivative of (5.17), we arrive at the Codazzi equations

daro' + (a—c)a)lz/\w2 =0
(5.18)
deno® + (a—c)a)lz/\w1 =0

In the nonumbilic cases, the isotropy subgroup is finite, same as in the Euclidean
case, so g, = 0 and second order frame fields are Frenet. In the umbilic case the
isotropy subgroup G, is all of Gy, so my = 0 and first order frame fields are also
second order frame fields and they are Frenet. The Maurer—Cartan form »? remains

to be expressed as a linear combination of the coframe o', w?. We let
a)lz =po' + g0’ (5.19)

for some smooth functions p and g on U. By equations (5.13), these functions are
determined by the equations

do' =po'rw?, dw® = qo' o?

Taking the exterior derivative of (5.19) completes the structure equations.

Definition 5.3. For any functionf on M, we set df = fiw' +f,w?, where the smooth
functions f and f, are called the covariant derivatives of f with respect to the given
coframe field.

5.2.1 Summary of frame reduction and structure equations

Letx : M — S3 be an immersed surface. At a nonumbilic point there exists a smooth
second order frame field e : U — O(4) on a neighborhood of the point. Its pull-back
of the Maurer—Cartan form of O(4) satisfies:
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w3 =0, (firstorder), w'Aw?#0
do' = po'ro?,  dw* = qo'  Ao?
(5.20)

w; =aw', 3 =cw?, (second order)

w} =pw' +qw?,  (third order).

The structure equations of the immersion include (5.18), the Codazzi equations,
which, because w! Aw? # 0 at each point, can be written as

ay = (a—c)p, c¢1 = (a—c)q, (Codazzi equations), (5.21)
and the Gauss equations obtained by differentiating (5.19)
p2—q1—p* —q* = K = ac+ 1, (Gauss equation), (5.22)
where K is the Gaussian curvature of the metric induced on M. The functions a and
c are the principal curvatures of xX. They are continuous functions on M, smooth on
an open neighborhood of any non-umbilic point.
If x is totally umbilic on U, then any first order frame is automatically second

order and the above equations with a = ¢ give the structure equations for such a
frame.

5.3 Tangent and curvature spheres

For points x,m € S3, the distance from m to x in S3 is
r=cos !(x-m) € [0,x].
Definition 5.4. The sphere S,(m) in S® with center m € §* and radius r € [0, 7] is
S,(m) = {x €S’ :x-m = cosr}. (5.23)

Spheres of radius r = /2 are called great spheres. Spheres of radius r =0orr =
are called point spheres, since Sop(m) = {m} and S, (m) = {—m}.

Note that S,(m) is the intersection of §* with the hyperplane in R* whose
equation is y -m = cosr. This hyperplane intersects S* in a great sphere if and only
if it passes through the origin, which happens if and only if r = /2.

Proposition 5.5. If X denotes the set of all nonpoint spheres in S°, then

¥ = (8’ x(0,n))/Z,
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Fig. 5.1 A point x on y
S,(m) = S;_.(—m) and
on S(y).

where Z acts on S® x (0, 1) by
—1(m,r) = (—m, 7 —r).

Proof. Any sphere in X is given by S,(m), for some center m € S* and radius
satisfying 0 < r < m. There is duplication, however, as it is evident from the first
diagram in Figure 5.1 that

Sz—r(—m) = S,(m),

and this is the only duplication. O

Definition 5.6. An oriented sphere in S* is a sphere S,(m) of radius 0 < r < 7
together with a choice of continuous unit normal vector field on it. The canonical
orientation of S,(m) is by the unit normal vector field n whose value at x € S, (m) is

m-—cCcosr X

n(x) = (5.24)

sinr
Geometrically, the canonical orientation of S,(m), for 0 < r < 7, is by the unit

normal pointing fowards the center m. See Figure 5.2 and Figure 5.3. From now on,

when 0 < r < 7, we let S,(m) denote this sphere with its canonical orientation.

Exercise 17. Prove that S,(m) with unit normal (5.24) is totally umbilic with
constant principal curvature a = cotr.

Exercise 18 (Totally Umbilic Case). Prove that if every point of a connected
surface M? is umbilic for the immersion x : M — S3, then the principal curvature
a = c relative to a unit normal vector field e; is constant on M, and x(M) C S,(m),
where
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Fig. 5.2 Canonical n

orientations when

O<r<m/2andr=m/2, m m=n
respectively. X

Fig. 5.3 Canonical n
orientations of S,(m) and
S.—,(—m), respectively.

Fig. 5.4 S,(m) with normal m m
n by (5.24) and angle r = 0, n

for 0 < 0 < 7, on left; and

r=2m —0, on right. n

a 1
CoOsSr = ——, m= —2(63 + ax).

Vi+a? V14+a

Exercise 19. Prove that the set of all oriented spheres in S* is the smooth manifold
S ={Sm):meS 0<r<n}=8x(0,7).

Prove that the map ¥ — ¥ which sends an oriented sphere to that sphere without
orientation is two-to-one and onto.
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Fig. 5.5 The pencil
determined by X = €, and
n=e€sj.

Definition 5.7. For any point x € S* and unit tangent vector n € TyS?, the pencil of
oriented spheres in S? determined by the pair (x, n) is the set of all oriented spheres
through x with unit normal n at x.

An oriented sphere through x with normal n at x must have its center on the open
great semi-circle that runs from x to —x tangent to n at X. The pencil determined by
(x,n) is the set of spheres

{S;(cosrx+sinrn):0<r<m}, (5.25)
each with its canonical orientation. See Figure 5.5.

Definition 5.8. An oriented tangent sphere to an immersion x : M> — 8* at a point
m € M, with unit normal vector n at m, is an oriented sphere through x(m) with unit
normal n at x(m).

Each oriented tangent sphere has its center on the oriented normal line
{cosrx(m) +sinrn:reR},
so the set of oriented tangent spheres at x(m) with normal n must be given by (5.25).

Definition 5.9. An oriented curvature sphere of an immersion x : M?> — S at
m € M relative to a unit normal vector n of x at m is an oriented tangent sphere
whose principal curvature is equal to a principal curvature of x : M — S* at m relative
to the normal n.

Remark 5.10. If m € M is nonumbilic for x, then there are two distinct oriented
curvature spheres at m relative to n. If m is umbilic, then there is only one, but we
say it has multiplicity two. If a is a principal curvature of x at m relative to n, and if
r=cot lae (0, 1), then the oriented curvature sphere relative to n is

S,(cosr x(m) + sinr n),

with its canonical orientation, since for 0 < r < 7, the principal curvatures of S,(m)
relative to its canonical orientation are both cotr.
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Curvature spheres have another characterization, which generalizes to Mdbius
and Lie sphere geometries, where there is no concept of principal curvatures.
This characterization uses the idea of an oriented tangent sphere map along an
immersion.

Proposition 5.11. Let e : U — O(4) be a first order frame field along an immersion
x: M? — S? on a neighborhood U C M. Fix r € (0,7), and consider the oriented
tangent sphere map

S:U—>§:‘:S3x(0,n),

S(m) = S,(cosr x(m) + sinr e3(m)) = cosr x(m) + sinr e3(m) + re,.
Then S(m) is an oriented curvature sphere of X at m € U relative to the unit normal
es(m) if and only if the rank of dS at m is less than two. The kernel of dS,, is the

space of principal vectors at m for the principal curvature cotr. The dimension of
the kernel is the multiplicity of this principal curvature.

Proof. By the structure equations,
dS = cosr dx +sinr des = (cosr wg + sinr w3 )e; + (cosr wj +sinr ®3)e;
has rank less than two at a point m € U if and only if

1y o 1 2 @ 2
0 = (cosr wy +sinr w3) A (cosr wy 4 sinr wy)
2. 1,2 : 1,2 1,2 S N
= c0S"r wy Awjy +cosrsinr(wy Aw; +ws Awy) +sin“r w; Aws
_ 2 : TN B
= (cos“r—2H cosrsinr 4 Ksin“ r)w, A w;
at m, where H is the mean curvature of x relative to e3 and K is the Gaussian
curvature. This last expression is zero at m if and only if cotr is a principal curvature
of x relative to e; at m, which is equivalent to S(m) being a curvature sphere at m

relative to e;(m). See Remark 5.10. From the expression above for dS, we see that
v € T,,M is in its kernel if and only if

—de;v = cotr dx,,v,

which means that v is a principal vector for the principal curvature cotr. O

Example 5.12 (Circular Tori). Fix « to satisfy 0 < o < 7/2 and let r = cosa and
s = sina, so that 2 + s? = 1. Consider the immersion

X X
x@:R>— 8% x9(x,y) =(rcos=,rsin=,scos X,ssin X) (5.26)
r r s s

Then x¥ (%,5) = x® (x,y) whenever

(xX,9) — (x,y) € 2nrZ x 2nsZ = T,
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a lattice in R? (see Boothby [16, Example 8.7, page 99]), so x* descends to an
immersion of the torus T, = R?/ T, into S3. For simplicity write x = x®. Let ¢ =
(eg,e1,e5,e3) : T, = SO(4) be the smooth frame field along x, where

; X o.x y .y
e =X, e =X, € =X, e3=/[scos—,ssin—,—rcos=,—rsin=-).
r r R S

Tlllen dey = ejdx + e»dy implies that e is fir