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Preface

Research in differential geometry requires a broad core of knowledge. For over half
a century, this core has begun with the study of curves and surfaces in Euclidean
space and has ended with the Gauss–Bonnet Theorem. Even this portion of core
material is disappearing from many undergraduate programs. One goal of this
book is to broaden core knowledge with an introduction to topics in classical
differential geometry that are of current research interest. Another goal is to provide
an elementary introduction to the method of moving frames. This method provides
a unifying approach to each topic.

A space is homogeneous if a Lie group acts transitively on it. In this book a
moving frame along a submanifold of a homogeneous space is a map from an open
subset of the submanifold into the group of transformations of the ambient space. It
is a very special case of the idea of sections of the principal bundle of linear frames
of a manifold.

This exposition is restricted to curves and surfaces in order to emphasize the
geometric interpretation of invariants and of other constructions. Working in these
low dimensions helps a student develop a strong geometric intuition.

The book presents a careful selection of important results to serve two basic
purposes. One is to show the reader how to prove the most important theorems in the
subject, as this kind of knowledge is the foundation of future progress. Secondly, the
method of moving frames is a natural means for discovering and proving important
results. Its application in many areas helps to uncover many deep relationships,
such as the Lawson correspondence. Finally, we think the topics chosen are very
interesting. The more one studies them, the more fascinating they become.

A moving frame does not exist globally, in general. Its existence is obstructed by
topology or by the existence of objects like umbilic points. Despite this, however,
the method of moving frames often leads to global results. These results require
arguments using covering space theory and cohomology theory, for which we give
extra details and references; we do not assume the reader has a background in this
material.

We have written this text for intermediate-level graduate students. The method
of moving frames requires an elementary knowledge of Lie groups, which most
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students learn in their first or second year of graduate study. The exposition is
detailed, especially in the earlier chapters. Moreover, the book pursues significant
results beyond the standard topics of an introductory differential geometry course.
A sample of these results includes the Willmore functional, the classification of
cyclides of Dupin, the Bonnet problem, constant mean curvature immersions,
isothermic immersions, and the duality between minimal surfaces in Euclidean
space and constant mean curvature surfaces in hyperbolic space. The book con-
cludes with Lie sphere geometry and its spectacular result that all cyclides of Dupin
are Lie sphere congruent to each other.

We use Mathematica R�, MatlabTM, and Xfig to illustrate selected concepts and
results.

There are nearly 300 problems and exercises in the text. They range from
simple applications of what is being presented to open problems. The exercises are
embedded in the text as essential parts of the exposition. The problems are gathered
at the end of each chapter. Solutions to select problems are given at the end of the
book.

It is the authors’ pleasure to thank Joseph Hutchings for permission to use some
illustrations and examples that he made in the summer of 2008 at Washington
University while partially supported by an REU supplement of NSF Grant No.
DMS-0312442.

This material is based upon work supported by the National Science Foundation
under Grant No. DMS-0604236 and the Italian Ministry of University and Research
(MIUR) via the PRIN project “Varietà reali e complesse: geometria, topologia e
analisi armonica.” The first author thanks GANG at the University of Massachusetts
at Amherst for their support and hospitality in February and March of 2001;
the Matematisk Institutt at the University of Bergen, Norway, for its generous
hospitality during April and May 2001; the University of California at Berkeley
for its generous hospitality from September 2009 through February 2010; the
Politecnico di Torino for its support and hospitality and the support of the GNSAGA
of the Istituto Nazionale di Alta Matematica “F. Severi” during May and June of
2010 and in July 2015; the Università di Parma for its support and hospitality in
September 2013; and especially Washington University for valuing research and
scholarship and providing sabbatical leaves during the spring semester of 2001 and
the academic year 2009–2010. The second and third authors gratefully acknowledge
the Mathematics Department of Washington University in St. Louis for its support
and hospitality in February and March of 2008.

St. Louis, MO, USA Gary R. Jensen
Torino, Italy Emilio Musso
Parma, Italy Lorenzo Nicolodi
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Chapter 1
Introduction

This book evolved from the lecture notes of a graduate topics course given by the
first author in the Fall of 1996. S.-S. Chern’s University of Houston notes [46]
formed the core of these lectures and influenced the philosophy of this book, which
is to present the method of moving frames in the context of interesting problems
in the highly intuitive geometric setting of three-dimensional space. Chern’s article
[47] and Bryant’s papers [20] and [21] influenced the choice of topics. These latter
two papers contain the first modern expositions of Möbius geometry and hyperbolic
geometry treated by the method of moving frames.

By referring to the classical geometries we mean the three space forms plus
Möbius geometry and Lie sphere geometry. We use the term space form for the
simply connected spaces R3 of Euclidean geometry, S3 of spherical geometry, and
H3 of hyperbolic geometry. Möbius geometry is the sphere S3 acted upon by its Lie
group of all conformal diffeomorphisms. Lie sphere geometry is the unit tangent
bundle of S3 acted upon by the Lie group of all contact transformations. The
book does not cover some other classical geometries, such as projective geometry,
Laguerre geometry, equiaffine geometry, and similarity geometry, all of which can
be treated extensively by the method of moving frames.

We use the idea of congruence throughout the book. By this we mean the
following. Immersions x;y W Mm ! Nn into a manifold on which a Lie group G
acts transitively are congruent if there exists a group element A 2 G such that
y.p/D Ax.p/ for every point p2M. This is not the same as the notion of congruence
in elementary Euclidean geometry, for which congruence of x.M/ and y.M/ means
there exists A 2 G such that Ay.M/ D x.M/. For Euclid’s notion we use the
following. Immersions x W M! N and y W QM! N are equivalent if there exists a
diffeomorphism F WM! QM such that x and y ıF are congruent.

The book contains several fascinating threads that emerge as larger groups of
transformations enter the picture. One of these is the story of Dupin immersions in
Euclidean geometry. Such immersions are natural generalizations of isoparametric
immersions (constant principal curvatures) in any of the space forms. Although the
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2 1 Introduction

latter are easily classified, the Dupin immersions seem too abundant to classify.
It turns out that the Dupin condition is invariant under conformal transformations.
In Möbius geometry we discover that any Dupin immersion is Möbius congruent
to some isoparametric immersion in a space form. The Dupin condition is also
invariant under parallel transformations, so the notion of Dupin immersion makes
sense in Lie sphere geometry, where it turns out that the classification is as simple
as possible: All Dupin immersions are Lie sphere congruent to the Legendre lift of
a great circle in the sphere.

Another thread running through the book is the story of isothermic immersions,
which have enjoyed a recent renaissance in the field of integrable systems. Constant
mean curvature immersions in the space forms are isothermic. Proper Bonnet
immersions are isothermic off their necessarily discrete set of umbilic points.
Any isothermic immersion generates a Bonnet pair by the Kamberov–Pedit–
Pinkall (KPP) construction. An isothermic immersion remains isothermic after a
conformal transformation. In Möbius geometry an isothermic immersion is special
if it is Möbius congruent to a constant mean curvature immersion in a space
form. A Willmore immersion in Möbius space is Möbius congruent to a minimal
immersion in some space form precisely when it is isothermic.

The idea of associates of a given immersion weaves throughout the book.
Constant mean curvature immersions in the space forms have a 1-parameter family
of associates, which are noncongruent immersions of the same surface with the
same induced metric and the same constant mean curvature. Willmore immersions
in Möbius space have associates, which are noncongruent Willmore immersions of
the same Riemann surface. Isothermic immersions in Möbius space have associates,
historically called T-transforms.

The Lawson correspondence between minimal surfaces in R3 and CMC 1
surfaces in H3, as well as between CMC 1 surfaces in R3 and minimal surfaces
in S3, is neatly described with moving frames adapted to a complex coordinate on a
surface. Several chapters are devoted to understanding the first correspondence.

We include many illustrations to help the reader develop geometric intuition and
to understand the concepts.

We proceed now to a chapter by chapter description of the text. It is our advice
to the reader with the suggested background to begin with Chapter 4, Euclidean
geometry, and refer back to Chapter 2, Lie groups, and Chapter 3, Theory of Moving
Frames, as needed.

Chapter 2 presents a brief introduction to matrix Lie groups, their Lie algebras,
and their actions on manifolds. We review left-invariant 1-forms and the Maurer–
Cartan form of a Lie group, and the adjoint representation of the Lie group on its
Lie algebra. The treatment of principal bundles is self-contained. We derive basic
properties of transitive actions. We define the notion of a slice for nontransitive
actions. In many instances this is just a submanifold cutting each orbit uniquely
and transitively such that the isotropy subgroup at each point of the submanifold
is the same. We use the general idea of a slice, however, for the ubiquitous
action of conjugation by the orthogonal group on symmetric matrices. The chapter
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concludes with statements and proofs of the Cartan–Darboux uniqueness and
existence theorems. Our proof of the global existence theorem is simpler than those
proofs we have seen in the literature.

Chapter 3 presents an outline of the method of moving frames for any sub-
manifold of an arbitrary homogeneous space. We explain how a Lie group acting
transitively on a manifold N is related to the principal bundle of linear frames
on N. We present a general outline of the frame reduction procedure after first
describing the procedure for the elementary example of curves in the punctured
plane acted upon by the special linear group SL.2;R/. We re-emphasize that this
book demonstrates the use of the method of moving frames to study submanifolds
of homogeneous spaces. It is not a text on the theory of moving frames. This
chapter concludes with basic theorems that characterize when a submanifold of a
homogeneous space is itself homogeneous.

Chapter 4 begins with a standard elementary introduction to the theory of
surfaces immersed in Euclidean space R3, whose Riemannian metric is the standard
dot product. Section 4.2 is a review for readers who have studied basic differential
geometry of curves and surfaces in Euclidean space. Geometric intuition is used
to construct Euclidean frames on a surface. Section 4.3 repeats the exposition,
but this time following the frame reduction procedure outlined in Chapter 3. The
classical existence and congruence theorems of Bonnet are stated and proved as
consequences of the Cartan–Darboux Theorems. A section on tangent and curvature
spheres provides needed background for Lie sphere geometry. The Gauss map helps
tie together the formalism of Gauss and that of moving frames. We discuss special
examples, such as surfaces of revolution, tubes about a space curve, inversions
in a sphere, and parallel transforms of a given immersion. These constructions
provide many valuable examples throughout the book. The latter two constructions
introduce for the first time Möbius, respectively Lie sphere, transformations that
are not Euclidean motions. The section on elasticae contains material needed in our
introduction of the Willmore problems.

Chapter 5 applies the method of moving frames to immersions of surfaces in
spherical geometry, modeled by the unit three-sphere S3 � R4 with its group of
isometries the orthogonal group, O.4/. Stereographic projection from the sphere
to Euclidean space appears in this chapter. It is our means to visualize geometric
objects in S3. The existence of compact minimal immersions in S3, such as the
Clifford torus, provide important examples of Willmore immersions. The chapter
concludes with Hopf cylinders and Pinkall’s Willmore tori in S3. Their construction
uses the universal cover SU.2/Š S3 of SO.3/.

Chapter 6 applies the method of moving frames to immersions of surfaces in
hyperbolic geometry H3, for which we use the hyperboloid model with its full group
of isometries OC.3;1/. Moving frames lead to natural expressions of the sphere at
infinity and the hyperbolic Gauss map. The Poincaré ball model is introduced as
a means to visualize surfaces immersed in hyperbolic space. As in the chapters on
Euclidean and spherical geometry, the notions of tangent and curvature spheres of
an immersed surface are described in detail as preparation for their fundamental role
in Lie sphere geometry. The chapter concludes with many elementary examples.
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Chapter 7 reviews complex structures on a manifold, then gives an elementary
exposition of the complex structure induced on a surface by a Riemannian metric.
In this way a complex structure is induced on any surface immersed into one of
the space forms. Surfaces immersed into Möbius space inherit a complex structure.
In all cases we use this structure to define a reduction of a moving frame to a
unique frame associated to a given complex coordinate. Umbilic points do not
hinder the existence of these frames, in contrast to the obstruction they can pose
for the existence of second order frame fields. The Hopf invariant and the Hopf
quadratic differential play a prominent role in the space forms as well as in Möbius
geometry. Using the structure equations of the Hopf invariant h, the conformal factor
eu, and the mean curvature H of such frames, we give an elementary description of
the Lawson correspondence between minimal surfaces in Euclidean geometry and
constant mean curvature equal to one (CMC 1) surfaces in hyperbolic geometry; and
between minimal surfaces in spherical geometry and CMC surfaces in Euclidean
geometry.

Chapter 8 gives a brief history and exposition of minimal immersions in
Euclidean space. We present the calculation of the first variation of the area
functional and we derive the Enneper–Weierstrass representation. Scherk’s surface
is used to illustrate the problems that arise in integrating the Weierstrass forms. This
integration problem is a simpler version of the monodromy problem encountered
later in finding examples of CMC 1 immersions in hyperbolic geometry. We present
results on complete minimal immersions with finite total curvature, which will be
used in Chapter 14 to characterize minimal immersions in Euclidean space that
smoothly extend to compact Willmore immersions into Möbius space. The final
section on minimal curves applies the method of moving frames to the nonintuitive
setting of holomorphic curves in C3 whose tangent vector is nonzero and isotropic
at every point. An isotropic vector in C3 is one whose C-bilinear dot product with
itself is zero.

Chapter 9 gives a brief introduction to classical isothermic immersions in
Euclidean space, a notion easily extended to immersions of surfaces into each of
the space forms. The definition, which is the existence of coordinate charts that are
isothermal and whose coordinate curves are lines of curvature, seems more analytic
than geometric. We show that CMC immersions are isothermic away from their
umbilics, which indicates that isothermic immersions are generalizations of CMC
immersions. The Christoffel transform provides geometric content to the concept.

Chapter 10 presents the Bonnet Problem, which asks whether an immersion
of a surface x W M ! R3 admits a Bonnet mate, which is another noncongruent
immersion Qx WM! R3 with the same induced metric and the same mean curvature
at each point. Any immersion with constant mean curvature admits a 1-parameter
family of Bonnet mates, all noncongruent to each other. These are its associates.
The problem is thus to determine whether an immersion with nonconstant mean
curvature has a Bonnet mate. The answer for an umbilic free immersion is whether
it is isothermic or not. If it is nonisothermic, then it possesses a unique Bonnet mate.
We believe that this is a new result. If it is isothermic, then only in special cases will
it have a Bonnet mate, and if it does, it has a 1-parameter family of mates, similar
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to the CMC case. Such immersions are called proper Bonnet. A brief introduction
to the notion of G-deformation is used to derive the KPP Bonnet pair construction
of Kamberov, Pedit, and Pinkall. We state and prove a new result on proper Bonnet
immersions that implies results of Cartan, Bonnet, Chern, and Lawson–Tribuzy.
The chapter concludes with a summary of Cartan’s classification of proper Bonnet
immersions.

Chapter 11 is an introduction to immersions of surfaces in hyperbolic space with
constant mean curvature equal to one (CMC 1 immersions in H3). The approach
follows Bryant’s paper [21], which replaces the hyperboloid model of H3 by the
set of all 2� 2 hermitian matrices with determinant one and positive trace. This
model is acted upon isometrically by SL.2;C/, the universal cover of the group
of all isometries of hyperbolic space. The method of moving frames is applied
to the study of immersed surfaces in this homogeneous space. Departing from
Bryant’s approach, we use frames adapted to a given complex coordinate to great
advantage. A null immersion from a Riemann surface into SL.2;C/ projects to a
CMC 1 immersion into hyperbolic space. The null immersions are analogous to
minimal curves of the Enneper–Weierstrass representation of minimal immersions
into Euclidean space. A solution of these equations leads to a more complicated
monodromy problem, which is described in detail. The chapter ends with some of
Bryant’s examples as well as more recent examples of Bohle–Peters and Bobenko–
Pavlyukevich–Springborn.

Chapter 12 introduces conformal geometry and Liouville’s characterization of
conformal transformations of Euclidean space. Through stereographic projection
these are all globally defined conformal transformations of the sphere S3. The
Möbius group MRob is the group of all conformal transformations of S3. It is a ten-
dimensional Lie group containing the group of isometries of each of the space forms
as a subgroup. Möbius space M is the homogeneous space consisting of the sphere
S3 acted upon by MRob. M has a conformal structure invariant under the action
of MRob. The reduction procedure is applied to Möbius frames. The space forms
are each equivariantly embedded into Möbius geometry. Conformally invariant
properties, such as Willmore immersion, or isothermic immersion, or Dupin immer-
sion, have characterizations in terms of the Möbius invariants. Oriented spheres in
Möbius space provide the appropriate geometric interpretation of the vectors of a
frame field.

Chapter 13 takes up the Möbius invariant conformal structure on Möbius space.
It induces a conformal structure on any immersed surface, which in turn induces
a complex structure on the surface. Möbius geometry is the study of properties
of conformal immersions of Riemann surfaces into Möbius space M that remain
invariant under the action of MRob. Each complex coordinate chart on an immersed
surface has a unique Möbius frame field adapted to it, whose first-order invariant
we call k and whose second-order invariant we call b. These are smooth, complex
valued functions on the domain of the frame field. These frames are used to derive
the structure equations for k and b, the conformal area, the conformal Gauss map,
and the conformal area element. The equivariant embeddings of the space forms into
Möbius space are conformal. Relative to a complex coordinate, the Hopf invariant,
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conformal factor, and mean curvature of an immersed surface in a space form
determine the Möbius invariants k and b of the immersion into M obtained by
applying the embedding of the space form into M to the given immersed surface.
This gives a formula for the conformal area element showing that the Willmore
energy is conformally invariant.

Chapter 14 introduces isothermic immersions of surfaces into Möbius space.
An isothermic immersion of a surface into a space form, then composed with the
equivariant embedding of the space form into Möbius space, becomes an isothermic
immersion of the surface into Möbius space. Thus, an isothermic immersion in
a space form remains isothermic under conformal transformations. An isothermic
immersion into Möbius space is special if it comes from a CMC immersion into a
space form. By a theorem of Voss, the Bryant quartic differential form of an umbilic
free conformal immersion into Möbius space is holomorphic if and only if it is
Willmore or special isothermic. A minimal immersion into a space form followed by
the equivariant embedding of the space form into Möbius space becomes a Willmore
immersion into Möbius space. Moreover, it is isothermic, with isolated umbilics,
since this is true for minimal immersions in space forms and these properties are
preserved by the embeddings into Möbius space. The theorem of Thomsen states
that up to Möbius transformation, all isothermic Willmore immersions with isolated
umbilics arise in this way.

Chapter 15 presents the method of moving frames in Lie sphere geometry. This
involves a number of new ideas, beginning with the fact that some Lie sphere
transformations are not diffeomorphisms of space S3, but rather of the unit tangent
bundle of S3. This we identify with the set of pencils of oriented spheres in S3, which
is identified with the set� of all lines in the quadric hypersurface Q� P.R4;2/. The
set � is a five-dimensional subspace of the Grassmannian G.2;6/. The Lie sphere
transformations are the projective transformations of P.R4;2/ that send Q to Q. This
is a Lie group acting transitively on�. The Lie sphere transformations taking points
of S3 to points of S3 are exactly the Möbius transformations, which form a proper
subgroup of the Lie sphere group. In particular, the isometry groups of the space
forms are natural subgroups of the Lie sphere group. There is a contact structure
on � invariant under the Lie sphere group. A surface immersed in a space form
with a unit normal vector field has an equivariant Legendre lift into �. A surface
conformally immersed into Möbius space with an oriented tangent sphere map has
an equivariant Legendre lift into �. This chapter studies Legendre immersions of
surfaces into this homogeneous space � under the action of the Lie sphere group.
A major application is a proof that all Dupin immersions of surfaces in a space
form are Lie sphere congruent to each other. One of these Dupin immersions is the
Legendre lift of a great circle of S3.



Chapter 2
Lie Groups

We present here a brief introduction to matrix Lie groups and their Lie algebras
and their actions on manifolds. We review left-invariant 1-forms and the Maurer–
Cartan form of a Lie group, and the adjoint representation of the Lie group on its
Lie algebra. The treatment of principal bundles is self-contained. We derive basic
properties of transitive actions. We define the notion of a slice for nontransitive
actions. In many instances this is just a submanifold cutting each orbit uniquely
and transitively such that the isotropy subgroup at each point of the submanifold is
the same. The general idea of a slice is used, however, for the ubiquitous action
by conjugation of the orthogonal group on symmetric matrices. We review the
Frobenius theory of smooth distributions. The chapter concludes with statements
and proofs of the Cartan–Darboux uniqueness and existence theorems. Our proof
of the global existence theorem is simpler than those proofs we have seen in the
literature. These theorems provide the principal analytic tools of the book.

2.1 Lie group actions

The real general linear group GL.n;R/ of all n�n nonsingular matrices is a group
under matrix multiplication and it is an open submanifold of the vector space Rn�n

of all n� n matrices. It is thus a Lie group of dimension n2. In the same way, the
complex general linear group GL.n;C/ is a complex Lie group, which means it is a
complex manifold and the group operations are holomorphic. (See Chapter 7 for the
definition of complex manifold). A matrix Lie group is a closed subgroup of some
GL.n;R/. All Lie groups used in this book are matrix groups, so we restrict our
exposition to this case.

© Springer International Publishing Switzerland 2016
G.R. Jensen et al., Surfaces in Classical Geometries, Universitext,
DOI 10.1007/978-3-319-27076-0_2

7



8 2 Lie Groups

The Lie algebra of all left-invariant vector fields on GL.n;R/ is naturally iden-
tified with gl.n;R/, the set Rn�n with Lie bracket given by matrix commutations,
ŒX;Y� D XY � YX. If G � GL.n;R/ is a matrix subgroup, its Lie algebra g of all
left-invariant vector fields is a Lie subalgebra of gl.n;R/.

For a matrix group, the derivative of left or right multiplication is again left or
right multiplication. That is, if g 2G and Lg W G! G is left multiplication, Lg.x/D
gx, for any x 2 G, then the tangent space TxG is a subspace of Rn�n and

.dLg/x W TxG! TgxG; .dLg/xX D gX:

Since gD T1G� gl.n;R/, where 1 2G is the identity element, it follows that TxGD
xg. For right multiplication Rg.x/D xg,

.dRg/x W TxG! TxgG; .dRg/xX D Xg:

In particular, TxG D gx, for any x 2 G. That xg D gx, for any x 2 G, follows from
the invariance of g under the adjoint representation of G on g, which is

Ad.g/ W g! g; Ad.g/D .dCg/1;

where for any g 2 G, the conjugation map Cg W G! G is Cg.x/ D gxg�1. For a
matrix group G, the adjoint representation is

Ad.g/X D gXg�1;

for any X 2 g� gl.n;R/, and so ggg�1 D g.
The Maurer–Cartan form! of G is the g-valued left-invariant 1-form on G whose

value at g 2 G is

!g D g�1dg;

where this is matrix multiplication. In more detail, if X 2 TgG, then !g.X/D g�1X.
The Maurer–Cartan form of GL.2;R/ is

!A D A�1dAD
�

x11 x12
x21 x22

��1�
dx11 dx12
dx21 dx22

�

at the point A 2 GL.2;R/. Here dxi
j is the differential of the coordinate function xi

j

on the open subset GL.2;R/ � R2�2. On a closed subgroup G of GL.n;R/, these
forms are pulled back to G by the inclusion map, so on G they would satisfy the set
of linear equations defining the subspace g� gl.2;R/. The Maurer–Cartan structure
equations of G are

d! D d.g�1dg/D�g�1dg g�1^dgD�!^!;
where in this matrix multiplication, the terms are multiplied by the wedge product
of 1-forms.
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Example 2.1. The special orthogonal group is

SO.n/D fA 2GL.n;R/ W tAAD In; det AD 1g:
Its Maurer–Cartan form is an n�n matrix of left-invariant 1-forms!i

j on SO.n/ that

satisfy !i
j D�!j

i , for all i; jD 1; : : : ;n.

Example 2.2. The special linear group is

SL.n;R/D fA 2GL.n;R/ W det AD 1g:
Its Maurer–Cartan form satisfies trace ! D 0.

Definition 2.3. A Lie group G acts smoothly on the left of a smooth manifold N if
there is a smooth map � W G�N! N, which we denote by �.g;x/ D gx, with the
properties 1xD x, for any x 2 N, where 1 2G is the identity element, and

.g1g2/xD g1.g2x/;

for any g1;g2 2 G and x 2 N. The action is from the right if we write �.g;x/D xg
and this satisfies x1D x and x.g1g2/D .xg1/g2. For any g 2 G, the map g W N! N
given by x 7! gx (respectively, x 7! xg) is a diffeomorphism whose inverse is given
by the action of g�1. The action is free if, for any g 2 G unequal to the identity
element 1 of G, this diffeomorphism has no fixed points. The action is effective if 1
is the only element of G that acts as the identity element. The action is transitive if,
for any points x;y 2 N, there exists g 2 G whose action sends x to y.

The adjoint representation of G is a smooth left action of G on its Lie algebra g.
An action of the additive group of real numbers R on a manifold N is a global

flow. A global flow � WR�N!N generates a smooth vector field X on N, called the
infinitesimal generator of the flow, by X.m/ D d

dt

ˇ̌
tD0 �.t;m/. For each fixed m 2 N,

the curve �m.t/ D �.t;m/ is the integral curve of X starting at m. Conversely, any
smooth vector field X on N generates a flow � W W ! N, where W � R�N is an
open set containing f0g�N. See [16, pp. 127 ff] or [110, pp. 438 ff]. If W DR�N,
then the vector field X is called complete.

A left-invariant vector field X on a Lie group G is complete and generates the
global flow

� W R�G! G; �.t;g/D gexp.tX/;

where the exponential map exp.tX/D etX is the matrix exponential for any matrix
group G. The curve exp.tX/ is the integral curve of X through 1 2 G. This is also
the integral curve of the right-invariant vector field whose value at 1 is X.1/. A right-
invariant vector field generates the global flow �.t;g/D exp.tX/g.

If G acts smoothly on the left (respectively, right) of N, then any X 2 g defines
the global flow on N,

� W R�N! N; �.t;m/D exp.tX/m;
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(respectively, �.t;m/Dmexp.tX/). This flow generates a vector field OX on N, called
the vector field induced by X on N. If OX.m/D 0 at some point m 2 N, then its integral
curve through m must be constant, by the uniqueness of the integral curve through
a point. This means that m is a fixed point for exp.tX/, for all t 2 R. In particular, if
the action is free, then OX has no zeros on N, for any X ¤ 0 2 g.

Right actions play a fundamental role in the idea of principal bundles.

Definition 2.4. A principal H-bundle over N with smooth total space P and smooth
base space N is a smooth, surjective submersion � W P! N and a free, right action
of the Lie group H on P such that for each point m 2 N, if p is a point in the fiber
over m, ��1fmg, then this fiber is the H-orbit of p,

��1fmg D pH:

The map � is called the projection of the bundle. A local section of the bundle on
an open subset U � N is a smooth map � W U! P such that � ı � W U! U is the
identity map. A local trivialization of the bundle over U is a smooth diffeomorphism

F W U�H! ��1U � P;

satisfying F.u;h/D F.u;1/h for any .u;h/ 2 U�H. Any local section � W U! P
defines a local trivialization

F WU�H! ��1U; F.u;h/D �.u/h:

If X 2 h, the Lie algebra of H, then the vector field OX it induces on P is the
fundamental vertical vector field on P induced by X.

Remark 2.5. A smooth map � W P! N is a submersion if the rank of d�p equals
the dimension of N at every point p 2 P. If � W P! N is a submersion, then � is
an open map and every point of P is in the image of a smooth local section of � .
(See, for example, [110, Proposition 7.16, p. 169]). In particular, for any point p 2 P
in the total space of a principal H-bundle � W P! N, there is a local section whose
image contains p. Moreover, given any point n 2 N, there is a local section defined
on a neighborhood of n.

2.2 Transitive group actions

Suppose G acts smoothly on the left of the manifold N. Choose a point o 2 N, and
call it the origin of N. Then the projection map

� W G! N; �.g/D go
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is smooth. The action is transitive if and only if � is surjective for any choice of
origin o 2 N. If X 2 g induces the vector field OX on N, then the integral curve of OX
through o 2 N is exp.tX/oD � ı exp.tX/. In particular, OX.o/ D d�1X. The isotropy
subgroup of G at o 2 N is

H D fg 2 G W goD og:

It is a closed subgroup of G. The isotropy representation of H is

H!GL.ToN/; h 7! dho W ToN! ToN: (2.1)

Proposition 2.6. If a Lie group G acts smoothly and transitively on a manifold N,
then for any point o 2 N, the projection map

� W G! N; �.g/D go (2.2)

is a surjective submersion. If G acts on the left of N and if H is the isotropy subgroup
of G at o, then H acts freely on the right of G by right multiplication and G is a
principal H-bundle over N with projection (2.2). For any X 2 h, the Lie algebra of
H, the fundamental vertical vector field OX induced on G by the right action of H
coincides with the left-invariant vector field X 2 h� g on G.

Proof. Suppose G acts on N on the left. For any g 2 G, let Lg W G! G denote left
multiplication by g. This is a diffeomorphism. Then

� ıLg.x/D �.gx/D .gx/oD g.xo/D g ı�.x/;

for any x 2 G, shows that � ı Lg D g ı � . Since Lg W G! G and g W N ! N are
diffeomorphisms, it follows that the rank of � is constant on G. Then � W G! N
is surjective and of constant rank, so it must be a submersion, that is, its rank must
equal the dimension of N at every point of G. (See, for example, [110, Theorem 7.15,
p. 168]). A similar argument proves the result when G acts on N on the right.

By Definition 2.4, it remains to prove that the right action of H on G is free and
that for any g 2 G, we have ��1fgog D gH. This is elementary.

If X 2 h, and if g 2 G, then

OX.g/ D d

dt

ˇ̌̌
ˇ
0

gexp.tX/D .dLg/1
d

dt

ˇ̌̌
ˇ
0

exp.tX/D .dLg/1X.1/ D X.g/:

ut
Corollary 2.7 (Lift Property). If f WM! N is a smooth map from a manifold M
and if m0 2 M, then there exists a neighborhood U of m0 in M on which there is a
smooth map g W U! G, such that f D � ı g on U.
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Proof. There exists a neighborhood V of f .m0/ in N on which there exists a smooth
section � W V! G of the submersion (2.2). If U D f �1V , then gD � ı f W U! G is
the desired map. ut
Corollary 2.8. The kernel of d�1 W g ! ToN is h, so d�1 W g=h ! ToN is an
isomorphism. For any h 2 H, the diagram

g=h
Ad.h/! g=h

d�1 # # d�1

ToN
dho! ToN

commutes.

Proof. It is clear that h� kerd�1. Conversely, if X 2 g, then 0D d�1XD OXo implies
that the integral curve exp.tX/o of OX at o must be constant, so exp.tX/ 2 H, for all
t 2 R, and thus X 2 h. This proves the first statement. For any X 2 g and h 2 H, we
have h�1oD o and hetXh�1 D ethXh�1

, so

dhod�1X D d

dt

ˇ̌
ˇ̌
0

hexp.tX/oD d

dt

ˇ̌
ˇ̌
0

hexp.tX/h�1o

D d

dt

ˇ̌
ˇ̌
0

exp.thXh�1/oD d�1Ad.h/X:

ut
Corollary 2.9. There exists a G-invariant Riemannian metric on N if and only if
there exists an Ad.H/-invariant inner product on g=h.

Proof. By the preceding corollary, there exists an inner product on ToN invariant
under the isotropy representation of H if and only if there exists an Ad.H/-invariant
inner product on g=h. If N possesses a G-invariant Riemannian metric I, then a
fortiori, Io is invariant under the linear isotropy representation of H. Conversely, if
Io is an inner product on ToN invariant under the linear isotropy representation of
H, define an inner product on TmN, for any m 2 N, by ImD g�Io, where g 2G is any
element for which gmD o. This is independent of the choice of such g because of
the invariance of Io. ut
Example 2.10 (O.3/ acting on S2). Label the standard basis of R3 by �i, for i D
0;1;2 and the entries of a matrix A 2 O.3/ by Ai

j, for i; j D 0;1;2. The standard
action of O.3/ on R3 induces a transitive action on the unit sphere S2 � R3 (by
the Gram–Schmidt orthonormalization process). The isotropy subgroup of O.3/ at
�0 2 S2 is

H D f
�
1 0

0 A

�
W A 2O.2/g ŠO.2/:
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Its isotropy representation is just the standard representation of O.2/ on
R2 D �?

0 � R3. Consider the vector space direct sum o.3/D h˚m, where

hD f
�
0 0

0 X

�
W X 2 o.2/g Š o.2/

is the Lie algebra of H in o.3/, and

mD f
�
0 �tx
x 0

�
W x 2 R2g Š R2:

Then mŠ o.3/=h. The adjoint action of H on m is

�
1 0

0 A

��
0 �tx
x 0

��
1 0

0 A�1
�
D
�
0 �t.Ax/

Ax 0

�
;

which is just the standard action of O.2/ on R2 under the above isomorphisms. In
particular, m is invariant under the adjoint action of H. The Maurer–Cartan form of
O.3/ is

! D A�1dAD .!i
j /;

where !i
j C!j

i D 0, for all i; jD 0;1;2. The structure equations are

d!i
j D�

2X
kD0

!i
k^!k

j :

The only Ad.O.2//-invariant inner products on mŠ o.3/=hŠ R2 are the constant
positive multiples of

hX;Yi D tracetXY D 2x � y;

if X$ x and Y $ y. Up to constant positive multiple, these inner products induce
the Riemannian metric on S2 � R3 induced from the standard inner product on R3.

Example 2.11 (Grassmannians). For m < n, let Rn�m� be the set of all n � m
matrices of rank m. Consider the equivalence relation on Rn�m� given by X � Y
if and only if Y D XA, for some A 2GL.m;R/, if and only if the columns of X span
the same subspace of Rn as do the columns of Y. Let ŒX� denote the equivalence class
of X 2Rn�m�. The Grassmannian of m-dimensional subspaces of Rn is the set of all
equivalence classes G.m;n/DRn�m�=�. Left multiplication action of GL.n;R/ on
Rn�m� preserves the equivalence relation, so induces an action on G.m;n/ given by
BŒX�D ŒBX�, for any B 2GL.n;R/ and ŒX�2G.m;n/. This action is transitive, since
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it takes the origin P0 D
�

Im

0

�
to any designated point of G.m;n/, because any basis

of a given m-dimensional subspace can be extended to a basis of Rn. The isotropy
subgroup of GL.n;R/ at P0 is

G0 D f
�

a b
0 c

�
2GL.n;R/ W a 2GL.m;R/; c 2GL.n�m;R/g:

Example 2.12 (SL.2;R/! CC). Consider the smooth transitive action of

SL.2;R/D f
�

r s
t u

�
W ru� tsD 1g

on the upper half-plane CC D fzD xC iy 2 C W y > 0g given by

�
r s
t u

�
zD rzC s

tzCu
:

Choose i 2 CC for origin to define the submersion

� W SL.2;R/! CC; �

�
r s
t u

�
D riC s

tiCu
D rtC su

t2Cu2
C i

t2Cu2
:

The isotropy subgroup H of SL.2;R/ at i is

H D f
�

r s
t u

�
W riC s

tiCu
D ig D f

�
r �t
t r

�
W r2C t2 D 1g Š SO.2/:

Its Lie algebra h has an Ad.H/-invariant complementary subspace

mD fX D
�

x y
y �x

�
W x;y 2 Rg Š sl.2;R/=h:

Then, under the identification T1SL.2;R/Š h˚m,

d�1 Wm! TiCC D R2; d�1X D 2y�1C2x�2:

The only Ad.H/-invariant inner products on m are

hX; QXi D c tracetX QX D 2c.xQxC yQy/D c

2
.d�1X/ � .d�1 QX/;

the standard dot product on TiCC D R2, where c is any positive constant. Taking
cD 1=2, we get for the metric on TiCC,

Ii D dx2Cdy2 D dzdNz;
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where zD xCiy. Identify all tangent spaces of CC with R2. If AD
�

r s
t u

�
2SL.2;R/

is regarded as a diffeomorphism A W CC! CC, then the matrix of its differential at
i is dAi, which in the standard basis is

dAi D 1

k

�
u2� t2 2tu
�2tu u2� t2

�
; .dAi/

�1 D
�

u2� t2 �2tu
2tu u2� t2

�
;

where kD .t2Cu2/2. For any v; Qv 2 TAiCC D R2, and A 2 SL.2;R/,

IAi.v; Qv/D Ii..dAi/
�1v; .dAi/

�1 Qv/D k v � Qv;

and y.Ai/D 1=pk, so

Iz D dx2Cdy2

y2
(2.3)

at any point zD xCiy2CC. This Riemannian metric I on CC is the upper half-plane
model of the hyperbolic plane, which is discussed further in Example 16.

2.3 A slice theorem

In this section, group actions will be from the left, unless stated otherwise. Let G be
a Lie group acting smoothly on a manifold N. The orbit of a point x 2 N is

GxD fgx W g 2 Gg;

which is an immersed submanifold of N. The isotropy subgroup of G at x is

Gx D fg 2 G W gxD xg;

which is a closed subgroup of G. If x and yD gx are points in the same orbit, then
their isotropy subgroups are conjugate in G, namely,

Ggx D gGxg
�1:

An orbit is of type G=H, where H is a closed subgroup of G, if the isotropy subgroup
at any point of the orbit is G-conjugate to H. We let NH denote the set of all points
in N lying on orbits of type G=H.

If H is a closed subgroup of G, then the set G=H of left cosets of H is a smooth
manifold on which G acts smoothly and transitively (see [16, Theorem 9.2,
pp 166 ff]). For any point x2N, the orbit of G through x is an immersed submanifold
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of N diffeomorphic to G=Gx, whose dimension is dimG�dim Gx. Since conjugate
subgroups have diffeomorphic quotients, it follows that any orbit of type G=H is
diffeomorphic to G=H.

The smooth map

� WG! G=H; �.g/D gH; (2.4)

is the projection map of a principal H-bundle, where H acts freely on the right on G
by right multiplication. If H acts smoothly on the left on a manifold Y , then H acts
smoothly on G�Y on the right by

.g;y/hD .gh;h�1y/;

for any y 2 Y , g 2 G, and h 2 H. Denote the orbit space of this action by G�H Y ,
the twisted product of G with Y over H. Denote the projection map

� W G�Y ! G�H Y ; �.g;y/D Œg;y�; (2.5)

so Œgh;h�1y�D Œg;y� for any h2H. Then G�H Y is a smooth manifold,� is smooth,
and the smooth map

	 W G�H Y ! G=H; 	Œg;y�D gH

is the projection map of the fiber bundle over G=H with standard fiber Y associated
to the principal H-bundle (2.4). A local section

� W U � G=H! G

of (2.4) defines a local trivialization of G�H Y , which is a diffeomorphism

' W U�Y ! 	�1U � G�H Y ; '.u;y/D Œ�.u/;y�:

For details see [100, pp 54–55]. Now�ı.�; idY /D ', for any such section � , shows
that � of (2.5) is a submersion.

Definition 2.13. A slice of the smooth action of a Lie group G on a smooth
manifold N is a pair .Y ;H/, where Y is a regular submanifold of N with dimY <

dimN and H is a closed subgroup of G such that

1. HY D Y ,
2. GY is an open submanifold of N,
3. Y is closed in GY , and
4. F W G�H Y ! GY , FŒg;y�D gy is a diffeomorphism.

Item (1) means that H is a subgroup of the stabilizer of Y , which is the subgroup
fg 2G W gY DY g of G. If we call a submanifold Y a slice, without mention of the
subgroup H, then it is to be understood that H is its stabilizer.
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Remark 2.14. For most group actions in this book, a slice Y exists for which the
isotropy subgroup Gy D H, for all y 2 Y . In this case the orbit space has a global
trivialization G�H Y D .G=H/�Y .

The following characterization of a slice involves derivatives only at points of Y .

Theorem 2.15 (Slice Property). If all assumptions of Definition 2.13 through
items (1), (2), and (3) hold, and if

(4a) g 2G and .gY /\Y ¤ ; implies g 2 H,
(4b) the Lie algebra of the isotropy subgroup Gy is h, for every point y 2 Y , and
(4c) TyN D Ty.Gy/˚TyY , for every y 2 Y ,

then .Y ;H/ is a slice of the action of G on N.

Proof. We must prove that the map F of item (4) in Definition 2.13 is a diffeomor-
phism under the present hypotheses. F is certainly smooth and surjective. It remains
to prove that it has a smooth inverse.

For any y 2 Y , the dimension of the orbit Gy is dimG=Gy D dimG=H, by items
(4a) and (4b). The tangent space to the orbit Gy at a point y is

Ty.Gy/D f OX.y/ W X 2 gg;
where OX is the vector field induced on N by the action of G, so OX.y/D d

dt

ˇ̌
0

exp.tX/y.
The dimension of G�H Y is thus dimG=HCdimY D dimN, by item (4c).

If FŒg;y� D FŒQg; Qy�, then g�1 QgQy D y 2 Y implies g�1 Qg D h 2 H, by item (4a).
Then QgD gh, so gyD ghQy implies hQyD y. Hence, ŒQg; Qy�D Œgh;h�1y�D Œg;y�, so F is
injective. So the inverse of F exists, and will be smooth if dF is an isomorphism at
every point of G�H Y . Being a linear map between spaces of equal dimension, dF
is an isomorphism if it is surjective.

Consider the composition F ı� W G�Y ! N, where � is defined in (2.5). For
any .g;y/ 2 G�Y , we have F ı�.g;y/D gyD gF ı�.1;y/, so

d.F ı�/.g;y/ D dgyd.F ı�/.1;y/;
and dgy W TyN! TgyN is an isomorphism. It follows that d.F ı�/.g;y/ is surjective,
for any .g;y/ 2 G�Y , provided that d.F ı�/.1;y/ is surjective for any y 2 Y . This
latter map is surjective, since for any .X;v/ 2 g˚TyY D T.1;y/.G�Y /,

d.F ı�/.1;y/.X;v/D OX.y/Cv 2 Ty.Gy/˚TyY

is surjective, and the image is TyN, by item (4c). It follows then that dFŒg;y� is an
isomorphism at every Œg;y� 2 G�H Y . ut
Remark 2.16. The reduction procedure in the method of moving frames requires an
explicit slice of some action at each step. Our requirement that dimY < dimN in
the definition of slice ensures that each step of the reduction is nontrivial. It also
implies that the action of a discrete group G has no slice.
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The following action occurs in each of the space form geometries. It is the most
complicated action in this book.

Example 2.17. Consider the action of GD O.2/�O.1/ on the vector space S of
all 2�2 symmetric real matrices,

G�S !S ; .A;
/X D 
AX tA;

where 
 D˙1. Notice that trace.A;
/X D 
traceX. From elementary linear algebra
we know that for each S 2 S , this action will diagonalize S. In the language of
group actions, every G-orbit meets the hyperplane of all diagonal matrices D in S ,
which is the hyperplane zD 0, if we make the identification of vector spaces

S D R3;

�
x z
z y

�
D .x;y;z/:

Consider the line L D ftI2 W t 2 Rg of scalar matrices in S and consider the
submanifold

Y DD nL D f
�

x 0
0 y

�
W x¤ yg

of all nonscalar, diagonal matrices in S . Let

K D f˙I2;˙I1;1;˙
�
0 1

1 0

�
;˙
�
0 �1
1 0

�
g; (2.6)

a closed subgroup of O.2/, so HDK�O.1/ is a closed subgroup of G. It is a useful
exercise to prove:

(1) H is the stabilizer of Y .

(2) For any pD
�

x 0
0 y

�
2 Y , the tangent spaces TpS DS ,

Tp.G

�
x 0
0 y

�
/D fz

�
0 1

1 0

�
W z 2 Rg;

since d
dt

ˇ̌
0

etX

�
x 0
0 y

�
e�tX D z.x� y/

�
0 1

1 0

�
, for X D

�
0 �z
z 0

�
2 o.2/, and

TpY D f
�

u 0
0 v

�
W u;v 2 Rg:

(3) By Theorem 2.15 one proves that Y is a slice of this action.
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Note that GL DL , and the action of G on L is the standard action of O.1/
on R.

Theorem 2.18 (Factor Property). Let G be a Lie group acting smoothly on the
manifold N. Suppose that (Y ;H) is a slice of this action. Given a point m0 in a
smooth manifold M, if f WM! N is a smooth map such that f .m0/ 2 GY , then for
any g0 2 G and y0 2 Y for which f .m0/D g0y0, there exists a neighborhood U of
m0 in M and there exists a smooth map

.g;y/ W U! G�Y ;

such that f .m/D g.m/y.m/, for every m 2U, and g.m0/D g0, y.m0/D y0.

Proof. Let F W G �H Y ! GY � N be the diffeomorphism of item (4) in the
definition of slice. Suppose g0 2 G and y0 2 Y satisfy f .m0/ D g0y0. These exist,
since f .m0/ 2 GY . Since � of (2.5) is a submersion, it has a local section � W V !
G�Y on a neighborhood V �G�H Y of Œg0;y0� such that �Œg0;y0�D .g0;y0/. Then
�ı � D idV , U D f �1F.V/ is a neighborhood of m0 in M, and

.g;y/D � ıF�1 ı f WU! G�Y

is a smooth map satisfying

g.m/y.m/D F ı�ı .g;y/.m/D F ı�ı � ıF�1 ı f .m/D f .m/;

for every m 2U, and .g;y/.m0/D �.F�1.x0//D �Œg0;y0�D .g0;y0/. ut

2.4 Distributions

Knowledge of smooth distributions on a manifold is a prerequisite of this book.
In this section we will review the terminology and principal results of this theory
in preparation for our use of it throughout the book. There are many excellent
references, including Conlon [53, Chapter 4], Lee [110, Chapter 19], and Warner
[166, pp 41–50].

Definition 2.19. Let M be an n-dimensional smooth manifold. Let k be an integer in
the set f1; : : : ;ng. A k-dimensional distributionD on M assigns to each point p2M a
k-dimensional subspace D.p/ of TpM. The distribution is smooth if each point of M
has a neighborhood U on which there exist smooth vector fields X1; : : : ;Xk, which
span D.p/ at every point p 2 U. Such a set is called a smooth local frame of D .
A smooth vector field defined on an open subset of M belongs to D if X.p/ 2 D.p/
for every point in the domain of X. In modern terminology, a smooth, k-dimensional
distribution is a smooth, rank k subbundle D of the tangent bundle TM.
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The smooth distribution D satisfies the Frobenius condition if whenever a pair of
smooth vector fields with a common domain belong to D , their Lie bracket belongs
to D . An integral manifold of a smooth k-dimensional distribution D is a one-to-one
immersion f W Nk!M such that

df.p/TpN DD.f .p//;

for every p 2 N. An integral manifold is maximal if it is connected and not a proper
subset of any other connected integral manifold.

There is a dual way to define a distribution in terms of equations rather than
spanning sets. If D is a k-dimensional distribution on Mn, then the subspace
D.p/� TpM has an annihilator D?.p/ � T�

p M, which is a subspace of dimension
n�k of the cotangent space of M at p. A smooth 1-form � defined on an open subset
U of M belongs to D? if �.p/ 2D?.p/, for every p 2U. A smooth local coframe for
D? is a set � kC1; : : : ;�n of smooth 1-forms on an open set U �M that spans D?.p/
at each point of U. D has smooth local frames if and only if D? has smooth local
coframes. In modern terms, D? is a smooth, rank n� k subbundle of T�M. In this
dual formulation, a one-to-one immersion f W Nk!M is an integral manifold of D
if and only if f �� D 0 for every smooth 1-form in D?.

Lemma 2.20. A smooth k-dimensional distribution D on Mn satisfies the Frobenius
condition if and only if any local coframe � kC1; : : : ;�n of D? on U �M satisfies

d�˛ D
nX

ˇDkC1
�ˇ ^!˛ˇ ; (2.7)

for ˛ D kC 1; : : : ;n, for some smooth 1-forms !˛ˇ on U. We shall express the
conditions of (2.7) by

d�˛ � 0 mod D?:

We shall also call (2.7) the Frobenius condition for D .

Proof. If � is a smooth 1-form on an open set U �M, then for any smooth vector
fields X;Y on U,

d�.X;Y/D X�.Y/�Y�.X/��.ŒX;Y�/:

The proof follows from this formula. ut
The Frobenius Theorem has a local and a global part. For the local part we use

Warner’s formulation [166, Theorem 1.60]. A coordinate chart .U;xD .x1; : : : ;xn//

of a manifold Mn is cubic if x.U/ is the open unit cube .0;1/n � Rn.

Theorem 2.21 (Local Frobenius). Let D be a smooth, k-dimensional distribution
satisfying the Frobenius condition on the smooth manifold Mn. Let p 2 M. There
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exists a cubic coordinate chart .U; .x1; : : : ;xn//, centered at p, such that the integral
manifolds of D contained in U are precisely the slices x˛ D c˛ , for arbitrary
constants 0 < c˛ < 1, for ˛ D kC1; : : : ;n.

A k-dimensional distribution D is called completely integrable if for each point
p 2M, there exists an integrable manifold of D containing this point. Theorem 2.21
shows that if D satisfies the Frobenius condition, then it is completely integrable.
The converse is also true (see any of the references cited at the beginning of this
section).

We use the following version of the global Frobenius theorem. It is stated as
follows, with a complete proof, in Warner [166, pp. 42–49]. A one-to-one immersion
� W Y!M is quasi-regular if, for every smooth map f W Z!M such that f .Z/� �.Y/,
the induced map F W Z! Y is smooth, where �ıFD f .

Theorem 2.22 (Frobenius). Let Mm be a smooth manifold endowed with a
k-dimensional distribution D � T.M/ satisfying the Frobenius condition. Then
for each point p 2M there exists a unique maximal connected integral submanifold
Y �M, such that p 2 Y. Moreover (this is the nice part of the Warner approach) Y
is quasi-regular.

A fundamental application of the Frobenius Theorems is to the correspondence
between Lie subgroups of a Lie group G and Lie subalgebras of the Lie algebra g
of G. See any of the three sources cited above for proofs of the statements in the
following example.

Example 2.23. Let G be a Lie group of dimension n, with its Lie algebra g of
all left-invariant vector fields. A Lie subalgebra h of g of dimension k defines a
k-dimensional smooth distribution D on G. Note that a vector field X can belong to
D but not be left-invariant. An example of such would be a linear combination
of vectors in h with smooth, nonconstant function coefficients. D satisfies the
Frobenius condition, since h is a Lie subalgebra of g. The maximal integral
submanifold of D through the identity element 1 2G is the connected Lie subgroup
H of G whose Lie algebra is h. The maximal integral submanifold through a point
g 2G is the right coset gH.

In the dual formulation, an .n� k/-dimensional subspace h� of g�, the space of
all left-invariant 1-forms on G, defines the k-dimensional smooth distribution D?
on G. It satisfies the Frobenius condition if and only if d� � 0 mod h�, for every
� 2 h�.

2.5 Cartan–Darboux

The Maurer–Cartan form ! of a matrix Lie group G �GL.n;R/ is a left-invariant
1-form on G with values in the Lie algebra g � gl.n;R/ of G. More generally, let
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˛;ˇ be any smooth g-valued 1-forms on a smooth manifold Mm. These are just
n� n matrices of ordinary 1-forms on M, satisfying the linear relations defining
g� gl.n;R/.

Their wedge product, ˛ ^ ˇ, is the gl.n;R/-valued 2-form defined on M by
matrix multiplication of ˛ and ˇ, where elements multiply by the wedge product of
1-forms. In general, ˛^ˇ is not g-valued. The bracket defined by

Œ˛;ˇ�D 1

2
.˛^ˇCˇ^˛/

is g-valued. To see this, let e1; : : : ;el be a basis of g. Then g-valued 1-forms on M
have expansions

˛ D
lX
1

˛iei; ˇ D
lX
1

ˇjej;

where ˛i and ˇj are ordinary 1-forms on M. Then

Œ˛;ˇ�D 1

2

lX
i;jD1

˛i^ˇjŒei;ej�;

is g-valued, since Œei;ej� 2 g, for i; j D 1; : : : ; l. Notice that Œ˛;ˇ� D Œˇ;˛� and
Œ˛;˛�D ˛^˛.

Let f W M! G be a smooth map from a smooth manifold M into a Lie group
G with Lie algebra g and Maurer–Cartan form !. Then f �! is a g-valued 1-form
on M. If e1; : : : ;el is a basis of g, with dual basis !1; : : : ;!l, then ! DPl

1 !
iei,

f �! DPl
1.f

�!i/ei, and we easily verify that

d f �! D
lX
1

f �d!i˝ ei D f �d! D�f �!^ f �!: (2.8)

If 
D f �!, a g-valued 1-form on M, then

d
D�
^
: (2.9)

If we start with a g-valued 1-form 
 on M, then (2.9) is a necessary condition for the
existence of a smooth map f WM! G such that 
D f �!.

Observe that if f WM!G is a smooth map such that f �! D 
, and if a 2G, then
La ı f WM! G is a smooth map such that .La ı f /�! D f �L�

a! D 
, since L�
a! D !.

Theorem 2.24 (Cartan–Darboux Congruence). Let M be a smooth connected
manifold, let G be a Lie group with Lie algebra g and Maurer–Cartan form !.
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If f ;h WM! G are smooth maps such that f �! D h�!, then there exists an element
a 2G such that hD La ı f .

Proof. Let g W M ! G be the smooth map defined by g.p/ D h.p/f .p/�1, where
f .p/�1 denotes the map M!G given by p 7! f .p/�1, the inverse of the matrix f .p/.
From d.f .p/�1/D�f .p/�1df.p/f .p/�1 and .f �!/.p/D f .p/�1df.p/, we find dgD 0 at
every point of M. Thus, g is constant, say g.p/D a for every p 2M, and hD La ı f .

ut
To prove the Cartan–Darboux Existence theorem we use the global version of the

Frobenius Theorem 2.22.

Theorem 2.25 (Cartan–Darboux Existence). Let G be a connected Lie group
with Lie algebra g and g-valued Maurer–Cartan form !. If X is a smooth manifold
endowed with a g-valued 1-form ˛ satisfying

d˛ D�˛^˛;
then for every p0 2 X and every go 2 G there exist a connected open neighborhood
U of p0 and a unique smooth map A WU! G such that A�.!/D ˛ and A.p0/D g0.

If, in addition, X is simply connected, then for every p0 2 X and every g0 2 G
there exists a unique smooth map A W X! G such that A�.!/D ˛ and A.p0/D g0.

Proof. We divide the proof into three steps :

Step 1: Proof of the local statement.

The first part is just an application of the local Frobenius theorem. Consider on
M D X�G the rD dimX dimensional distribution defined by the equation

� D !�˛ D 0:
From

d! D�!^!; d˛ D�˛^˛;
we get

d� D�Œ�C˛;!�C Œ!��;˛�D�Œ�;!C˛�:
This implies that our equations define an r-dimensional distribution satisfying the
Frobenius condition. For every p0 2 X, there exists a unique connected maximal
integral submanifold Y, such that .p0;1/ 2 Y. Restriction to Y of projection onto the
first factor gives the smooth map

F W Y � X�G! X; F.p;g/D p:

F�˛ D ˛ D ! on Y implies dF has maximal rank at every point of Y. Thus, F is a
local diffeomorphism, so there exists an open neighborhood W � Y of .p0;1/ such
that F WW!X is a diffeomorphism onto the image. Set UDF.W/�X and consider
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.FjW/�1 W U � X!W � Y � X�G:

This map is necessarily of the form

.FjW/�1 W p 2U! .p;A.p// 2 Y;

where A W U! G is a smooth map. Then � pulled back to Y � X�G is zero, so

0D ..FjW/�1/�� D A�!�˛:

Moreover, A.p0/D 1, since .p0;1/2Y. The uniqueness of A follows at once from the
uniqueness of the integral manifold passing through .p0;1/. For any g 2 G, the map
Ag D Lg ıA W U! G is the unique map on U satisfying A�

g! D ˛ and Ag.p0/ D g,
since left multiplication Lg W G! G preserves !.

Step 2: The map F is surjective.

Let us now prove that F W Y � X �G! X is surjective. Take any other point
p1 2 X and let � W Œ0;1�! X be a smooth path from p0 D �.0/ to p1 D �.1/. For
each t 2 Œ0;1�, Step 1 implies there exists a connected open neighborhood Ut of �.t/
in X and a unique smooth map At W Ut! G such that A�

t ! D ˛ and At.�.t//D 1. In
particular, the graph of At,

f.p;At.p// W p 2Utg;

is an integral manifold of our distribution. Use the Lebesgue number ı > 0 of
the open covering f��1Utgt2Œ0;1� of the compact metric space Œ0;1� to construct
a partition 0 D t0 < t1 < � � � < tn D 1 such that for each k D 1; : : : ;n there exists
t.k/ 2 Œ0;1� with �Œtk�1; tk��Ut.k/. For information about the Lebesgue number, see
[122, Lemma 27.5 on page 175].

Then �Œt0; t1�� Ut.1/. Let g0 D At.1/.�.t0// 2G and let

B1 D Lg�1
0
ıAt.1/ W Ut.1/! G:

Then B1.p0/ D B1.�.t0// D 1. The graph of B1 W Ut.1/! G is a connected integral
manifold passing through .p0;1/ 2 M, so must be contained in Y. In particular,
.�.t1/;B1.�.t1/// 2 Y. Next let g1 D At.2/.�.t1// 2 G and let

B2 D LB1.�.t1// ıLg�1
1
ıAt.2/ W Ut.2/! G:

The graph of B2 W Ut.2/! G is a connected integral manifold passing through the
point .�.t1/;B1.�.t1/// 2 Y, so it must lie entirely in Y. Proceeding inductively in
this way define maps Bk W Ut.k/! G, for k D 1; : : : ;n, for which one concludes that
the point .p1;Bn.p1// 2 Y, which shows that p1 is in the image of F. Hence, F is
surjective.
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Step 3: F is a covering map.

We need to prove that X is evenly covered by F. We do this by finding the group
of deck transformations of this covering. Left multiplication of G on itself gives a
left action of G on X�G by

a.p;g/D .p;ag/;

for any a 2 G and .p;g/ 2 X � G. The form � is invariant under this action,
a�� D a�!�˛D � , since ! is left-invariant. It follows that aY is a maximal integral
manifold for any a 2 G. If .p;g/ 2 Y, then aY is the maximal integral manifold
through a.p;g/D .p;ag/. The stabilizer of Y,

GY D fa 2 G W aY D Yg;
is a closed Lie subgroup of G. For any .p;g/ 2 Y, the above comments imply that

GY D fa 2 G W a.p;g/ 2 Yg;
and thus

F�1fpg D GY.p;g/: (2.10)

The action of GY on Y is smooth, since Y is quasi-regular. Since F is a local
diffeomorphism, the fiber F�1.p/ is discrete and hence GY is a discrete subgroup
of G. Write GY D fgjgj2J, where J � N.

Given a point x0 2 X, we want to find a neighborhood U of x0 that is evenly
covered by F. There exists .x0;g0/ 2 Y, since F is surjective. There exist open
neighborhoods W � Y � X �G of .x0;g0/ and U � X of x0 such that FjW is a
diffeomorphism of W onto U. Then

Fj�1W W U � X!W � Y; Fj�1W .p/D .p;A.p//;
where A W U! G is a smooth map and A�! D ˛. For any p 2 U,

F�1fpg D GY.p;A.p//D[j2Jgj.p;A.p//;

by (2.10). This, with W D f.p;A.p// W p 2Ug, implies

F�1U D[j2JgjW; giW\gjW D ;; i¤ j:

F invariant under the action of GY on Y implies F maps each open set1 gjW � Y
diffeomorphically onto U. Hence, F evenly covers U.

We have proved that F WY!X is a covering whose group of deck transformations
is GY .

1To ensure that gjW is actually an open subset of Y requires the quasi-regularity.
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Conclusion
If X is simply connected, then the covering F W Y! X must be a diffeomorphism

whose inverse is of the form

F�1 W X! Y � X�G; F�1.p/D .p;A.p// 2 Y;

where A W X! G is a smooth map satisfying A�.!/D ˛. The uniqueness of A with
specified value g0 at a specified point p0 is a consequence of the uniqueness of the
maximal integral submanifold passing through a given point of X�G. ut

Griffiths [79, pp 780–782], Malliavin [116, pp 167–172], and Sharpe [150,
pp 116–125] contain other proofs. Spivak [154, Volume I, Chapter 10] proves the
local result.

Problems

2.26. Prove that if � W P! N is a principal H-bundle, then for any p 2 P,

ker.d�p/D f OX.p/ W X 2 hg;

where OX is the fundamental vector field induced on N by X 2 h. See Definition 2.4.

2.27. Use the notation of Example 2.11. Prove the following: The orthogonal group
O.n/ acts transitively on the Grassmannian G.m;n/. Its isotropy subgroup at P0 is
G0 D O.m/�O.n�m/. An Ad.G0/-invariant subspace of o.n/ complementary to
g0 D o.m/˚o.n�m/ is

mD f
�
0 �tX
X 0

�
W X 2R.n�m/�mg:

2.28 (Poincaré disk model). Consider the Lie group

SU.1;1/D fA 2GL.2;C/ W tNAI1;1AD I1;1g D f
�

z Nw
w Nz

�
W jzj2�jwj2 D 1g;

where I1;1 D
�
1 0

0 �1
�

. Following Example 2.12, analyze the action of SU.1;1/ on

the unit disc DD f� 2 C W j�j< 1g, given by

�
z Nw
w Nz

�
� D z�C Nw

w�CNz : (2.11)
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Prove the following: This action preserves the Riemannian metric

ID D 4 d�d N�
.1�j�j2/2 D

du2Cdv2

.1�u2�v2/2

on D, where � D uC iv and u;v 2 R. The Cayley transform

f W CC! D; f .z/D z� i

zC i

pulls ID back to the upper half-space metric I on CC defined in Example 2.12. The
pair .D; ID/ is the Poincaré disk model of the hyperbolic plane. It is discussed further
in Example 4.54.

2.29. The Iwasawa decomposition of SU.1;1/D KAN (see [84, p. 234]) says that
any element of SU.1;1/ can be expressed as such a product of elements from the
subgroups

K D f
�

eit 0

0 e�it

�
W t 2 Rg;

AD f
�

cosh t sinh t
sinh t cosh t

�
W t 2 Rg;

N D f
�

itC1 �it
it �itC1

�
W t 2 Rg:

Describe the orbits in D of each of the subgroups K, A, and N, for the action (2.11).

2.30. The Iwasawa decomposition of SL.2;R/ is KAN, for the subgroups
K D SO.2/,

AD f
�

et 0

0 e�t

�
W t 2Rg; N D f

�
1 t
0 1

�
W t 2 Rg:

Describe the orbits in CC of each of the subgroups K, A, and N, for the action of
SL.2;R/ on CC discussed in Example 2.12.

2.31. Prove that if H is the stabilizer of a submanifold Y of N, and if Y is closed
in GY , then H is a closed subgroup of G.

2.32. Consider the standard matrix multiplication action of O.2/ on R2. Prove the
following: The isotropy subgroup at any point of Y D fr�1 W r> 0g is H D fI2; I1;1g,
where I2 is the 2� 2 identity matrix and I1;1 was defined in Problem 2.28. Y is a
slice of this action for H. Z D fr�1 W r ¤ 0g with the subgroup K D f˙I2;˙I1;1g
also is a slice.



Chapter 3
Theory of Moving Frames

We present here an outline of the method of moving frames for any submanifold of
an arbitrary homogeneous space. We explain how a Lie group acting transitively on
a manifold N is related to the principal bundle of linear frames on N. We present a
general outline of the frame reduction procedure after first describing the procedure
for the elementary example of curves in the punctured plane acted upon by the
special linear group SL.2;R/.

Elie Cartan’s Method of Moving Frames determines when two immersions x; Qx W
M! N are G-congruent, where G is a Lie group acting smoothly and transitively
on N, and G-congruence means there exists an element g 2 G such that OxD g ı x.
The chapter concludes with basic theorems that characterize when a submanifold of
a homogeneous space is itself homogeneous.

A general outline of the method is abstract and covers a multitude of cases. Its
conceptual overview will guide an understanding of what is being done in the many
applications given in the subsequent chapters. This book is about using the method
of moving frames to study submanifolds of homogeneous space. It is not a text on
the theory of moving frames.

Cartan [32] gave an elegant introduction to moving frames with emphasis on the
notion of contact. Subsequent expositions, with additional examples, are in Griffiths
[79] and Jensen [93].

3.1 Bundle of linear frames

Let a Lie group G act transitively on a manifold Nn. Choose an origin o 2 N, and let
G0 D fg 2G W goD og be the isotropy subgroup of G at o. The smooth map

� W G! N; �.g/D go (3.1)

© Springer International Publishing Switzerland 2016
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is the projection map of a principal G0-bundle over N, by Proposition 2.6. Let g be
the Lie algebra of left-invariant vector fields on G. Use evaluation at the identity
element 1 2 G to identify g with T1G, the tangent space of G at 1. In the present
context we will usually denote left multiplication on G by an element g 2 G by
Lg W G! G, in order to distinguish it from the diffeomorphism g W N! N defined
by the action of G on N.

Exercise 1. Prove that if g 2G, then g ı� D � ıLg W G! N.

Let g0 denote the Lie subalgebra of g that is the Lie algebra of G0. If g0 is
identified with T1G0, then g0 is the kernel of the linear map d�1 W T1G! ToN.

Recall that if F W P! Q is any smooth map between smooth manifolds, then
the derivative map dF W TP! TQ is a smooth map between their tangent bundles.
A smooth vector field along F is a smooth map X W P! TQ such that  ıX D F,
where we denote the bundle projections by ' W TP ! P and  W TQ ! Q. An
important class of smooth vector fields along F are those obtained by pushing
forward by F a smooth vector field X on P, to get the vector field XF along F
defined by

XF D dF ıX W P! TQ:

In detail, XF
.p/ D dFpX.p/ 2 TF.p/Q, for any p 2 P. Applying this to our smooth map

� W G! N, we get from any X 2 g a smooth vector field X� D d� ıX along � .

Exercise 2. Use Exercise 1 to prove that, if X 2 g, then the vector field X� along �
has value at any point g 2 G given by

X�.g/ D dgoX�.1/:

Let m0 be any vector subspace of g complementary to g0, so gD m0˚ g0, as a
vector space direct sum. The restriction, d�1 W m0! ToN, is a linear isomorphism.
Choose a basis

E1; : : : ;En (3.2)

of m0 and call it the reference frame.

Exercise 3. Prove that for any reference frame (3.2), the vector fields evaluated at
any g 2 G,

E�1.g/; : : : ;E
�
n.g/

form a basis of T�.g/N. In particular, their values at 1 2 G form a basis of ToN. We
also call this basis of ToN the reference frame.

If h 2 G0, then dho W ToN! ToN. Let A.h/D .Aj
i/ 2 GL.n;R/ be the matrix of

dho relative to this reference frame of ToN. By Exercise 2,

dhoE�i.1/ D
nX

jD1
Aj

iE
�
j.1/; for iD 1; : : : ;n.
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Thus, A.h/ is the matrix of the isotropy representation (2.1) relative to this reference
frame. It follows that

A W G0!GL.n;R/; h 7! A.h/; (3.3)

is a homomorphism. It is the linear isotropy representation of G0 relative to this
reference frame.

Lemma 3.1. The linear isotropy representation (3.3) equals the adjoint represen-
tation of G0 on g=g0 Šm0 relative to the basis E1; : : : ;En of g=g0.

Proof. If h 2 G0, then for any g 2 G, we have

h ı�.g/D .hg/oD .hgh�1/oD � ıCh.g/;

where Ch W G! G, Ch.g/D hgh�1, is conjugation by h. For each Ei,

Ad.h/Ei D
nX

jD1
Bj

iEjCFi; for iD 1; : : : ;n,

for some constants Bj
i and some Fi 2 g0. Using (2.1), we get

nX
jD1

A.h/jiE
�
j .1/
D dhoE�i .1/ D d.h ı�/1Ei D d.� ıCh/Ei

D d�1.Ad.h/Ei/D
nX

jD1
Bj

iE
�
j .1/

;

so Ad.h/Ei DPn
jD1A.h/jiEj mod g0, for every h 2G0. ut

Exercise 4. Recall the principal GL.n;R/-bundle of all linear frames on N, denoted
� W L.N/!N in Kobayashi-Nomizu [100, Example 5.2 pp 55–56]. The right action
of A 2GL.n;R/ on a frame .v1; : : : ;vn/ of TpN is

.v1; : : : ;vn/AD .
nX
1

viA
i
1; : : : ;

nX
1

viA
i
n/:

The projection map � sends a linear frame at p 2 N to the point p 2 N. We also have
the principal G0-bundle � W G! N of (3.1). Prove that the map

F W G! L.N/; F.g/D .E�1.g/; : : : ;E�n.g//

is a principal bundle map, with the homomorphism between the structure groups
being the linear isotopy map A WG0!GL.n;R/ of (3.3). This requires proving that
F.gh/D F.g/A.h/, for any g 2 G and h 2 G0. Prove F is a bundle monomorphism
if the linear isotropy representation of G0 is faithful.
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3.2 Moving frames

Consider an immersion x WMm! Nn. This could include the case of the inclusion
map of an open submanifold of N. Assume M connected.

Definition 3.2. An element g 2G is a frame at p 2M if goD x.p/. A moving frame
or frame field along x on an open subset U �M is a smooth map

e W U! G (3.4)

such that � ı eD x on U.

Exercise 5. Apply the Lift Property of Corollary 2.7 to the action (3.1) to prove
that if p 2M, and if g 2 G is a frame at p, then there exists a neighborhood U of p
in M on which there is a moving frame e W U! G such that e.p/D g.

Why is this called a moving frame? The answer requires a choice of reference
frame (3.2). For any smooth vector field X on G, we have a smooth vector field
X� D d� ıX along � , and its composition d� ıX ı e W U! TN is a smooth vector
field along � ı eD x W U! N. It follows that

e1 D E�1 ı e; : : : ;en D E�n ı e (3.5)

is a collection of vector fields along x whose value at any point p 2 U is a basis of
Tx.p/N.

Exercise 6. Prove that if e W U � M! G is a smooth moving frame along x, then
any other smooth moving frame along x on U must be given by

Qe W U! G; Qe.p/D e.p/h.p/;

where h W U! G0 is any smooth map. Prove that the frame (3.5) determined by the
element QeD eh 2 G, for some h 2 G0, is

Qe1 D
nX

jD1
A.h/j1ej; : : : ; Qen D

nX
jD1

A.h/jnej; (3.6)

where A W G0!GL.n;R/ is the adjoint representation of G0 on g=g0 relative to the
reference frame (3.2).

The vector space direct sum g D m0˚ g0 decomposes the g-valued Maurer–
Cartan form ! D g�1dg of G as

! D !m0C!g0 ;
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where the subscript denotes projection into that subspace. Then

!m0 D
nX
1

!iEi; (3.7)

for some left-invariant 1-forms!1; : : : ;!n on G. They form a basis of the annihilator
g?
0 in the dual space of g.

Proposition 3.3. If e W U � M ! G is a moving frame along x, if p 2 U, and if
v 2 TpM, then

dxpv D
nX

iD1
.e�!i/.v/ei.p/;

where e1; : : : ;en are the vector fields along x defined in (3.5). Evaluated at p 2 U,
the 1-forms e�!1; : : : ;e�!n span the cotangent space T�

p M.

Proof. If g;h 2G, then � ıLg D gı� , by Exercise 1. If X 2 TgG, then by definition
of the Maurer–Cartan form, !.X/ 2 gD T1G is the left-invariant vector field whose
value at g is X, so X D dLg!.X/. Now � ı eD x on U and g0 D ker.d�1/ imply that

dxpv D d.� ı e/pv D d�e.p/ ı depv D d�e.p/ ı dLe.p/!.depv/

D d.� ıLe.p//1.e
�!/.v/D d.e.p/ı�/1.e�!m0C e�!g0 /.v/

D d.e.p//od�1.e
�!m0 /.v/D d.e.p//o ı d�1

nX
1

.e�!i/.v/Ei

D
nX
1

.e�!i/.v/d.e.p//o ı d�1Ei D
nX
1

.e�!i/.v/ei.p/:

Since dxp is injective, e�!1; : : : ;e�!n is a spanning set at each point of U. ut
Given a moving frame e W U ! G along x, Exercise 6 asserts that any other

moving frame Qe WU!G along x on U is given by QeD eh, where h WU!G0 can be
any smooth map. A frame field e W U! G pulls back the Maurer–Cartan form of G
to the g-valued 1-form e�! D e�1de on U.

In the special case when G0 D f1g, which means G acts simply transitively on
N, then effectively G D N acting on itself by left multiplication. In this case, an
immersion x WM!G is itself the only frame field along it. The congruence problem
is solved here by the Cartan–Darboux Congruence Theorem 2.24, which states that
immersions x; Ox W U! G are congruent if and only if x�1dx D Ox�1d Ox on M. If M
is simply connected, the Cartan–Darboux Existence Theorem 2.25 states that if 

is any g-valued 1-form on M, then there exists an immersion x WM! G satisfying
x�1dxD 
 if and only if d
D�
^
.
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In the general case when G0 is nontrivial, if x; Ox W M! N are immersions for
which there exists g 2 G such that OxD gıx, and if e WM! G is a frame field along
x, then OeD ge is a frame field along Ox for which

Oe�1dOeD .ge/�1d.ge/D e�1de

on M, since dgD 0 on M. Thus, congruence implies the existence of frame fields
along each immersion that pull back the Maurer–Cartan form of G to the same
g-valued 1-form on M.

Conversely, if e WM! G is a frame field along x and Oe WM! G is a frame field
along Ox such that

Oe�1dOeD e�1de (3.8)

on M, then the Cartan–Darboux Uniqueness Theorem 2.24 implies there exists
g 2G such that Oe D ge, and thus Ox D g ı x on M. Frame fields satisfying (3.8)
determine the element g, since the map g W M! G defined by g.p/D Oe.p/e.p/�1,
has derivative

dgp D dOe.p/e.p/�1� Oe.p/e.p/�1de.p/e.p/
�1

D Oe.p/.Oe.p/�1dOe.p/� e.p/�1de.p//e.p/
�1 D 0

on M, so g is constant. The ambiguity of the frame field along x, however, prevents
this from being a satisfactory solution to the congruence problem. If e WM! G is
a frame field along x, then any smooth map h W M! G0 gives another frame field
QeD eh WM! G along x, and

Qe�1dQeD .eh/�1d.eh/D Ad.h�1/ı e�1deCh�1dh¤ e�1de (3.9)

in general. To use the Cartan–Darboux Uniqueness Theorem 2.24 to decide if an
immersion Ox WM!N is congruent to x, we need to find some frame field Oe WM! G
along Ox, and some frame field e WM! G along x, such that

Oe�1dOeD e�1de: (3.10)

The method of moving frames gives a frame reduction procedure for removing
the ambiguity in the choice of frame field along x. This is a finite sequence of steps
that produces the (nearly) unique Frenet frame field along x. We think of the Frenet
frame field as the best frame field along x in a sense that is related to order of contact.
It determines a coframe field !1; : : : ;!m in M and a set of functions fk1; : : : ;kl WM!
Rg called the invariants of x. Immersions x WMm!N and Ox W OMm!N are congruent
if and only if (3.10) holds for their Frenet frame fields.
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3.3 Frame reduction procedure

Here is an outline of the frame reduction procedure. We begin with a simple example
from centro-affine geometry.

Example 3.4 (Centro-affine curves). For recent research on this topic see Musso
[125] and Pinkall [137]. Let PR2 D R2 n f0g. The special linear group SL.2;R/ acts
transitively on PR2 by its standard matrix multiplication on R2. Choose �1 to be the
origin of PR2. The isotropy subgroup of SL.2;R/ at �1 is

G0 D f
�
1 u
0 1

�
W u 2Rg:

We have the principal G0 bundle projection

� W SL.2;R/! PR2; �.A/D A�1 D A1;

where A1 denotes the first column of A as a vector in the standard basis of R2.
Choose

m0 D f
�

u 0

v �u

�
W u;v 2 Rg � sl.2;R/

as a vector space complement of g0, so

gDm0Cg0: (3.11)

Choose as a basis of m0

E1 D
�
1 0

0 �1
�
; E2 D

�
0 0

1 0

�
:

The adjoint representation of G0 on g=g0 relative to the basis E1;E2 is the
homomorphism AD .Ai

j/ W G0!GL.2;R/ defined by

Ad.K/Ei D
2X

jD1
Aj

iEj mod g0:

For K D
�
1 u
0 1

�
2 G0 we calculate A.K/D

�
1 u
0 1

�
.

The vectors Ei 2 m0 generate vector fields E�i along � on PR2. If A 2 SL.2;R/,
then

E�i .A/ D dA�1d�1Ei D Ai; (3.12)
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for i D 1;2. Let ! D
�
!11 !12
!21 �!11

�
be the Maurer–Cartan form of SL.2;R/, so

!11 , !21 , !12 are linearly independent, left-invariant 1-forms on SL.2;R/. The
decomposition (3.11) gives the decomposition ! D !m0 C!g0 , where a subscript
indicates projection onto that subspace. Then

!m0 D
�
!11 0

!21 �!11

�
; !g0 D

�
0 !12
0 0

�
;

and using our basis of m0 we have

!m0 D !11E1C!21E2:

Let x WR! PR2 be a smooth immersed curve. We shall carry out the frame reduction
procedure for x. A frame field along x is a smooth map e W R! SL.2;R/ such that
xD� ıeD e1. Thus, the frame field must have the form eD .x;y/, where y WR! PR2

is a smooth map such that det.e/ D 1. Let t be a coordinate function on R so that
e�!i

1 D Xi
1dt for some functions Xi

1 W R! R, for iD 1;2. Then

dxD .
2X

iD1
.e�!i

1/Ei/
�
.e/ D ..X11E1CX21E2/dt/�.e/; (3.13)

by (3.12). Since x is an immersion, the image of the linear map

e�!m0 D .X11E1CX21E2/dt W TtR!m0 (3.14)

is a 1-dimensional subspace of m0.
Any other frame field along x must be given by QeD eK, where

K D
�
1 u
0 1

�
W R! G0

is an arbitrary smooth map. Then Qe�! DAd.K�1/e�!CK�1dK implies

Qe�!m0 D .Ad.K�1/e�!m0 /m0 ;

since K�1dK 2 g0. Thus

Qe�!m0 D
2X
1

e�!i
1Ad.K�1/Ei D .

X
Xi
1A.K

�1/jiEj/dt

D ..X11 �uX21/E1CX21E2/dt:
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The change of first order frame changes the coefficients of the 1-dimensional
subspace that is the image of the linear map (3.14) relative to the fixed basis E1;E2
of m0. In effect, we have an action of G0 on the space RP1 of 1-dimensional
subspaces of R2, given by

G0�RP1! RP1; .K;

�
x
y

�
/ 7! A.K/

�
x
y

�
D
�

xCuy
y

�
; (3.15)

if K D
�
1 u
0 1

�
. The goal of the first step of the frame reduction is to make the

coefficients as simple as possible in the sense that we choose a slice for this action.

This action has two orbit types. It has the fixed point

�
1

0

�
and it acts transitively on

the complement of this point. A point t 2R is radial for x if e�!21 D 0 at t. Otherwise
t is a nonradial point. We consider two types of curves. It is nonradial if every point
of R is nonradial. It is radial if every point of R is radial for x.

For the first type there exists a smooth map K WR!G0 such that Qe�!11 D 0 on R.

In fact, let u D X11=X21 . To see the general picture, we regard the point

�
0

1

�
2 RP1

as a slice of the action (3.15) on the complement of

�
1

0

�
. It is a single point here

because the action is transitive on this set. In addition, the isotropy subgroup of G0

at this point is the trivial group G1 D f1g. We call a frame field e W R! SL.2;R/
first order if it satisfies

e�!21 ¤ 0; e�!11 D 0:

First order frame fields exist and are unique, since g1 D f0g. The frame reduction
procedure ends here. The first order frame field is called the Frenet frame along the
curve (Figure 3.1). Then e�!21 is a coframe field in R. In terms of the standard
coordinate on R we have e�!21 D �.t/dt, where � D det.x; Px/ is never zero. A
solution s of dsD �dt is a centro-affine arclength parameter of x. The remaining
component of e�! is e�!12 , which we express as e�!12 D �e�!21 , for some function
� W R! R, which is called the centro-affine curvature of x.

For the second type of curve, e�!21 D 0, for any frame field eD .x;y/ along x, so
PxD X11x, by (3.13), where dot indicates derivative with respect to the coordinate t.
Such a curve is radial.

For the general case, let G be a Lie group acting transitively on a smooth manifold
N of dimension n. Choose a point o 2 N as the origin and let G0 be the isotropy
subgroup of G at o. Let

� W G! N; �.g/D go (3.16)



38 3 Theory of Moving Frames

Fig. 3.1 First order
centro-affine frame at a point
of a non-radial curve x.
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be the resulting principal G0-bundle projection map. Let g be the Lie algebra of G,
and let g0� g be the Lie algebra of G0. Let m0� g be a vector subspace complement
to g0, so g D m0C g0 is a vector space direct sum. Let E1; : : : ;En be a basis of
m0. The adjoint representation of G0 on g=g0 relative to the basis E1; : : : ;En is the
homomorphism AD .Ai

j/ W G0!GL.n;R/ defined by

Ad.K/Ei D A.K/Ei D
nX

jD1
Aj

iEj mod g0; (3.17)

for i D 1; : : : ;n. The vectors Ei 2 m0 generate vector fields E�i along � . At a point
g 2G,

E�i .g/ D dgod�1Ei;

where dgo denotes the differential of the diffeomorphism g W N! N at the point o.
Let ! be the Maurer–Cartan form on G. The direct sum g D m0C g0 decomposes
! into the sum ! D !m0 C !g0 , where subscripts indicate projection onto that
subspace. Then !m0 is a left-invariant 1-form on G taking values in m0, and !g0

is a left-invariant 1-form on G taking values in g0. Restricted to the subgroup G0 it
is the Maurer–Cartan from of G0. Using our basis of m0, we have

!m0 D
nX
1

!iEi;

for some left-invariant 1-forms !i on G.
Let x W Mm ! Nn be an immersion with m < n. We shall carry out the frame

reduction procedure for x. A local frame field along x on an open set U � M is a
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smooth map e W U!G such that � ı eD x; that is, e is a local section of the bundle
(3.16). Such a section is called a zeroth order frame field along x. Let '1; : : : ;'m be
a coframe field on U and set

e�!i D
mX

aD1
Xi

a'
a;

for some smooth functions Xi
a W U! R, for iD 1; : : : ;n and aD 1; : : : ;m. Then

e�!m0 D
nX

iD1

mX
aD1

Xi
aEi'

a W TpM!m0 (3.18)

is a linear map. Since x is an immersion, this linear map sends the tangent space
of M at a point of U to an m-dimensional subspace of m0. The chosen basis of m0

identifies it with Rn. The image is the point ŒX� 2 G.m;n/, where X D .Xi
a/ 2 Rn�m

has rank m. The matrix X is determined only up to multiplication on the right by
an element of GL.m;R/, because we allow an arbitrary choice of the coframe field
'1; : : : ;'m on U.

We are using here the terminology and notation for the Grassmannian G.m;n/
of m-dimensional subspaces of Rn discussed in Example 2.11. There G.m;n/ D
Rn�m�=GL.m;R/, where Rn�m� is the space of all n�m real matrices of rank
m, on which GL.m;R/ acts by right multiplication. If X 2 Rn�m�, then ŒX� is its
equivalence class in G.m;n/. GL.n;R/ acts transitively on the left of G.m;n/ by left
multiplication: AŒX�D ŒAX�, for any A 2GL.n;R/ and X 2 Rn�m�.

Any other frame field along x on U must be given by QeD eK, where K WU!G0

is an arbitrary smooth map. Then Qe�! D Ad.K�1/e�!CK�1dK and K�1dK is g0
valued implies that

Qe�!m0 D .Ad.K�1/e�!m0 /m0 D
nX

i;jD1

mX
aD1

A.K�1/jiX
i
aEj'

a W TpM!m0;

where we have used the adjoint representation (3.17) of G0 on m0 relative to the
basis E1; : : : ;En. This sends the tangent space of M at a point of U to the point
ŒA.K�1/X� 2 G.m;n/. The goal of the frame reduction at this step is to simplify the
coefficients X in the sense that we seek a slice of this action of G0 on G.m;n/. In
general there can be more than one orbit type, in which case the reduction method
requires one to assume that the points ŒX.p/� 2 G.m;n/ are of the same orbit type
for all p 2 U.

To simplify the exposition at this stage, we assume that all points ŒX.p/� lie in the

orbit of the point P0 D
�

Im

0

�
, where 0 is the .n�m/�m matrix of zeros.

Definition 3.5. A first order frame field along x is a frame field e W U! G along x
for which

e�!mC1 D �� � D e�!n D 0; e�!1^ � � �^ e�!m ¤ 0 (3.19)

at every point of U.
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First order frame fields e W U! G exist by the Factor Property of Theorem 2.18.
They are characterized by the fact that the map X W U ! Rn�m that it defines in
(3.18) has the property that ŒX�D P0 at every point of U.

Let G1 be the isotropy subgroup of the action of G0 on G.m;n/ at the point P0.
This means that A.K/P0 D P0, for any K 2 G1, which implies that A.K/ has the

block form A.K/D
�

A1 A2
0 A3

�
, where A1 2 GL.m;R/, A3 2 GL.n�m;R/, and 0 is

the .n�m/�m matrix of zeros. Let g1 denote the Lie algebra of G1. We assume
that g1 ¤ f0g. If, to the contrary, g1 were zero, then the frame reduction is complete.
This is what happened in our centro-affine curve example.

Choose a decomposition g0 D m1C g1, where m1 is a vector subspace of g0.
Then gD m0Cm1C g1 is a vector space direct sum which gives a decomposition
! D !m0 C!m1 C!g1 . The second assumption required for a continuation of the
frame reduction at this step is that

e�!m1 ¤ f0g; (3.20)

at each point of U, for any first order frame field e along x. If e�!m1 Df0g identically
on U, then the reduction stops here. Examples of this exceptional case are provided
by totally umbilic immersions of a surface into a space form.

Assume (3.20) for any first order frame field e along x. Let EnC1; : : : ;En1 be a
basis of m1. The adjoint representation of G1 on g=g1 Š m0Cm1 relative to the
basis E1; : : : ;En1 is the homomorphism AD .Ai

j/ W G1!GL.n1;R/ defined by

Ad.K/Ei D A.K/Ei D
n1X

jD1
Aj

iEj mod g1; (3.21)

for iD 1; : : : ;n1. Then A.K/ must have the block form

A.K/D
0
@A1 A2 0
0 A3 0

A4 A5 A6

1
A ; (3.22)

where A1 2GL.m;R/ and A6 2GL.n1�n;R/. Using this basis of m1, we also have
the expansion

!m1 D
n1X

�DnC1
!�E�;

where !�, for �D nC1; : : : ;n1, are left-invariant 1-forms on G.
Let e WU �M!G be a first order frame field along x. Then e�!1; : : : ;e�!m is a

coframe field on U and e�!˛ D 0, for ˛ DmC1; : : : ;n. Set

e�!� D
mX

aD1
X�a e�!a; (3.23)
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for �D nC1; : : : ;n1. At a point p 2U, the image of the linear map

e�.!m0C!m1 / W TpM!m0Cm1 (3.24)

is an m-dimensional subspace. With the given basis, it is the point

2
4Im

0

X

3
5 2 G.m;n1/;

where the smooth map

X D .X�a / 2 R.n1�n/�m (3.25)

is defined in (3.23). By our assumption (3.20) above, X is not the zero matrix.
Any other first order frame field along x on U is given by QeD eK, where K WU!

G1 is an arbitrary smooth map. Then the linear map Qe�.!m0C!m1 / is related to the
map (3.23) of e by the adjoint action of K�1 on g=g1. Using the block form (3.22)
for A.K�1/, we see that the image becomes

2
4 Im

0

.A4CA6X/A�1
1

3
5 2G.m;n1/:

The goal of the frame reduction at this step is to simplify the coefficients X of the
map (3.24) in the sense of finding a slice of the action of G1 on R.n1�n/�m given by

A.K/X D .A4CA6X/A
�1
1 : (3.26)

The conditions defining the previous order of frames, in this case equations (3.19),
restrict the possible values of X to an affine subspace of R.n1�n/�m, which is
invariant under the action (3.26). We describe this affine subspace as follows. Let
En1C1; : : : ;Er be a basis of g1, where rD dimG. Then

Ea;E˛;E�;E� (3.27)

is a basis of gDm0˚m1˚g1, where we introduce the index ranges

1	 a;b	 m; mC1	 ˛;ˇ 	 n; nC1	 �;	 	 n1; n1C1	 �;� 	 r: (3.28)

Consider the structure constants Ci
jk D �Ci

kj of g relative to this basis. These are
defined by the equations

ŒEj;Ek�D
rX

iD1
Ci

jkEi; (3.29)
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for j;k 2 f1; : : : ;rg. The Maurer–Cartan structure equations of G are expressed in
terms of the structure constants by

d!k D�1
2

rX
i;jD1

Ck
ij!

i^!j;

for all k 2 f1; : : : ;rg.
Lemma 3.6. Relative to a first order frame field e W U! G along x, the map X D
.X�b / W U! R.n1�n/�m in (3.25) takes values in the affine subspace

X D f.X�b / W C˛
abC

n1X
�DnC1

.C˛
a�X�b �C˛

b�X�a /D 0g; (3.30)

where a;bD 1; : : : ;m and ˛ D mC1; : : : ;n.

Proof. These restrictions on the entries of X come from the exterior derivative of the
equations e�!˛ D 0 defining a first order frame field. The forms e�!a, aD 1; : : : ;m
constitute a coframe field on U, and the pull-back of the remaining forms must be a
linear combination of these. Then

0D�2d e�!˛ D
mX

a;bD1
.C˛

abCC˛
a�X�b �C˛

b�X�a /e
�!a^e�!b;

since all other structure constants are zero. In fact, C˛
�	 D C˛

�� D C˛
�� D 0 because

E�;E� 2 g0 and Œg0;g0�� g0, so the brackets ŒE�;E	�, ŒE�;E� �, and ŒE� ;E� � have no
E˛-components.

Finally, the coefficients C˛
a� D 0 because G1 fixes P0. For, if K 2 G1, then

Ad.K/Ea has no E˛ components, by (3.22). Then E� 2 g1 implies exp.tE�/ 2 G1,
for all t 2 R, so

ŒE� ;Ea�D ad.E� /Ea D dAd.E� /Ea D d

dt

ˇ̌
ˇ̌
0

Ad.exp.tE�//Ea

has no E˛-component. See [110, Theorem 20.12, p 529] for information about the
adjoint representations Ad W G!GL.g/ and ad W g! gl.g/. ut

As in the previous step, in order to proceed farther we must assume that the values
of the map X W U!X � R.n1�n/�m are all of the same orbit type under this action
of G1. Given that assumption, we then choose a slice of the action. To simplify this
general exposition, we assume that there is a slice Y �X for which the isotropy
subgroup is the same subgroup G2 of G1 at every point. We then define a second
order frame field e W U! G to be a first order frame field whose coefficient map

X W U! Y �X � R.n1�n/�m

takes its values in the slice. We summarize this as follows.
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Definition 3.7. A second order frame field along x W M ! N is any frame field
e W U �M! G along x for which

1. e�!˛ D 0, for ˛ D mC1; : : : ;n; and e�!1^ � � �^ e�!m ¤ 0, (first order);
2. e�!� DPm

aD1Y�a e�!a, for �D nC1; : : : ;n1,
where Y D .Y�a / 2 Y at every point of U.

The Factor Property of Theorem 2.18 applied to the action (3.26) ensures the
existence of a second order frame field on some neighborhood of any point p 2 M
at which the map (3.25) satisfies X.p/ 2 G1Y ; i.e., x is of type .G2;Y / at p.

The next step of the frame reduction proceeds in the same way as the preceding
step. Let g1Dm2Cg2 be a vector space direct sum. The frame reduction is complete
at this point if either g2 D f0g or if e�!m2 D f0g, for any second order frame field.
In either case we then express the component forms of !g1 in terms of the coframe
field ��!1; : : : ;��!m, like this

!� D
mX
1

��a e�!a;

where the smooth functions ��a W U ! R are the invariants of x. The result of the
final frame reduction is called a Frenet frame field along x.

We conclude our general description of the frame reduction process here.
Additional contingencies will be exhibited in the many examples that follow in the
book. For more details about the theory of the method of moving frames see Cartan
[32], Chern [45], do Carmo [30], Green [77], Jensen [93], and Fels and Olver [67].

Proposition 3.8. Let x W Mm ! N and Ox W OMm ! N be immersions with Frenet
frames of the same type e W M ! G and Oe W OM ! G, respectively. If F W M ! OM
is a diffeomorphism that pulls back the coframe field of Oe to the coframe field of e,
and pulls back the invariants of Oe to the invariants of e, then there exists an element
g 2G such that OxıFD g ı x.

Proof. It is evident from the frame reduction procedure that under the given
hypotheses, F�Oe�! D e�!. Application of the Cartan–Darboux Uniqueness
Theorem to the maps OeıF WM! G and e WM! G yields the result. ut

3.4 Homogeneous submanifolds

We continue with our smooth manifold Nn acted upon transitively by the Lie
group G. We choose the point o 2 N as the origin.

Definition 3.9. An embedding x W Mm ! Nn is homogeneous if there exists a Lie
subgroup H of G that stabilizes x.M/ and acts transitively on this set.



44 3 Theory of Moving Frames

If x WM! N is a homogeneous embedding, we may assume, up to an action by
an element of G, that there is a point p0 2M such that x.p0/D o. Then

x.M/D fho W h 2 Hg D �.H/;

where � W G ! N is the bundle projection (3.16). Let H0 � G0 be the isotropy
subgroup of H at o. Given a point p 2 M, there exists a neighborhood U � M of
p such that there exists a smooth section e W U ! H of the principal H0-bundle
projection � W H ! x.M/. Because x is an embedding, we may identify M with
x.M/� N as smooth manifolds. Let h � g be the Lie algebra of H, and let h0 � g0
be the Lie algebra of H0. If m0 � h is a vector space complement of h0 in h, then

d�1 Wm0! Tox.M/ (3.31)

is a linear isomorphism. Moreover, we have the direct sum of vector spaces

gDm0Ch0Ch0; (3.32)

where h0 is a vector space complement of h in g. Let Ea, for a D 1; : : : ;m be a
basis of m0, let E˛ , for ˛ D mC 1; : : : ;r be a basis of h0, and let !h0 denote the
h0-component of the Maurer–Cartan form of G under the direct sum (3.32). Then
we have an expansion

! D
mX

aD1
!aEaC

rX
˛DmC1

!˛E˛C!h0 ;

where !1; : : : ;!r are left-invariant 1-forms linearly independent on G. With this
preparation we can state the property of a frame field along x that takes values in H.

Proposition 3.10. Given a point p2M, there exists a local frame field e WU�M!
H � G along x. It has the properties

1. e�.!1^ � � �^!m/¤ 0 at every point of U,
2. e�!˛ D 0, for ˛ DmC1; : : : ;r, and
3. the k-dimensional distribution defined by

D D spanf!˛ W ˛ D mC1; : : : ;rg;

satisfies the Frobenius condition, where kD dimhD dim.g/� .r�m/.

Proof. The first item follows from the fact that the linear map (3.31) is an
isomorphism. The second item follows from the fact that e W U ! H and the !˛

annihilate h. For the third item we observe that the distribution D is spanned by
left-invariant 1-forms on G and D? D h, which satisfies the Frobenius condition
because it is a Lie subalgebra of g. ut
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The following proposition is an important converse to Proposition 3.10. It is
applied in Proposition 4.39, Theorem 5.15, Problem 6.49, Theorem 12.51, the
classification of totally umbilic submanifolds of the space form geometries, and
in Theorem 15.51, which classifies all nonumbilic Dupin immersions in Euclidean
space. It is the method Cartan [32, p. 155] developed to characterize homogeneous
submanifolds of a homogeneous space. See also Jensen [93, pp. 41–44] and Sulanke
[157, Theorem 4.1, p. 702].

Proposition 3.11. Let G be a Lie group of dimension n, with Lie algebra g and
space of left-invariant 1-forms g�. Let !1; : : : ;!r be a linearly independent subset
of g�. Let e W Mm ! G be an immersion of a connected manifold M of dimension
m< r. Let � i D e�!i, for iD 1; : : : ;m and let 
˛ D e�!˛ , for ˛DmC1; : : : ;r. If

1. �1^ � � �^�m ¤ 0 at each point of M, if
2. 
˛ DPm

iD1A˛i �
i on M, for constants A˛i , for each ˛ D mC1; : : : ;r, and if

3. the .n� rCm/-dimensional smooth distribution D? defined by the subspace

h? D span.!˛ �
mX

iD1
A˛i !

i W ˛ D mC1; : : : ;r/� g�

satisfies the Frobenius condition, then

hD fX 2 g W !.X/D 0;8! 2 h?g
is a Lie subalgebra of g and e.M/� gH, for some g 2 G, where H is the connected
Lie subgroup of G whose Lie algebra is h.

Proof. The integral manifolds of D are the right cosets gH, for every g2G. If rD n,
then it is clear that e W M! G is an integral manifold of D , and thus is contained
in some right coset gH of H. If r < n, then it is still true that e�! D 0 for every
smooth 1-form ! in D?. The local Frobenius Theorem then implies that e.M/must
be contained in some integral manifold of D . ut
Proposition 3.12. Let x W Mm ! Nn D G=G0 be an immersion with Frenet frame
field e WM! G. If the invariants of x are all constant on M, then there exists a Lie
subgroup H of G such that e.M/ is an open subset of the right coset gH, for some
g 2 G, so x.M/ is congruent to an open subset of the homogeneous submanifold
�.H/� N, where � W G! N is the principal bundle projection (3.1).

Proof. Suppose the Frenet frame field is of order k 
 1. Let

gDm0C�� �Cmk�1CmkCgk

be the decomposition obtained from the frame reduction procedure. Let

E1; : : : ;Er
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be the basis of the Lie algebra g obtained from bases of each component chosen
during the reduction, with the last dimgk vectors being a basis of gk. Then the
hypotheses of Proposition 3.11 are satisfied and our result follows from that. See
the comments preceding Proposition 3.11 for specific applications occurring later in
the book. ut

In the following chapters we will use the method of moving frames to study
surfaces in the classical Euclidean, spherical, and hyperbolic geometries, with
applications to a selection of important problems. The final four chapters use the
method in classical Möbius geometry and Lie sphere geometry. This represents only
a small number of important applications of the method.

It has been widely used in projective geometry, both real and complex. For a
sample of this area see Liao [112], Jensen-Musso [95], and Yang [174].

For its use in Grassmannian geometries, real or complex, see Griffiths [79], Yang
[173], Zheng [175], and Jensen-Rigoli [96].

Problems

3.13. Let x WR! PR2 be a centro-affine curve of Example 3.4. Prove that a point t is
radial if and only if �.t/D det.x.t/; Px.t//D 0, where dot is derivative with respect to
the standard coordinate t in R. In the nonradial case, prove that the first order frame
field along x is e D .x; 1

�
Px/, that the centro-affine arclength parameter s satisfies

ds D e�!21 D �dt, and that the centro-affine curvature � D 1
�3
.Px; Rx/. Prove that if

a curve x is radial, then x.t/ D f .t/a, where a 2 PR2 is constant and f is a positive
function.

3.14 (Parabolas). If p is a nonzero real constant, then the centro-affine curve

x.t/ D
�

pt2C1
t

�
is a parabola. Find any radial points. Off the radial points, find

its centro-affine curvature.

3.15 (Constant affine-centro curvature). Find the centro-affine curves in PR2, up
to SL.2;R/ congruence, that have constant centro-affine curvature �.

3.16. Sketch some of the curves found in Problem 3.15. On the sketch, draw the
centro-affine Frenet frame at several points. Give a geometric interpretation of
�D det.x; Px/.



Chapter 4
Euclidean Geometry

We begin with a standard elementary introduction to the theory of surfaces
immersed in Euclidean space R3, whose Riemannian metric is the standard dot
product. Section 4.2 will be review for readers who have studied basic differential
geometry of curves and surfaces in Euclidean space. Geometric intuition is used
to construct Euclidean frames on a surface. Section 4.3 repeats the exposition,
but this time following the frame reduction procedure outlined in Chapter 3. The
classical existence and congruence theorems of Bonnet are stated and proved as
consequences of the Cartan–Darboux Theorems. A section on tangent and curvature
spheres provides needed background for Lie sphere geometry. The Gauss map helps
tie together the formalism of Gauss and that of moving frames. We discuss special
examples, such as surfaces of revolution, tubes about a space curve, inversions
in a sphere, and parallel transforms of a given immersion. These constructions
provide many valuable examples throughout the book. The latter two constructions
introduce for the first time Möbius, respectively Lie sphere, transformations that
are not Euclidean motions. The section on elasticae contains material needed in our
introduction of the Willmore problems.

Euclidean space is R3 with the Riemannian metric given by its standard dot
product. The Euclidean group E.3/ is the set of all isometries of this space.
Euclidean geometry is the study of properties of subsets invariant under isometries.
Immersions x; Ox WM! R3 are congruent if there is an isometry T 2 E.3/ such that
OxD T ı x. In Chapter 10, the related notion of equivalence plays a prominent role.
Immersions x W M ! R3 and Ox W OM ! R3 are equivalent if there is an isometry
T 2 E.3/ and a diffeomorphism F WM! OM such that Ox ıF D T ı x WM! R3, that
is, Ox ıF is congruent to x. In the case when x and Ox are embeddings, equivalence
implies Tx.M/D Ox. OM/, which is Euclid’s notion of congruence.

© Springer International Publishing Switzerland 2016
G.R. Jensen et al., Surfaces in Classical Geometries, Universitext,
DOI 10.1007/978-3-319-27076-0_4
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4.1 The Euclidean group

An isometry of R3 is a diffeomorphism T WR3!R3 whose differential dT preserves
the dot product at each point. An example is T D .v;A/ 2 R3�O.3/, where

.v;A/xD vCAx;

and the orthogonal group

O.3/D fA 2GL.3;R/ W tAAD Ig:

Exercise 7. Prove that any isometry of R3 is of the form .v;A/, for some v 2 R3

and A 2O.3/.

The set of all Euclidean isometries forms a Lie group, E.3/, called the Euclidean
group. As a manifold,

E.3/D R3�O.3/;

and the group structure defined by composition of maps is

.v;A/.w;B/D .vCAw;AB/;

which is a semi-direct product, R3 ÌO.3/, with R3 as the normal subgroup. The
inverse transformation of .v;A/ is

.v;A/�1 D .�A�1v;A�1/;

and conjugation by E.3/ on its normal subgroup R3 is

.v;A/.w; I/.v;A/�1 D .Aw; I/;

which is the standard action of O.3/ on R3. The connected component of E.3/
containing the identity element is the subgroup EC.3/DR3ÌSO.3/, which is called
the Euclidean group of rigid motions. The Euclidean group E.3/ has the faithful
representation in GL.4/,

E.3/D f
�
1 0

x A

�
W A 2O.3/; x 2R3g;

so it is a matrix Lie group. Its Lie algebra E .3/ is faithfully represented in the Lie
algebra gl.4;R/ by

E .3/D f
�
0 0

x X

�
W X 2 o.3/; x 2 R3g
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where the Lie bracket is the usual matrix commutator. As vector space,

E .3/DR3Co.3/;

�
0 0

x X

�
$ .x;X/: (4.1)

The adjoint action of O.3/ on R3 Š E .3/=o.3/ is

Ad.0;A/.x;0/D .Ax;0/;

which is the standard action of O.3/ on R3. The Lie bracket is given by matrix
commutation

��
0 0

x X

�
;

�
0 0

y Y

��
D
�
0 0

x X

��
0 0

y Y

�
�
�
0 0

y Y

��
0 0

x X

�

D
�

0 0

Xy�Yx XY�YX

�
;

which, in the identification (4.1), is

Œ.x;X/; .y;Y/�D .Xy�Yx; ŒX;Y�/;

where ŒX;Y�D XY�YX is the Lie bracket in o.3/� gl.3;R/. In particular,

Œ.0;X/; .0;Y/�D .0; ŒX;Y�/;
Œ.0;X/; .y;0/�D .Xy;0/;

Œ.x;0/;.y;0/�D .0;0/D 0:
(4.2)

The Maurer–Cartan form of E.3/ is the E .3/-valued left-invariant 1-form

�
0 0

� !

�
D
�
1 0

x A

��1
d

�
1 0

x A

�
D
�

0 0

A�1dx A�1dA

�
;

so � D .!i/ is R3-valued and ! D A�1dAD .!i
j / is o.3/-valued. Differentiation of

these forms gives the Maurer–Cartan structure equations of E.3/,

d� D d.A�1dx/D�A�1dAA�1^dxD�!^�;
d! D d.A�1dA/D�A�1dAA�1^dAD�!^!:

In terms of the left-invariant component 1-forms on E.3/, this is

d!i D�
3X

jD1
!i

j^!j; d!i
j D�

3X
kD1

!i
k^!k

j :
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The isometric action of E.3/ on R3 is transitive, so the E.3/-orbit of the origin
0 2R3 is all of R3. The isotropy subgroup G0 of E.3/ at 0 is

G0 D f.0;A/ 2 E.3/ W A 2O.3/g ŠO.3/:

By Proposition 2.6, E.3/ is a principal O.3/-bundle over R3 with projection

� W E.3/! R3 �.v;A/D .v;A/0D v: (4.3)

For reference frame at 0 choose the standard basis �1;�2;�3 of R3. Then any element
.v;A/ 2 E.3/ defines a frame

d.v;A/0.�1;�2;�3/D .A1;A2;A3/

at .v;A/0D v 2 R3, where Ai denotes column i of A. Every orthonormal frame on
R3 is obtained in this way. The basis of m0 D R3 � E .3/ that projects by d�1 onto
the standard basis of R3 is

Ei D .�i;0/; iD 1;2;3: (4.4)

The adjoint representation of G0 D O.3/ on g=g0 Š R3 relative to E1;E2;E3 is the
standard representation O.3/ � GL.3;R/. An orthonormal frame field on an open
set U � R3 is a smooth section

.x;e/ W U! E.3/

of (4.3). It must be of the form .idU ;e/, where idU W U ! U is the identity map
of U and e W U! O.3/ can be any smooth map. Smooth local sections exist on a
neighborhood of any point of R3.

4.2 Surface theory of Gauss

Let M be a surface and let

x WM! R3

be an immersion in the three dimensional Euclidean space R3. If u;v are local
coordinates on M, then x.u;v/ is a smooth vector valued function. The condition
that it is an immersion is that the tangent vectors xu and xv be linearly independent
for every .u;v/. The unit normal vector

e3.u;v/D˙ xu�xv
jxu�xvj
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is then defined up to sign. Gauss [72] based his theory of surfaces on the first and
second fundamental forms

I D dx � dxD Edu2C2FdudvCGdv2;

II D�dx � de3D Ldu2C2MdudvCNdv2;

which are symmetric, bilinear form fields on M. The form I is positive definite and
the form II is defined up to the choice of sign in e3. The ratio II=I D kN.u;v;

dv
du /,

which depends on the point .u;v/ and a tangent line T through it, is called the
normal curvature. Geometrically it is equal to the curvature at .u;v/ of the curve of
intersection of the plane spanned by the normal e3 and T with the surface. Explicitly,
if the line T at .u;v/ is tangent to the nonzero vector X D axuC bxv, then the
corresponding normal curvature is

kN.u;v;T/D II.X;X/

I.X;X/
D La2C2MabCNb2

Ea2C2FabCGb2
:

If X is multiplied by any nonzero number t, then kN remains unchanged, which
shows that it depends only on the line T and not on the choice of vector tangent to
the line.

Let the point .u;v/ be fixed. The critical values of kN as a function of the line T
are called the principal curvatures, which we denote by a and c. Their elementary
symmetric functions

H D 1

2
.aC c/ and K D ac

are called the mean curvature and Gaussian curvature, respectively. A Weingarten
surface, or W-surface, is one satisfying a functional relationship

f .a;c/D 0 (4.5)

between its principal curvatures. Special cases are

H D 0; minimal surfaces;

H D nonzero constant; constant mean curvature (CMC) surfaces;

K D constant; constant curvature surfaces:

If the surface is given as a graph

zD z.x;y/;
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then

H D 1

2

.1C z2y/zxx�2zxzyzxyC .1C z2x/zyy

.1C z2xC z2y/
3=2

(4.6)

and

K D zxxzyy� z2xy

.1C z2xC z2y/
2
:

The Weingarten equation (4.5) is essentially a geometric expression of a nonlinear
partial differential equation in two independent variables. For example, the minimal
surface equation H D 0 is a quasi-linear elliptic PDE.

4.2.1 Surface theory of Darboux, Cartan, and Chern

A frame field .x;e/ in Euclidean space R3 defined on an open set U � R3 consists

of the position vector xD
0
@x1

x2

x3

1
A and smooth vector fields e1, e2, e3 on U such that

they form an orthonormal basis of R3 at each point. The exterior differential of each
of x;e1;e2;e3 can be expressed as linear combinations of the orthonormal frame
eD .e1;e2;e3/, where the coefficients are smooth 1-forms defined on U. Namely,

dxD
3X
1

!iei; dei D
3X
1

!
j
i ej;

where the coefficient 1-forms !i and !i
j are given by the dot products

!i D dx � ei; !
j
i D dei � ej:

Differentiating ei � ej D ıij, we find that

!
j
i C!i

j D 0;
for 1	 i; j 	 3. Since ddxD ddei D 0, we arrive at the structure equations

d!i D�
3X

jD1
!i

j^!j; d!i
j D�

3X
kD1

!i
k^!k

j : (4.7)

The latter equations show that the curvature forms of Euclidean space are zero,

˝ i
j D d!i

j C
3X
1

!i
k^!k

j D 0; i; jD 1;2;3:
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Let M be a surface and let

xD
0
@x1

x2

x3

1
A WM! R3

be a smooth immersion. The differential of x at p 2M can be expressed as

dxp D

0
B@

dx1p
dx2p
dx3p

1
CA W TpM! R3;

where each dxi is the ordinary differential of the function xi WM!R. The condition
that x be an immersion is that dx has rank two at each point of M; that is, the
dimension of the span of fdx1;dx2;dx3g is two at every point of M.

A Euclidean frame field along x on an open set U �M consists of smooth vector
fields ei W U! R3, iD 1;2;3, such that eD .e1;e2;e3/ is an orthonormal frame of
R3 at each point of U. Denote such a frame field by .x;e/, where e D .e1;e2;e3/.
Then dx can be expressed in terms of e by

dxD
3X
1

!iei;

where each !i is a smooth 1-form defined on U, given by

!i D dx � ei:

It is a linear combination of the dxj with coefficients being the smooth function
entries of ei. Suppose that we can choose e3 to be a unit normal vector to the surface
at each point. Such a smooth vector field exists on all of M if and only if M is
orientable, in which case the normal is determined up to sign (assuming that M is
connected). With such a choice for e3 it follows that the tangent plane, which is the
image of dx, must be the span of e1 and e2. Hence, choosing e3 normal at every
point is equivalent to the condition that

!3 D 0 (4.8)

at every point of U. By the immersion condition, it follows then that !1;!2 must be
linearly independent at every point of U, and hence they form a coframe field on U.
Frame fields .x;e/ satisfying this condition will be called first order frame fields
along x. By the structure equations (4.7), exterior differentiation of (4.8) gives

!31^!1C!32^!2 D 0 (4.9)
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Lemma 4.1 (Cartan’s Lemma [32], pp. 218–219). Let ˛1; : : : ;˛p be p linearly
independent elements in a vector space V of dimension n. If p elements '1; : : : ;'p of
V satisfy the equation in �2V,

pX
jD1

˛j^'j D 0;

then 'i DPp
jD1 hij˛

j, for some scalars hij satisfying hij D hji, for all i; jD 1; : : : ;p.

Proof. Complete ˛1; : : : ;˛p to a basis ˛1; : : : ;˛p;˛pC1; : : : ;˛n of V . Then

'i D
nX

jD1
hij˛

j;

for some scalars hij, and

0D
pX

iD1
˛i^'i D

X
1�i<j�p

.hij�hji/˛
i^˛jC

pX
iD1

nX
kDpC1

hik˛
i^˛k;

so hij�hji D 0 and hik D 0, for i; jD 1; : : : ;p and kD pC1; : : : ;n, since the p.p�1/
2
C

p.n�p/ bivectors

˛i^˛j; iD 1; : : : ;p; jD 1; : : : ;n; i< j;

are linearly independent in �2V . ut
The following exercise is also called Cartan’s Lemma.

Exercise 8. Let !1; : : : ;!n be smooth 1-forms on a manifold N such that they are
linearly independent at every point of N. Let �1; : : : ;�n be smooth 1-forms on N
such that

nX
1

!i^�i D 0;

at every point of N. Then �iDPn
jD1 hij!

j, for each iD 1; : : : ;n, for smooth functions
hij on N satisfying hij D hji.

By Cartan’s Lemma, a first order frame field satisfies

!3i D
2X

jD1
hij!

j; for iD 1;2, and h12 D h21: (4.10)

Comparing the situation with Gauss’s formalism, we see that for our first order
frame field .x;e/,

I D dx � dxD !1!1C!2!2 (4.11)
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is the first fundamental form and

II D�dx � de3D !1!31 C!2!32 D h11!
1!1C2h12!

1!2Ch22!
2!2 (4.12)

is the second fundamental form. The first fundamental form is a Riemannian metric
I on M. It is called the Riemannian metric induced on M from the dot product
by the immersion x W M! R3. If .x;e/ is a first order frame field on an open set
U �M, then (4.11) shows that !1;!2 is an orthonormal coframe field on U. From
the structure equations (4.7) and (4.8)

d!1 D�!12^!2; d!2 D�!21^!1;

from which it follows that the Levi-Civita connection form relative to this orthonor-
mal coframe field is

!12 D�!21 :

Taking the exterior derivative of this, using the definition of the Gaussian curvature
of I, and using the structure equations (4.7) we arrive at the Gauss equation for the
Gaussian curvature K,

K!1^!2 D d!12 D !31^!32 D .h11h22�h212/!
1^!2; (4.13)

where the last expression on the right is essentially Gauss’s definition of curvature
in terms of the second fundamental form. This proves Gauss’s Theorema Egregium
[72]: the Gaussian curvature depends only on the first fundamental form. The Gauss
equation can be expressed as

K D det S;

where the 2�2 symmetric matrix S is defined by

SD
�

h11 h12
h21 h22

�
: (4.14)

This is the matrix of the shape operator (also called the Weingarten map)

�de3 W TxM! TxM

relative to the orthonormal basis e1;e2; as can be seen from (4.12). Making the
identification dx.TmM/D Te3.m/S

2, we see that the shape operator is the differential
of the Gauss map �e3 W TxM! S2. Gauss defined curvature to be the Jacobian of
this map. The mean curvature is half the trace of the shape operator

H D 1

2
trace SD 1

2
.h11Ch22/:
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The principal curvatures are the principal values of S, thus the roots a and c of the
quadratic equation in t,

det.S� tI2/D 0:

Definition 4.2. The Hopf invariant h relative to a first order frame field .x;e/ on
U �M is the smooth function

h W U! C; hD 1

2
.h11�h22/� ih12:

For any first order frame field .x;e/ we have

!31 � i!32 D h.!1C i!2/CH.!1� i!2/;

where h is the Hopf invariant relative to .x;e/ and H is the mean curvature.
Here are some of the basic properties of the Hopf invariant.

Exercise 9. Let S be the real vector space of all 2�2 symmetric matrices and let
L be the real linear transformation

L WS ! C; L.S/D 1

2
.S11�S22/� iS12: (4.15)

The Hopf invariant is then h D L.S/, where S is given by (4.14). Prove the
following:

1. The kernel of L is the set of all scalar matrices, that is, scalar multiples of the
identity matrix.

2. L.S/ is real if and only if S is a diagonal matrix.
3. If

AD
�

cos t �sin t
sin t cos t

�
(4.16)

is rotation through the angle t, then L.tASA/D ei2tL.S/.
4. If

BD A

�
1 0

0 �1
�
D
�

cos t sin t
sin t �cos t

�
; (4.17)

is a rotation through an angle t composed with reflection through the horizontal
axis, then L.tBSB/D e�i2tL.S/.

Since S of (4.14) is symmetric, its principal values are real and are called the
principal curvatures of x at the point. The principal vectors of S are called the
principal directions of x. These are orthogonal whenever the principal curvatures
are distinct. A point of M is called an umbilic of x if the principal curvatures are
equal at this point. At an umbilic, every direction is principal.
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Definition 4.3. A smooth curve � W J!M, where J � R is an interval, is a line of
curvature of x, if its tangent vector P� is a principal direction at each point of J.

Lemma 4.4 (Lines of Curvature). If .x;e/ is a first order frame field along x on
an open set U �M, then a smooth curve � W J!U is a line of curvature if and only
if at every point of J

��.!1!32 �!2!31 /D 0:

Proof. For the first order frame field .x;e/ on U we have !3i D
P2

jD1 hij!
j. Then

P� D !1. P�/e1C!2. P�/e2 and Sei DP2
jD1 hjiej, so P� is a principal vector if and only

if S P� D � P� , for some � 2 R, that is,

2X
jD1

!3j . P�/ej D
2X

i;jD1
hji!

i. P�/ej D
2X

iD1
!i. P�/Sei D S P� D � P� D �

2X
jD1
!j. P�/ej;

if and only if !3j . P�/D �!j. P�/, for jD 1;2, if and only if

det

�
!1. P�/ !2. P�/
!31. P�/ !32. P�/

�
D 0;

which is equivalent to the statement of the lemma. ut
The two remaining structure equations are

d!31 D�!12^!32 ; d!32 D !12^!31 : (4.18)

If we take the exterior differential of the equations!3i D
P2

jD1 hij!
j, and again apply

Cartan’s Lemma, we obtain the Codazzi equations

dhij�
2X

kD1
hik!

k
j �

2X
kD1

hkj!
k
i D

2X
kD1

hijk!
k; (4.19)

where hijk are smooth functions on U, totally symmetric in all three indices,
1	 i; j;k 	 2.

Given a first order frame field .x;e/ on a connected subset U �M, any other is
given by

Qe3 D 
e3; Qe1 D e1A11C e2A21; Qe2 D e1A12C e2A22; (4.20)

where 
 D ˙1 and A D .Ai
j/ W U ! O.2/ is a smooth map. In matrix notation we

have

.Qe1; Qe2/D .e1;e2/A:
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From dxD Q!1 Qe1C Q!2 Qe2 D !1e1C!2e2 we see that

!1 D A11 Q!1CA12 Q!2; !2 D A21 Q!1CA22 Q!2;

which in matrix notation is

�
!1

!2

�
D A

� Q!1
Q!2
�
:

Under this change of frame, the area form changes by

!1^!2 D det.A/ Q!1^ Q!2:
Since A 2 O.2/, we know that det.A/D˙1, so the orientation of M is preserved if
and only if A 2 SO.2/. In the new frame, (4.10) becomes

Q!3i D
2X

jD1
Qhij Q!j; (4.21)

for iD 1;2. From Q!3i D dQei � Qe3 D�Qei � dQe3, we have

Q!3i D 

2X

jD1
Aj

i!
3
j : (4.22)

By (4.10), (4.21) and (4.22) it follows that the 2� 2 symmetric matrices QS D .Qhij/

and SD .hij/ transform by

QSD 
 tASA: (4.23)

From linear algebra we know that at a point in U, we can diagonalize S by this
action. The resulting diagonal entries are the principal curvatures of x at the point.
If the principal curvatures are equal at the point, then S and QS are scalar matrices
and the point is umbilic. The principal values of QS are 
 times the principal values of
S. Therefore, replacing the unit normal e3 by �e3 reverses the sign of the principal
curvatures and the mean curvature, but leaves the Gaussian curvature invariant. By
Exercise 9, the Hopf invariants relative to each frame are related by

QhD 
e2ith; (4.24)

if A is rotation by an angle t 2 R given in (4.16), and by

QhD 
e�2it Nh;
if A is the matrix B in (4.17).
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Definition 4.5. A second order frame at a point p 2U is a first order frame .x;e/ at
p for which e1.p/ and e2.p/ are principal directions of x at p.

That is, .x;e/ is of second order at p if the matrix S of its shape operator, defined
in (4.14), is diagonalized at p:

SD
�

a 0
0 c

�
;

where a;c 2 R are the principal curvatures of x at p. This is equivalent to the
conditions at p:

!3 D 0; !31 D a!1; !32 D c!2:

If a D c, then the point is umbilic and any first order frame is automatically of
second order there, because every vector in TpM is then a principal vector of the
shape operator.

A change of frame (4.20) at p preserves the second order property of .x;e/ at p
if and only if the matrix QS in (4.23) is also diagonalized. At a nonumbilic, there are
just a finite number of changes of second order frame. See Problem 4.60.

A second order frame field along x WM!R3 is a first order frame field on an open
set U � M that is of second order at every point of U. Figure 4.1 shows a second
order frame at a nonumbilic point of an ellipsoid with distinct principal axes.

Fig. 4.1 A second order
frame on a generic ellipsoid.
The blue points are umbilics.
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Lemma 4.6 (Existence of Second Order Frame Fields). For the immersed sur-
face x W M! R3 suppose that the point p 2 M is nonumbilic. Then there exists an
open neighborhood U about p on which there is a smooth second order frame field.

Proof. Let .x;e/ be a smooth first order frame field on an open neighborhood V of
p and let S be the coefficient matrix of the second fundamental form with respect to
this frame field. The entries of S are smooth functions, and thus the mean curvature
HD 1

2
trace S and the Gaussian curvature KD det S are smooth functions on V . The

principal curvatures are the solutions of the quadratic equation in t

0D det.S� tI/D t2�2HtCK

whose solutions a and c are

HC
p

H2�K; H�
p

H2�K: (4.25)

The smooth function H2 � K on M is nonnegative and the umbilic points are
characterized by the equation

H2�K D 0:

In particular, the set of umbilic points is closed in V and the set of nonumbilic points
is open. The functions a and c are continuous on V , and smooth on the open set of
all nonumbilic points. Let U � V be an open neighborhood of p consisting only of
nonumbilic points. It is standard linear algebra to verify that unit principal vectors
corresponding to a and c are

Qe1 D 1

L
..
1

2
.h22�h11/�

p
H2�K/e1�h21e2/;

Qe2 D 1

L
.�h12e1C .1

2
.h11�h22/C

p
H2�K/e2/;

where

LD .h212C
�

h11�h22
2

C
p

H2�K

�2
/
1
2 :

We have a smooth map A WU! SO.2/ given by

AD 1

L

 
�. 1

2
.h11�h22/C

p
H2�K/ �h12

�h12
1
2
.h11�h22/C

p
H2�K

!

and .Qe1; Qe2/D .e1;e2/A, Qe3 D e3 defines a smooth second order frame field along x
on U. ut
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4.3 Moving frame reductions

In this section we apply the method of moving frames, as outlined in Chapter 3, to
surfaces immersed in Euclidean space. We believe it is instructive to see how this
method arrives at the same invariants as we found in the preceding section.

Let x WM!R3 be an immersion of a surface M. A frame field along x is a smooth
map .x;e/ W U! E.3/ from an open subset U �M such that � ı .x;e/D x, where
� is the projection (4.3). In brief, the diagram

E.3/
.x;e/% # �

U
x! R3

commutes. Given a point m 2M and a point .v;A/ in the fiber ��1fx.m/g, the Lift
Property of Corollary 2.7 guarantees the existence of a neighborhood U �M of m
on which there is a frame field along x that passes through .v;A/. Let

.x;e/ W U �M! E.3/ (4.26)

be a smooth frame field along x. The pull-back of the Maurer–Cartan form of E.3/
by this frame field is

.x;e/�1d.x;e/D .e�1dx;e�1de/D ..!i/; .!i
j //; i; jD 1;2;3;

now an E .3/-valued 1-form on U �M. Here, and throughout the rest of this book,
we omit .x;e/� when writing the pull-back of forms to M. The same symbol is
used for the form on E.3/ and for its pull-back to M. The context will indicate the
correct interpretation. We now carry out a reduction of the frames following the
general procedure outlined in Section 3.3. We have gD E .3/ and g0 D o.3/. As a
vector subspace complement of g we choose m0 DR3. The vector space direct sum
gDm0Cg0 decomposes the Maurer–Cartan form of E.3/ into �C!, where

� D
3X
1

!i�i

denotes the m0 component and

! D .!i
j/; i; jD 1;2;3;

denotes the g0 D o.3/ component. As we did in (4.4), we choose Ei D �i, for
iD 1;2;3, for a basis of m0. The adjoint representation of G0 DO.3/ on g=g0 ŠR3

relative to E1;E2;E3 is the standard representation of O.3/ � GL.3;R/, as we
observed in Section 4.1 above. Then
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dxD
3X

iD1
!iei.m/

on U, where e1;e2;e3 are the columns of e 2O.3/. We saw in the preceding section
that the frame can be chosen so that e1 and e2 span the tangent plane dxmTmM at
each point m 2 U. Let us see how that is accomplished through the general frame
reduction procedure. If '1;'2 is a coframe field on U, then

!i D
2X

aD1
Xi

a'
a; iD 1;2;3;

where XD .Xi
a/ WU!R3�2� is a 3�2matrix whose rank is two at each point, since

the linear map

!m0 D
3X

iD1

2X
aD1

Xi
a�i'

a W TpM!m0

has rank two at every point p 2U, since x is an immersion. Its image at a point of U
is a 2-dimensional subspace of m0 Š R3. It is the image of the map

ŒX� W U! G.2;3/; (4.27)

where G.2;3/D R3�2�=GL.2;R/ is the Grassmannian of 2-dimensional subspaces
of R3. Any other frame field along x on U is given by

.x; Qe/D .x;e/.0;A/D .x;eA/;

where A W U!O.3/ is any smooth map. The pull-back of the Maurer–Cartan form
by this new frame field is

�
0 0
Q� Q!

�
D
�
1 0

x Qe
��1

d

�
1 0

x Qe
�
D
�
1 0

x eA

��1
d

�
1 0

x eA

�
;

so Q� D A�1� and Q! D A�1!ACA�1dA. Then

2X
aD1

Xi
a'

a D !i D
3X

jD1
Ai

j Q!j D
2X

aD1

3X
jD1

Ai
j
QXj

a'
a (4.28)

shows that A QX D X. The action

O.3/�G.2;3/! G.2;3/; .A; ŒY�/ 7! ŒAY�
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of O.3/ on the Grassmannian G.2;3/ is transitive. Choose P0D
�

I2
0

�
to be the origin

of G.2;3/. The isotropy subgroup of O.3/ at P0 is

G1 DO.2/�O.1/D fAD
�

a 0
0 


�
2O.3/ W a 2O.2/; 
 D˙1g; (4.29)

whose Lie algebra is

g1 D o.2/D f
�

Z 0
0 0

�
2 o.3/ W Z 2 o.2/g: (4.30)

Then O.3/ is a principal G1-bundle over G.2;3/ with projection map

� WO.3/! G.2;3/; �.A/D AP0;

which has local sections.

Definition 4.7. A first order frame field along x WM! R3 is a frame field .x;e/ W
U! E.3/ on an open subset U of M for which ŒX�D P0. This is equivalent to the
conditions

!3 D 0; !1^!2 ¤ 0;

at every point of U.

Proposition 4.8. Given any point m 2M, there exists a neighborhood U of m in M
on which there is a first order frame field along x.

Proof. There exists a frame field (4.26) on a neighborhood U of m. Apply the Lift
Property of Corollary 2.7 to the smooth map ŒX� W U! G.2;3/ in (4.27), to get a
neighborhood V of m in U on which there is a smooth map A W V!O.3/ such that

AP0 D ŒX�;

on V . If .x; Qe/D .x;eA/, then Œ QX�D ŒA�1X�D P0 by (4.28), so .x; Qe/ W V! E.3/ is a
first order frame field along x. ut

A first order frame field .x;e/ W U ! E.3/ has !3 D 0 and !1;!2 a coframe
field on U. This coframe field is orthonormal for the Riemannian metric I D dx � dx
induced on M by x. Let

m1 D f
0
@ 0 0 x13
0 0 x23
x31 x32 0

1
A 2 o.3/g:
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be a vector space complement to g1 (defined in (4.30)) in g0 D o.3/. For a basis of
m1 we choose

E4 D
0
@0 0 �10 0 0

1 0 0

1
A ; E5 D

0
@0 0 0

0 0 �1
0 1 0

1
A :

The direct sum of vector spaces

E .3/D gDm0Cm1Cg1

decomposes the Maurer–Cartan form of E.3/, to �C!m1C!g1 , where

!m1 D !31E4C!32E5:

Relative to a first order frame field .x;e/ WU!E.3/, the Maurer–Cartan form pulled
back to U satisfies !3 D 0 and !1;!2 is a coframe on U, and

!3i D
2X

jD1
hij!

j; iD 1;2:

We now consider the rank two linear map

�C!m1 D .�1C
2X
1

hi1E3Ci/�
1C .�2C

2X
1

hi2E3Ci/�
2 W TpM!m0Cm1:

(4.31)

Its image is a 2-dimensional subspace of m0Cm1 Š R5, represented as a point

2
4I2
0

h

3
5 2G.2;5/;

where hD .hij/ 2R2�2. The exterior derivative of !3 D 0 on U, combined with the
structure equations of E.3/, gives (4.9)

P2
1 !

3
i ^!i D 0, since !3 D 0. By Cartan’s

Lemma 4.1, we saw (4.10) !3i D
P2

jD1 hij!
j, for iD 1;2, and the smooth functions

hij W U! R satisfy hij D hji. Let

SD .hij/ WU!S ; (4.32)

a smooth map into the vector space S of all symmetric 2� 2 matrices. It follows
that the map (4.31) takes values only in the subspace

2
4 I2
0

S

3
5� G.2;5/:
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Any other first order frame field on U is given by .x; Qe/ D .x;e/.0;A/, where A W
U! G1 DO.2/�O.1/ is smooth of the form

AD
�

B 0
0 


�
;

where B W U! O.2/ is smooth and 
 D˙1 is locally constant. They pull back the
Maurer–Cartan form of E.3/ to . Q�; Q!/D .A�1�;A�1!ACA�1dA/D

0
@
0
@B�1

�
!1

!2

�

0

1
A ;
0
@B�1

�
0 !12
!21 0

�
BCB�1dB 
B�1

�
!13
!23

�

�.!31 ;!
3
2 /B 0

1
A
1
A ;

from which we conclude that� Q!1
Q!2
�
D B�1

�
!1

!2

�
; . Q!31 ; Q!32/D 
.!31 ;!32 /B;

and

Q!21 D .det B/!21 C �21 ; (4.33)

where B�1dBD
�
0 ��21
�21 0

�
and �21 is a closed, smooth 1-form on U. This shows that

the adjoint representation of G1 on E .3/=g1 relative to the basis E1; : : : ;E5 is

Ad.A/D
0
@B 0 0

0 
 0

0 0 
B

1
A :

The image of the map (4.31) thus transforms by

2
4I2
0
QS

3
5D Ad.A�1/

2
4I2
0

S

3
5 ;

which implies

QSD 
tBSB: (4.34)

This is the action .B;
/SD 
BS tB of O.2/�O.1/ on S analyzed in Example 2.17.
From there we know that a slice of this action is the set Y of all nonscalar diagonal
matrices in S together with the closed subgroup

G2 D K�O.1/� G1; (4.35)

where K is the finite subgroup of O.2/ defined in (2.6). Following Definition 3.7 we
would define second order frame fields along x as follows.
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Definition 4.9. A second order frame field along x is a first order frame field .x;e/ W
U!E.3/ for which the map S WU!S of (4.32) takes all values in Y . The second
order invariants of x on U are the nonzero entries of this map.

In simpler terms, a second order frame field .x;e/ WU!E.3/ is characterized by

!3 D 0; !1^!2 ¤ 0; (first order);

!31 D a!1; !32 D c!2; (second order);

for smooth functions a;c W U ! R for which a ¤ c at every point of U. These
functions are the second order invariants and are called the principal curvatures
of x at each point of U. It is traditional to call the frame field second order even
when aD c at some points of U. These are the umbilic points of x in U. If all points
of U are umbilic, then x is of a different type. This case is discussed below.

Lemma 4.10. Let m0 be a point in M. If m0 is nonumbilic, or if there is an open set
of umbilic points containing m0, then there exists a smooth second order frame field
on some neighborhood of m0.

Proof. There exists a smooth first order frame field .x;e/ W U ! E.3/ on some
neighborhood U of m0. If there is an open neighborhood V of m0 in U consisting
entirely of umbilic points, then this frame field is of second order on V .

The smooth function H2�K WM!R is zero precisely at the umbilic points of x,
so the set of umbilic points is closed in M. If m0 is nonumbilic, then we may shrink
U, if necessary, so that U contains only nonumbilic points. Consider the map (4.32)
associated to the frame field .x;e/. Let a0 ¤ c0 be the principal curvatures at m0.
Using the notation of Example 2.17 for the slice Y of the action of G1 on S , we
know that S.U/� G1Y . Apply the Factor Property of Theorem 2.18 to get an open
neighborhood V of m0 in U and smooth maps

AD .B;
/ W V! G1 DO.2/�O.1/; DD
�

a 0
0 c

�
W V! Y ;

with a.m0/D a0 and c.m0/D c0, such that

SD .B;
/DD 
BDtB

on V . If .x; Qe/D .x;eA/ W V! E.3/, then

QSD 
tBSBD D;

on V , with QS.m0/D D.m0/. Hence .x; Qe/ is a second order frame field. ut
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It is possible that a smooth, even continuous, second order frame field may not
exist on any neighborhood of an umbilic point. Consider the following example, for
which the origin in M D R2 is the only umbilic point.

Example 4.11 (Nonexistence). Consider the embedding of the circular paraboloid
zD x2C y2,

x W R2! R3; x.x;y/D t.x;y;x2C y2/:

In terms of polar coordinates xD r cos t and yD r sin t away from the origin, we can
parametrize this surface as an immersion of revolution (see Example 4.40)

x.r; t/D .r cos t;r sin t;r2/:

If wDp1C4r2, then

e1 D 1

w
t.cos t;sin t;2r/; e2 D t.�sin t;cos t;0/; e3 D e1� e2

is a second order frame field for all r > 0 (see Example 4.40 below). Thus e1 is a
principal vector field at every point of R2 n f0g and for any fixed t,

lim
r!0

e1 D lim
r!0

1p
1C4r2

t.cos t;sin t;2r/D t.cos t;sin t;0/;

which depends on t. Thus e1 cannot be extended continuously to the origin. Any
second order frame field along x on a neighborhood of the origin must include˙e1
away from the origin, so it cannot be extended continuously to the origin.

The obstruction to the existence of continuous second order frame fields is more
subtle than just the existence of umbilic points. Example 4.41 in the next section has
a second order frame field defined everywhere, even though there are whole curves
of umbilic points.

Remark 4.12. If .x;e/ W U! E.3/ is a second order frame field on an umbilic free
domain U, then any other second order frame field on U is given by .x;eA/ W U!
E.3/, for any smooth map A WU!G2, where G2 is the finite subgroup of G1 defined
in (4.35). Since g2 D 0, the Frenet frames are the second order frame fields. The
remaining Maurer–Cartan form of a Frenet frame is

!21 D p!1Cq!2; (4.36)

where the functions p;q W U! R are the third order invariants.
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4.3.1 Summary of frame reduction and structure equations

Let x WM!R3 be an immersed surface. At a nonumbilic point there exists a smooth
second order frame field e WU! E.3/ on a neighborhood of the point. Its pull-back
of the Maurer–Cartan form of E.3/ satisfies:

!3 D 0; (first order), !1^!2 ¤ 0
d!1 D p!1^!2; d!2 D q!1^!2

!31 D a!1; !32 D c!2; (second order)

!21 D p!1Cq!2; (third order):

The structure equations of the immersion are the Codazzi and Gauss equations,
which, because !1^!2 ¤ 0 at each point, can be written as

a2 D .a� c/p; c1 D .a� c/q; (Codazzi equations),

p2�q1�p2�q2 D K D ac; (Gauss equation),
(4.37)

where da DP2
1 ai!

i, dc DP2
1 ci!

i, dp DP2
1 pi!

i, and dq DP2
1 qi!

i, and K is
the Gaussian curvature of the metric induced on M. The functions a and c are the
principal curvatures of x. They are continuous functions on M, smooth on an open
neighborhood of any nonumbilic point.

If x is totally umbilic on U, then any first order frame is automatically second
order and the above equations with a D c give the structure equations for such a
frame.

Exercise 10. Prove that for any first order frame field .x;e/ W U!M the structure
equations of E.3/ imply

d!1 D p!1^!2; d!2 D q!1^!2; (4.38)

where p;q W U! R are smooth functions satisfying

!21 D p!1Cq!2: (4.39)

If .x;e/ W U!M is of second order, prove equations (4.37).

4.3.2 The criterion form

It is useful here to make use of the Hodge star operator, which we shall define only
for a very specialized situation. For a fuller treatment of this operator, see [110,
p 385].



4.4 Bonnet’s existence and congruence theorems 69

Definition 4.13. The Hodge star operator � W A1.M/! A1.M/ is a linear operator
on the space A1.M/ of smooth 1-forms on an oriented Riemannian surface .M; I/
given relative to a positively oriented orthonormal coframe !1;!2 by

�!1 D !2; �!2 D�!1:

Exercise 11. Prove that the Hodge star operator does not depend on the choice of
positively oriented orthonormal coframe.

Definition 4.14. The criterion form of a first order frame field .x;e/ W U! E.3/ is
the smooth 1-form

˛ D��!21;
where U is oriented by the orthonormal coframe field !1;!2 of .x;e/. Thus, if !21 D
p!1Cq!2 as in (4.39), then ˛ D q!1�p!2.

Remark 4.15. From (4.38) and the structure equations, the criterion form of a first
order frame field .x;e/ W U! E.3/ is characterized by the equations

d!1 D ˛^!1; d!2 D ˛^!2:

Exercise 12. Prove that if ˛ is the criterion form of a first order frame .x;e/ W U!
E.3/, then the criterion form Q̨ of any other first order frame .x; Qe/D .x;eA/, where

AD
�

B 0
0 


�
, B W U!O.2/, and 
 D˙1, satisfies

Q̨ D ˛C .detB/��21 ;

where � is the Hodge star operator defined by the orientation induced by the coframe

field of .x;e/, and B�1dB D
�
0 ��21
�21 0

�
defines the 1-form �21 , as in (4.33). In

particular, Q̨ D ˛ if B W U ! O.2/ is locally constant. Note: Q̨ D Q� Q!21 , where Q�
is the Hodge star operator defined by the orientation of the orthonormal coframe
field of .x; Qe/.

The criterion form of a second order frame field is independent of the choice of
second order frame field. See Problem 4.62.

4.4 Bonnet’s existence and congruence theorems

We reformulate Proposition 3.8 as follows for Euclidean geometry.

Proposition 4.16 (Congruence). If .x;e/; .Ox; Oe/ W M ! E.3/ are second order
frame fields along immersions x; Ox WM!R3, respectively, on connected M such that
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at every point of M, O!1 D !1, O!2 D !2, OaD a, OcD c, OpD p, and OqD q, then there
exists an isometry .v;A/ 2 E.3/ such that .Ox; Oe/ D .v;A/.x;e/, so Ox D .v;A/ ı xD
vCAx on M.

Note that the isometry is determined explicitly by the Frenet frames evaluated at
any point of M, since .v;A/D .Ox; Oe/.x;e/�1 must be constant. In the light of (4.38),
this proposition remains true without the hypotheses OpD p and OqD q. Congruence
follows from equal Frenet coframe fields and equal principal curvatures. From
Problem 4.62 we see that the hypotheses can be relaxed to requiring the coframe
fields be related as in (15.58) or (15.59). Ideally, one wants hypotheses that are
global in that they would not require the existence of a Frenet frame field on all
of M. For example, if M is assumed oriented, then we can specify the normal
vector e3 in any frame and thus the principal curvatures are functions on M. Would
the proposition remain true if we assumed equal principal curvatures and equal
first fundamental forms, I D !1!1C!2!2? This question, known as the Bonnet
Problem, remains unresolved. It is the subject of Chapter 10. In 1867 Bonnet
formulated congruence and existence theorems in terms of the first and second
fundamental forms. These are Theorems 4.18 and 4.19 below.

Proposition 4.17 (Existence). Given a coframe field !1;!2 and smooth functions
a and c on a contractible domain U � R2, define smooth functions p and q on U by

d!1 D p!1^!2; d!2 D q!1^!2:
If daD a1!1Ca2!2, dcD c1!1Cc2!2, dpD p1!1Cp2!2, and dqD q1!1Cq2!2

satisfy

a2 D .a� c/p; c1 D .a� c/q; p2�q1 D acCp2Cq2 (4.40)

on U, then there exists an immersion x W U! R3 with principal curvatures a and c
and induced metric I D !1!1C!2!2.
Proof. Let !21 D p!1C q!2 D �!12 , !31 D a!1 D �!13 , and !32 D c!2 D �!23 , to
define the E .3/-valued 1-form on U


D
0
@
0
@!

1

!2

0

1
A ;
0
@ 0 !12 !

1
3

!21 0 !23
!31 !

3
2 0

1
A
1
A :

Then d
 D �
^ 
, by (4.40), so Theorem 2.25 implies the existence of a smooth
map .x;e/ W U ! E.3/ such that .x;e/�1d.x;e/ D 
 on U and x W U ! R3 is the
desired immersion. ut
Theorem 4.18 (Bonnet’s Congruence Theorem [15]). Let x; Qx W M ! R3 be
smooth immersions of a connected surface M. Let I; QI be the first fundamental forms
of x and Qx, respectively. Let e3 and Qe3 be unit normal vector fields along x and Qx,
respectively, and let

II D�de3 � dx; eII D�dQe3 � d Qx
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be the second fundamental forms of x and Qx relative to e3 and Qe3, respectively.
If there exists an element .v;A/ 2 E.3/ such that QxD .v;A/ı x on M, then Qe3 D


Ae3, where 
 D˙1, I D QI, and II D 
eII on M.
Conversely, if I D QI and II D 
eII, where 
 D ˙1, then there exists an element

.v;A/ 2 E.3/ such that QxD vCAx and Qe3 D 
Ae3.

Proof. If there exists an element .v;A/ 2E.3/ such that QxD AxCv, then d QxD Adx,
which implies that QI D d Qx � d QxD Adx �AdxD dx � dxD I on M. In addition, both Qe3
and Ae3 are smooth unit normal vector fields along Qx on the connected surface M,
so Qe3 D 
Ae3 on M, where 
 D˙1. Thus,

eII D�dQe3 � d QxD�
Ade3 �AdxD�
de3 � dxD 
II

on M.
Conversely, suppose I D QI and II D 
eII on M, where 
 D˙1. If 
 D�1, replace

Qe3 by �Qe3, which will change eII to �eII. Thus, for the converse it is sufficient to
suppose that I D QI and II DeII on M.

Let p 2 M, and let U be a connected open neighborhood of p on which there
exists a first order frame field .x;e/ W U ! EC.3/ whose third vector is e3. Then
dxD !1e1C!2e2, where !1;!2 is an orthonormal coframe field for I on U. Since
QI D I, it follows that !1;!2 is also an orthonormal coframe field for Qx on U. There
exists a first order frame field .Qx; Qe/ W U! E.3/, with third vector equal to Qe3, such
that d QxD !1 Qe1C!2 Qe2; that is, Q!1 D !1 and Q!2 D !2 on U. Then Q!12 D !12 on U,
by (4.38) and (4.39), and

Q!31!1C Q!32!2 DeII D II D !31!1C!32!2

implies that Q!3i D !3i on U, for iD 1;2. Then .x;e/ and .Qx; Qe/ satisfy

.x;e/�1d.x;e/D
0
@
0
@!

1

!2

0

1
A ; .!i

j /

1
AD .Qx; Qe/�1d.Qx; Qe/

on U. By the Cartan–Darboux Congruence Theorem 2.24, there exists an element
.v;A/ 2 E.3/ such that .x;e/ D .v;A/ ı .Qx; Qe/ on U. In particular, x D vCAQx and
e3 D AQe3 on U.

There is no loss of generality in replacing Qx by the congruent immersion vCAQx,
in which case we then have the same hypotheses holding and now

.x;e/D .Qx; Qe/

on U. This proves the theorem for the case when M possesses a global frame field.
The existence of a global frame field on M implies M has a nowhere vanishing
smooth vector field, and thus the Euler characteristic of M must be zero. In general,
then, so far we have proved only a local result.
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Let q be any point of M. We want to prove that .Qx.q/; Qe3.q//D .x.q/;e3.q//. For
this purpose, let � W Œ0;1�! M be a continuous path from p D �.0/ to q D �.1/.
For each t 2 Œ0;1�, apply the argument above to the point �.t/ 2M to conclude that
there exists a connected neighborhood Ut of �.t/ on which there are frame fields
.x;et/; .Qx; Qet/ W Ut! E.3/, with third vector equal to e3 and Qe3, respectively, and an
element .vt;At/ 2 E.3/ such that

.x;et/D .vt;At/ı .Qx; Qet/

on Ut. By a standard argument using the Lebesgue number of the open covering
f��1Utgt2Œ0;1� of Œ0;1� (see [122, Lemma 27.5 on page 175]), there exists a partition
0D t0 < t1 < � � � < tkC1 D 1; and connected open subsets U0 D U;U1; : : : ;Uk of M
such that

• �Œti; tiC1�� Ui, for iD 0; : : : ;k;
• there exists an element .vi;Ai/ 2 E.3/ such that

xD viCAi Qx; e3 D Ai Qe3
on Ui, for iD 0; : : : ;k. By assumption, v0 D 0 and A0 D I3.

Let pi D �.ti/, for iD 0; : : : ;kC1, so p0 D p and pkC1 D q.
On U0 we have xD Qx and e3D Qe3 and on U1 we have xD v1CA1 Qx and e3D A1Qe3.

Thus, on the open neighborhood U0\U1 of p1 we have

xD v1CA1x; e3 D A1e3;

so

.I3�A1/dxD 0; .I3�A1/e3 D 0;
at every point of U0\U1. Therefore, A1 D I3 and then v1 D 0, and

xD Qx; e3 D Qe3
on U0[U1. Repeating this argument for U2; : : : ;Uk, we reach the conclusion that
Qx D x and Qe3 D e3 on Uk, so Qx.q/ D x.q/ and Qe3.q/ D e3.q/, as desired. We have
proved that QxD x and Qe3 D e3 on all of M. ut
Theorem 4.19 (Bonnet’s Existence Theorem [14]). Let .M; I/ be a simply con-
nected Riemannian surface with Gaussian curvature K. Let II be a symmetric
bilinear form field on M. Suppose that II satisfies the Gauss and Codazzi equations
in the sense that for any orthonormal coframe field �1;�2 in U�M, with Levi-Civita
connection form !12 D �!21 , the smooth function coefficients hij D hji, i; j D 1;2 of
II defined by

II D h11�
1�1C2h12�

1�2Ch22�
2�2;
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satisfy the Gauss equation

K D h11h22�h212 (4.41)

and the Codazzi equations

2X
kD1
.dhik�

2X
jD1
.hij!

j
kChjk!

j
i//^� k D 0; (4.42)

for i D 1;2. Then there exists a smooth immersion x W M! R3 with unit normal
vector field e3 such that I D dx � dx and II D�de3 � dx.

Proof. It is known that a simply connected surface M is homeomorphic to the plane
R2 or to the sphere S2.

If M is homeomorphic to R2, then it possesses a global orthonormal coframe
field �1;�2 for I, with corresponding Levi-Civita connection form !12 D �!21 . Let
hij D hji be the smooth coefficients of II relative to this coframe field on U, and
define smooth 1-forms on U by

!3i D
2X

jD1
hij�

j D�!i
3;

for iD 1;2. Consider the matrix valued 1-forms on M,

� D
0
@�

1

�2

0

1
A ; ! D

0
@ 0 !12 !

1
3

!21 0 !23
!31 !

3
2 0

1
A :

Then .�;!/ is an E .3/-valued 1-form on M. The Gauss and Codazzi equa-
tions (4.41) and (4.42) imply that

.d�;d!/D .�!^�;�!^!/:
By the Cartan–Darboux Existence Theorem 2.25, there exists a smooth map

.x;e/ WM! EC.3/D R3ÌSO.3/;

such that .e�1dx;e�1de/D .�;!/. In particular,

dxD �1e1C�2e2; de3 D !13e1C!23e2;

shows that x W M! R3 is an immersion with smooth unit normal vector field e3,
such that on M,

dx � dxD
2X

iD1
� i� i D I; �de3 � dxD !3i � i D hij�

i� j D II: (4.43)
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In the case when M is homeomorphic to S2, we know that for any point m 2 M,
the complement U D M n fmg is homeomorphic to R2, so the above proof gives a
smooth map .x;e/ W U ! EC.3/ satisfying (4.43). Taking the complement QU of a
different point Qm 2M, we obtain a smooth map .Qx; Qe/ W QU! EC.3/ satisfying

d Qx � d QxD I; �dQe3 � d QxD II:

Apply the Bonnet Congruence Theorem 4.18 to .x;e3/ and .Qx; Qe3/ restricted to
U\ QU, to get an element .v;A/ 2 E.3/ such that on U\ QU,

QxD vCAx; Qe3 D Ae3:

If we replace .x;e/ by .v;A/.x;e/, then (4.43) continues to hold on U, and on U\ QU
we have Qx D x and Qe3 D e3, thus showing that x and e3 extend smoothly to all of
M D U[ QU and satisfy (4.43) on M. ut
Remark 4.20. By Cartan’s Lemma, the Codazzi equations (4.42) are equivalent to
the equations

hijk D hikj

for all i; j;k, where the functions hijk D hjik are defined by (4.19).

4.5 Tangent and curvature spheres

Example 4.21. The oriented sphere with center p2R3 and signed radius 0¤ r 2 R
is

Sr.p/D fx 2 R3 W jx�pj2 D r2g

with unit normal vector field n.x/D .p�x/=r. Thus, the orientation is by the inward
pointing normal when r>0, and by the outward normal when r<0. The unit sphere
is S1.0/, which we denote by S2. Its default orientation is by the inward pointing
normal n.x/D�x. The spheres Sr.p/ are immersed surfaces. In a neighborhood of
any point on Sr.p/ there is a first order frame field .x;e/ with e3 D n D 1

r .p� x/.
Then de3 D dn D � 1r dx, which implies that !i

3 D � 1r!i, for i; j D 1;2, and the
principal curvatures are both 1=r. The second fundamental form is

II D !31!1C!32!2 D
1

r
.!1!1C!2!2/D 1

r
I:

The Gaussian curvature is K D 1=r2 and the mean curvature is H D 1=r.
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Example 4.22. Fix n 2 S2 and h 2 R. The oriented plane in R3 with unit normal n
and signed height h is

˘h.n/D fx 2R3 W x �nD hg:

These are immersed surfaces. There is a first order frame field .x;e/ on all of˘h.n/
with e3 D n, which is constant, so !31 D 0D !32 , the principal curvatures are zero,
and the second fundamental form is identically zero.

Theorem 4.23 (Totally umbilic case). Suppose that every point of a connected
immersed surface x W M ! R3 is umbilic. Then either x.M/ is an open subset of
a sphere or it is an open subset of a plane.

Proof. We may assume that the immersion x possesses a smooth unit normal vector
field n W M ! S2, for if it does not, then there is a double cover ' W QM ! M for
which the immersion x ı' W QM! R3 possesses a smooth unit normal vector field,
and the images x.M/ D x ı '.M/. We consider now only first order frame fields
.x;e/ W U! EC.3/ for which e3 D n on U. If x is totally umbilic, then for such a
first order frame field we have !31 D a!1, and !32 D a!2, where a W U! R is the
principal curvature function. Taking the exterior derivative of these equations and
using the structure equations of EC.3/, we find that a must be constant on M.

If a¤ 0, then d.xCn=a/D 0, so xCn=a is constant on M and x.M/ is a subset of
the oriented sphere S1=a.xCn=a/. This result has a more abstract proof, which we
present now. It can be applied to submanifolds of homogeneous spaces whenever
the invariants are constant. The equations

!3 D 0; !1 D 1

a
!31 ; !2 D 1

a
!32 ;

define a 3-plane distribution on EC.3/ whose dual vector description

hD f.
0
@s=a

t=a
0

1
A ;
0
@0 �r �s

r 0 �t
s t 0

1
A/ W r;s; t 2 Rg � E .3/

is a Lie subalgebra, since the defining equations are all left-invariant 1-forms on
E.3/. We have a Lie algebra isomorphism

o.3/Š h; X$ .�X
�3

a
;X/:

Its corresponding Lie subgroup, obtained by exponentiation,

H D f..I�A/
�3

a
;A/ W A 2 SO.3/g;
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is the maximal integral submanifold of h passing through the identity element
.0; I/ 2 EC.3/. Its projection by � W EC.3/! R3 is

H0D S1=a.
1

a
�3/:

Right cosets of H are the other maximal integral submanifolds of h. The set of all
first order oriented frames over x is a connected 3-dimensional integral submanifold
of h, so it must be contained in a right coset of H. For a point m 2M, this coset must
be .x.m/;e.m//H, for a first order frame .x;e/.m/ 2 EC.3/. Then

x.M/� .x.m/;e.m//H0D .x.m/;e.m//S1=a.
1

a
�3/D S1=a.x.m/C 1

a
n.m//:

If aD 0, then h is defined by the equations !3 D 0, !31 D 0, !32 D 0, so it is a Lie
subalgebra of EC.3/ whose Lie subgroup is

H D f
0
@
0
@s

t
0

1
A ;
0
@ A

0

0

0 0 1

1
A
1
A W s; t 2 R; A 2 SO.2/g:

The set of all oriented first order frames along x must then be a coset .x.m/;e.m//H,
for a first order frame at a point m 2M. Then

x.M/� fx.m/C se1.m/C te2.m/ W s; t 2Rg;

which is the plane through x.m/ with unit normal n.m/, that is, ˘h.n.m//, where
hD .x.m/C se1.m/C te2.m// �n.m/D x.m/ �n.m/. ut
Definition 4.24. An oriented tangent sphere to an immersion x W M2 ! R3 at a
point m 2M, with unit normal vector n at m, is any oriented sphere or plane through
x.m/ with unit normal n at x.m/.

The set of all oriented tangent spheres to x at m with unit normal n is

fSr.x.m/C rn/ W 0¤ r 2 Rg[f˘n�x.m/.n/g:

Each of the oriented tangent spheres has its center on the oriented normal line
fx.m/Crn W r 2Rg. It is convenient to refer to all the elements of the set of oriented
tangent spheres as spheres, with the oriented tangent plane being thought of as an
oriented sphere with infinite radius.

Definition 4.25. An oriented curvature sphere at m 2M of an immersion x WM2!
R3 with unit normal n at m is an oriented tangent sphere at m whose principal
curvature is equal to a principal curvature of x at m for the normal n.
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If m 2 M is nonumbilic for x, then there are two distinct oriented curvature
spheres at m for a given unit normal vector n. If m is umbilic, then there is only
one, but we say it has multiplicity two. If a is a non-zero principal curvature of x at
m relative to n, then

S1=a.x.m/C 1
a

n/

is an oriented curvature sphere at m. If 0 is a principal curvature of x at m, then the
oriented plane

˘x.m/�n.n/

is an oriented curvature sphere at m. If the unit normal vector n of x at m is replaced
by �n, then the curvature spheres at m remain unchanged, but with opposite
orientation, as they will now have the orientation that equals �n at m.

For r¤ 0, and for first order frame field .x;e/ along x on U, the smooth map

SD xC re3 W U! R3 (4.44)

determines the family Sr.xC re3/ of oriented tangent spheres at the points of U
relative to the unit normals e3. The smooth map

SD e3 W U! R3 (4.45)

determines the oriented tangent planes˘e3�x.e3/ with these normals.

Proposition 4.26. If a family of oriented tangent spheres is determined by a smooth
map (4.44) or (4.45), then it is an oriented curvature sphere at a point m 2U if and
only if dS at m has rank less than two.

Proof. If S is given by (4.44), then

dSD dxC rde3 D
2X
1

.!iC r!i
3/ei;

which has rank less than two at a point m 2 U if and only if !iC r!i
3 D 0 at m,

for iD 1 or iD 2, which holds if and only if 1=r is a principal curvature of x at m
relative to e3.m/. The proof is similar for the case of the map (4.45) ut

Example 4.27 (Curves on S2). Consider the transitive action of SO.3/ on the
unit sphere S2 � R3 obtained from the standard matrix multiplication action of
SO.3/ on R3. Let �1 be the origin of S2 and let � W SO.3/! S2 by the projection
�.A/D A�1. Let � W J! S2 � R3 be a curve on the unit sphere, parametrized by
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arclength x, where J is an interval in R. Its unit tangent vector is TD P� , where dot
indicates derivative with respect to x. The unit normal vector is N D � �T. The
frame field eD .� ;T;N/ W J! SO.3/ along � satisfies

e�1deD
0
@0 �1 0

1 0 ��
0 � 0

1
A

for some smooth function � W J! R, called the curvature of � in S2. This is called
the Frenet frame along � . Its Serret-Frenet equations are

P� D T; PTD�� C�N; PND��T: (4.46)

Reversing the orientation of � , by reversing the sign of x, reverses the sign of �.

Example 4.28 (Cones). A general cone in R3 is defined as follows. We may assume
that the vertex is at the origin and the profile curve, which is the intersection of the
cone with the unit sphere, has arclength parametrization � W J! S2, where J is some
open interval. We use the notation of Example 4.27. If M D J�R, then the cone is
the immersed surface

x WM! R3; x.x;y/D e�y� .x/:

Then

dxD e�y P� .x/dx� e�y� dy (4.47)

from which we calculate the first fundamental form

I D dx � dxD e�2y.dx2Cdy2/:

The dual coframe field is

!1 D e�ydx; !2 D e�ydy:

We can also see from (4.47) that an oriented first order frame field along x is given
by .x;e/, where the columns of e are

e1 D P� ; e2 D�� ; e3 D e1� e2 D � � P� :

Then R� D e2C�.x/e3, by (4.46), so the second fundamental form is

II D�dx � de3D �.x/e�ydxdxD �.x/ey!1!1;
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from which we see that the principal curvatures are a D �.x/ey and c D 0,
respectively. The Hopf invariant h relative to .x;e/ and the mean curvature H are

hD �.x/ey

2
DH:

The oriented curvature spheres at .x;y/ 2M relative to e3 are

S 1
a
.xC 1

a
e3/ and ˘x�e3 .e3/: (4.48)

The oriented plane passes through the origin, since x � e3 D 0.

4.6 The Gauss map

Let n be a smooth unit normal vector field along the immersed surface x WM! R3.
The smooth map

n WM! S2 � R3

is called the Gauss map of x. It is defined up to sign for a connected oriented surface.
For an unoriented surface it is defined only locally, or must be regarded as a map
into the real projective plane RP2. If .x;e1;e2;e3/ is a first order frame field along x
on U �M, with e3 D n, then

de3 D !13e1C!23e2 (4.49)

shows that .n;e1;e2;e3/ is a first order frame field along n. The Gauss map need not
be an immersion. In fact, dn has rank two if and only if

0¤ !13^!23 D K!1^!2I

that is, if and only if K ¤ 0. The first fundamental form of n (restricting ourselves
to the points of M where K is nonzero) is

III D de3 � de3;

which is called the third fundamental form of x.

Theorem 4.29. Let x W M! R3 be an immersion of a connected surface M, and
suppose x has a globally defined unit normal vector field n WM! S2. Its Gauss map
is conformal if and only if the mean curvature of x is identically 0 on M or x is
totally umbilic.
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Proof. That the Gauss map is conformal means that it pulls back the metric on the
sphere to a multiple of the metric induced on M by x; that is, III is a multiple of I
on M. In general, KI�2H IIC III D 0 on M (see Problem 4.69), so III is a multiple
of I if and only if 2H II is a multiple of I. This last condition is true if and only if
at each point of M either H D 0 or x is umbilic. In particular, if H is identically 0
on M, or if x is totally umbilic, then the Gauss map is conformal. Conversely, if the
Gauss map is conformal, suppose that H is not identically 0 on M. Then

W D fm 2M W H.m/¤ 0g
is a non-empty open subset of M. On a connected component W0 of W, we must have
x totally umbilic. Consequently, its principal curvatures and H must be constant
on W0. This constant H must be non-zero, and it must be the value of H on the
closure of W0 in M. Therefore, W0 must equal its closure, so W0 D M and x is
totally umbilic on M. ut
Remark 4.30. Equation (4.49) and the structure equations (4.18) show that !12 is
the Levi-Civita connection form of III with respect to this frame field along nD e3.
Thus, altering our view of the Gauss equation (4.13) slightly, we interpret d!12 D
!13^!23 to mean that the Gaussian curvature of III is 1. Looking again at the Gauss
equation, we see that

!13^!23 D K !1^!2; (4.50)

which shows that K is the ratio of the area element of III to the area element of I.
This is a modern version of Gauss’s definition of K in [72].

Definition 4.31. The total curvature of an immersion x WM! R3 of a connected,
compact, oriented surface M is

Z
M

K dA;

where dA is the area form of the induced metric on M.

If n WM! S2 is the Gauss map of x, then a first order frame field .x; .e1;e2;e3//
on an open subset U is positively oriented if e3 D n and dA D !1 ^!2 on U.
Equation (4.50) implies that the total curvature of x is related to the area of the
image of the Gauss map. In fact, recall a basic feature of integration on manifolds.
If g WM! N is a diffeomorphism between connected oriented surfaces and if 	 is a
smooth 2-form on N with compact support, then

Z
M

g�	 D˙
Z

N
	;

where the sign is C if g preserves orientation and is � if g reverses orientation. To
apply this to the Gauss map of an immersion x WM! R3, which is generally not a
diffeomorphism, we need the concept of the degree of a map between surfaces.
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Let M2 and N2 be compact, connected, oriented surfaces and let g WM! N be
a smooth map. A point y 2 N is a regular value of g if g�1fyg contains no critical
points, where x 2M is a critical point of g if the rank of dgx is less than two. Note
that if y is not in the image of g, then it is a regular value, since the empty set
contains no critical points of g. Regular values exist by Sard’s Theorem (see Conlon
[53, p. 80]). By the inverse function theorem, if y2N is a regular value of g, then for
x 2 g�1fyg there exists a neighborhood U of x that g maps diffeomorphically onto a
neighborhood of y. In particular, g must be one-to-one on U, so U\ g�1fyg D fxg.
Thus, g�1fyg is a set of isolated points in M, so is finite, since M is compact.

For a regular value y 2 N of g, suppose g�1fyg D fx1; : : : ;xkg, for some whole
number k 
 1. Let


j D
� C1; if dgxj preserves orientation,
�1; if dgxj reverses orientation,

for jD 1; : : : ;k.

Definition 4.32. The local degree of g at the regular value y 2 N is

degy.g/D
kX
1


j;

if g�1fyg ¤ ;. Otherwise, the local degree of g at y is zero.

The following is a special case of [53, Proposition 8.7.2]. To prove it, we shall
assume the result that for any compact, connected, oriented surface M, the linear
functional defined on de Rham cohomology

Z
M
W H2.M/! R;

Z
M
Œ��D

Z
M
�

is an isomorphism. Here � is a smooth 2-form on M representing the cohomology
class Œ��. See Corollary 8.6.5 in [53] for a proof. One consequence of this result is
that if � and 	 are smooth 2-forms on M such that

R
M�D

R
M 	, then there exists a

smooth 1-form ˛ on M such that ��	 D d˛.

Proposition 4.33. Let M and N be compact, connected, oriented surfaces and let
g WM! N be a smooth map. If 	 is a smooth 2-form on N, and if y 2 N is a regular
value of g, then

Z
M

g�	 D degy.g/
Z

N
	:

Proof. Given the regular value y of g, let g�1fyg D fx1; : : : ;xkg, for some k 
 1. The
case where y is not in the image of g will be left to Problem 4.70. There exists an
open, connected, neighborhood V � N of y such that

g�1V D U1[� � �[Uk;
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a union of disjoint open sets such that xj 2 Uj and the restriction gj D gjUj maps Uj

diffeomorphically onto V , for jD 1; : : : ;k. There exists a smooth 2-form Q	 on N such
that the support of Q	 is a subset of V and

R
N Q	 D

R
N 	. Thus 	� Q	 D d˛, for some

smooth 1-form ˛ on N. Now g� Q	 DPk
1 !j, where the support of the smooth 2-form

!j is a subset of Uj, and !j D g�
j Q	, for jD 1; : : : ;k. Since dgjxj

D dgxj , we have

Z
Uj

!j D 
j

Z
V
Q	 D 
j

Z
N
Q	;

for jD 1; : : : ;k. Using Stokes’s Theorem, we have

Z
M

g�	 D
Z

M
g�. Q	Cd˛/D

kX
1

Z
M
!jC

Z
M

d.g�˛/

D
kX
1

Z
Uj

!j D
kX
1


j

Z
V
Q	 D degy.g/

Z
N
	:

ut
Remark 4.34. Since the two integrals in Proposition 4.33 are independent of the
choice of regular value y of g, it follows that degy.g/ is independent of y and we can
write simply deg.g/D degy.g/, for any choice of regular value of g.

Corollary 4.35. If n WM! S2 is the Gauss map of an immersion x WM! R3 of a
compact, connected, oriented surface, then the total curvature of x is the degree of
the Gauss map times the area of S2:

Z
M

K dAD 4� deg.n/:

4.7 Isoparametric, Dupin, and canal immersions

Definition 4.36. An immersion is isoparametric if its principal curvatures are
constant. A principal curvature satisfies the Dupin condition if it is constant along
its lines of curvature. The immersion is canal if one of its principal curvatures
satisfies the Dupin condition. It is Dupin if both principal curvatures satisfy the
Dupin condition. A cyclide of Dupin is the image of a Dupin immersion.

A slight variation of Proposition 4.26 gives the following characterization of the
Dupin condition in terms of oriented curvature spheres.

Proposition 4.37. Let x WM! R3 be an umbilic free immersion with unit normal
vector field e3. A principal curvature, a say, satisfies the Dupin condition if and only
if the oriented curvature sphere SD xC 1

a e3 has rank one at every point of M.
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Proof. Let .x;e/ WU�M be a second order frame field along x whose normal vector
is e3. Then

dSD�a1
a2

e3!1C .a� c

a
e2� a2

a2
e3/!2;

where daD a1!1Ca2!2 and !1;!2 is the coframe field dual to .x;e/. From this we
see that dS has rank one if and only if a1D 0 on U if and only if a satisfies the Dupin
condition on U. Since any point of M is in some such U, the proof is complete. ut
Example 4.38 (Plane curves). A smooth curve � W J! R2, �.t/D f .t/�1Cg.t/�2
in the oriented plane R2 is regular if

wD
s

df

dt

2

C dg

dt

2

> 0

on the open interval J � R. An arclength parameter sD R t
t0

w.u/du satisfies ds
dt D w.

The unit tangent vector field along � is

TD P� D d�

ds
D 1

w

d�

dt
D Pf �1C Pg�2:

where dot denotes derivative with respect to s. The principal normal of � is the unit
vector field N along � obtained by rotating T by �=2 in the positive direction,

ND�Pg�1C Pf �2:

The curvature of � is

� D PT �ND f 0g00�g0f 00

w3
;

where prime denotes derivative with respect to t. The Euclidean group E.2/DR2Ì
O.2/ acts transitively on R2 by .a;A/x D aCAx. A Frenet frame field along � is
.�;e/ W J! EC.2/, where the columns of e 2 SO.2/ are

e1 D T; e2 D N:

It pulls back the Maurer–Cartan form to

.x;e/�1d.x;e/D
��
1

0

�
;

�
0 ��
� 0

��
ds;

where � is the curvature of � .
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Proposition 4.39 (Isoparametric surfaces, nonumbilic). If x W M ! R3 is a
connected isoparametric surface with unit normal vector field n W M! S2, whose
principal curvatures a and c are distinct with jaj > jcj, then cD 0 and x.M/ is an
open subset of a circular cylinder of radius 1=jaj.
Proof. The proof is a special case of Proposition 3.11. Replacing n by �n, if
necessary, we may assume a > 0. Having no umbilic points, x has a second order
frame field about any point of M. Let.x;e/ W U! EC.3/ be the second order frame
field with e3 D n and

!31 D a!1 and !32 D c!2:

By the structure equations (4.37), acD 0, so cD 0. The components of the pull back
of the Maurer–Cartan form now look like

!3 D 0; !12 D 0; !31 D a!1; !32 D 0 (4.51)

where a is a positive constant, and !1;!2 is an orthonormal coframe field on U.
Regard (4.51) as the equations defining a 2-dimensional distribution h on EC.3/.
The structure equations imply that h satisfies the Frobenius condition. Because the
equations of h are given in terms of left-invariant 1-forms with constant coefficients,
it follows that it is a Lie subalgebra of E .3/,

hD
8<
:
0
@
0
@s

t
0

1
A ;
0
@ 0 0 �as
0 0 0

as 0 0

1
A
1
A W s; t 2 R

9=
; :

If H is the maximal integral submanifold of h through the identity element of EC.3/,
then H is the Lie subgroup of E.3/ given by exponentiation of h,

H D f
0
@
0
@

1
a sinas

t
1
a .1� cosas/

1
A ;
0
@cosas 0 �sin as

0 1 0

sinas 0 cosas

1
A
1
A W s; t 2 Rg:

The other integral surfaces of h are the right cosets of H. There is a second order
frame field .x;e/ WM! EC.3/ for which e1 is the principal direction of the positive
principal curvature and e3 D n, because it is unique at each point. Since M is
connected, we have .x;e/.M/ contained in a right coset of H, which must be
.x.m0/;e.m0//H for a point m0 2M. Hence

x.M/D .x.m0/;e.m0//H0D .x.m0/;e.m0//C.a/

where C.a/ is the circular cylinder x2C .z� 1
a /
2 D 1

a2
� R3, since

C.a/D H0D ft.1
a

sinas; t;
1

a
.1� cosas// W s; t 2 Rg:

ut
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4.7.1 Surfaces of revolution

Example 4.40 (Surfaces of revolution). In the half-plane given by the x1x3-plane
of R3 where x1 > 0, oriented by dx1 ^ dx3 > 0, consider a regular, smooth profile
curve �.u/D .f .u/;0;g.u//, for u in a connected open interval J, where f > 0 on J.
The surface of revolution obtained by revolving this curve around the x3-axis is the
immersion

x W J�S1! R3; x.u;v/D t . f .u/cosv; f .u/sinv;g.u//: (4.52)

Notice that v is a local coordinate on the complement of any point of the circle S1

and that dv is a smooth 1-form defined on all of S1. Then

dxD xuduCxvdv D t. Pf cosv; Pf sinv; Pg/duC t.�f sinv; f cosv;0/dv:

where xu D @x
@u and xv D @x

@v
. A first order frame field along x is given by

e1 D 1

w
xu D 1

w
t. Pf cosv; Pf sinv; Pg/; e2 D 1

f
xv D t.�sinv;cosv;0/;

where wD
q
Pf 2C Pg2, and unit normal vector

e3 D e1� e2 D 1

w
t.�Pgcosv;�Pgsinv; Pf /:

The corresponding coframe field is

!1 D dx � e1D wdu; !2 D dx � e2D f dv;

and then

!31 D de1 � e3 D
Pf Rg� PgRf

w3
!1 D �!1; !32 D de2 � e3 D Pg

wf
!2;

where �.u/ is the curvature of the profile curve (see Example 4.38). This frame field
is second order, smooth on all of J�R=2� . The principal curvatures are

aD �; cD Pg
wf
:

The induced metric and the second fundamental form on J�S1 are the symmetric
bilinear form fields

I D !1!1C!2!2 D w2du2C f 2dv2

II D !31!1C!32!2 D �!1!1C
Pg

wf
!2!2

(4.53)
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The level curves of u are called circles of latitude or parallels of latitude. The
level curves of v are called meridians (all congruent to the profile curve). Tangents
to these level curves are principal directions. These level curves are thus lines of
curvature of x. The Gaussian and mean curvatures are

K D � Pg
wf
; H D 1

2
.�C Pg

wf
/:

An immersion of revolution possesses a globally defined smooth second order
frame field. This is possible because our definition of immersion of revolution
has excluded the possibility that the immersion meets the axis of rotation. See
Example 4.11 for what can happen when the surface meets the axis of rotation.

The following example has a second order frame field defined everywhere, even
though there are whole curves of umbilic points.

Example 4.41 (Curves of umbilics). Fix L > 0 and rotate the curve x1 D L=.1C
.x3/2/ about the x3-axis. This is parametrized by the immersion of revolution

x W R�S1! R3; x.u;v/D t.
L

1Cu2
cosv;

L

1Cu2
sinv;u/;

with profile curve �.u/D L
1Cu2

�1Cu�3, u2R. Using the formulas in Example 4.40,
we find the principal curvatures to be

aD �2L.3u2�1/.1Cu2/3

.4L2u2C .1Cu2/4/3=2
; cD .1Cu2/3

L.4L2u2C .1Cu2/4/1=2
: (4.54)

Therefore, when uD 0

aD 2L; cD 1=L:

If LD 1=p2, then the circle of latitude uD 0 consists entirely of umbilic points. As
with any surface of revolution, however, the second order frame field constructed in
Example 4.40 is defined at every point of this surface.

Exercise 13. Prove that when u is arclength parameter of the profile curve of a
surface of revolution, then

!12 D�Pf dv

and the Gaussian curvature

K D� Rf
f
: (4.55)
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Example 4.42 (The pseudosphere). By (4.55), the surface of revolution, with profile
curve parametrized by arclength, has constant Gaussian curvature equal to �1 if and
only if f .u/ satisfies the differential equation

Rf � f D 0;

whose general solution is

f .u/D AcoshuCBsinhu;

where A and B are arbitrary constants, subject only to the requirements f > 0 and
Pf 2 	 1 on the interval J. Without loss of generality we may assume 02 J so that AD
f .0/ and BD Pf .0/ are the initial conditions on f . The pseudosphere is the solution
obtained in the case AD BD 1, in which case f .u/D eu and

Pg2 D 1� Pf 2 D 1� e2u

requires that J D�1 < u	 0, and thus 0 < f 	 1. There is no loss in generality in
assuming the initial condition g.0/D 0. For convenience we assume that g 
 0 on
J, which amounts to taking the minus sign

PgD�
p
1� f 2 D�

p
1� e2u:

This profile curve �.u/D f .u/�1Cg.u/�3 is called the tractrix. Since df D fdu and
dgD�p1� f 2du, the tractrix satisfies the differential equation

dgD�
p
1� f 2

f
df :

It is a simple exercise to show that 1 is the length of the segment of the tangent line
at �.u/ from �.u/ to where it meets the �3-axis, for every u 2 J. In order to solve
for g, we abandon the arc-length parameter u and make the substitution f D sin t,
0 < t 	 �=2, in which case we get

gD�
Z

cos2 t

sin t
dtD

Z
.sin t� csc t/dtD�cos tC log jcsc tC cot tjCC: (4.56)

The constant of integration CD 0 in order to have gD 0 when f D 1, that is, when
t D �=2. We arrive at the pseudosphere x W J� S1! R3 given by (4.52) for f .t/ D
sin t and g.t/ given by (4.56).

Remark 4.43. An immersion x W M2 ! R3 whose induced metric has constant
Gaussian curvature K D �1 is called a pseudospherical immersion. By an 1875
theorem of Bäcklund, these occur in pairs whose corresponding points are joined by
tangent line segments of a fixed length and making a fixed angle with the normals.
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This correspondence is related to the Bäcklund transformation of the sine-Gordon
equation. For details and references see Chern [46] or Chern and Tenenblatt [49].
Mary Shepherd [151] used the method of moving frames to study the Bäcklund
correspondence from the point of view of surfaces immersed in the four-dimensional
space of all lines in R3, on which E.3/ acts transitively.

Example 4.44. In 1841 Charles Delaunay [59] found all surfaces of revolution
whose mean curvature is constant. The profile curve in Delaunay’s examples is a
roulette of a conic, which is the trace of a focus of a conic section as it rolls without
slipping along one of its tangent lines. These consist of a catenary (from a parabola),
undulary (from an ellipse), nodary (from an hyperbola), a straight line parallel to the
axis (from a circle), or a semicircle centered on the axis of revolution (from a line
segment).

Theorem 4.45 (Delaunay). The complete immersed surfaces of revolution in R3

with constant mean curvature are those obtained by rotating about their axes the
roulettes of the conics.

See, for example, Eells [63] for a modern exposition, with proofs, of these
examples. Given constants a> b> 0, the parametrized ellipse x.t/D acos tCbsin t

has eccentricity eD
p

a2�b2
a , so 0< e< 1. In the limit as e! 0 the ellipse becomes a

circle, and as e! 1 it becomes a line segment. Figures 4.2 and 4.3 show unduloids
coming from an ellipse with eccentricity close to 0 through eccentricity close to 1,
respectively.

Fig. 4.2 Unduloids from an
ellipse with e D 0:222205 and
e D 0:484123, respectively.

Fig. 4.3 Unduloids from an
ellipse with e D 0:661438 and
e D 0:866025, respectively.
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4.8 New immersions from old

Given an immersion x W M2 ! R3 whose image is contained in an open subset
V � R3, and given a diffeomorphism F W V ! F.V/ � R3, one obtains a new
immersion QxD F ı x W M! R3. With a few exceptions, the geometry of Qx will be
quite unrelated to the geometry of x. One exception is when F is an isometry of R3,
in which case the geometry of Qx is the same as that of x, except for orientation
dependent concepts, which generally change sign if F is orientation reversing.
Another important exception is when F is inversion in a sphere.

Example 4.46 (Inversion). Inversion in the unit sphere S2 is

I W R3 n f0g! R3; I .x/D x
jxj2 :

Then I ıI DI shows that I DI �1 and I is a diffeomorphism. Its differential
at a point x 2R3 n f0g is

dIx D 1

jxj2 dx� 2.x � dx/
jxj4 x:

Then

dIx � dIx D 1

jxj4 dx � dx

shows that I is a conformal diffeomorphism, as it satisfies Definition 12.1. Thus,
dIx preserves angles and multiplies lengths by 1=jxj2.
Example 4.47 (Inversion of a surface). Suppose an immersion x WM2! R3 never
hits the origin of R3. Then we have the new immersion

QxDI ı xD x
jxj2 WM! R3:

If .x; .e1;e2;e3// is a first order frame field along x on an open subset U �M, let

Qei D jxj2dIxei D ei� 2x � ei

jxj2 x;

for i D 1;2;3. Then .Qx; . Qe1; Qe2; Qe3// is a first order frame field along Qx on U. From
the calculation

dQe3 D
2X
1

!i
3ei�2d

�
x � e3
jxj2

�
x� 2x � e3
jxj2

2X
1

!iei
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we get

Q!3i D !3i C
2x � e3
jxj2 !

i;

for iD 1;2. If the functions a and c are the principal curvatures of x, and if .x;e/ is
a second order frame field with !31 D a!1 and !32 D c!2, then

Q!31 D .ajxj2C2x � e3/ Q!1; Q!32 D .cjxj2C2x � e3/ Q!2

shows that .Qx; Qe/ is a second order frame field along Qx, the principal curvatures of
Qx are

QaD ajxj2C2x � e3; QcD cjxj2C2x � e3;

and Qx has the same lines of curvature as x. It also follows from these formulae that
m2M is an umbilic point of x if and only if it is an umbilic point for Qx, provided that
m is in the closure of the set of non-umbilic points of x. Any point in the complement
of this closure must be contained in an open set of umbilic points, on which there is
thus a second order frame field and so again the statement is true.

If x is a canal immersion, say with a constant along its lines of curvature, which
are the !2 D 0 curves, then daD a1!1Ca2!2 implies that a1 D 0 on the domain of
the second order frame field .x;e/, and thus

d QaD .jxj2a2C2.a� c/x � e2/!2

shows that Qa1 D 0, so Qx is a canal immersion also. By the same reasoning, if x
is a Dupin immersion, then Qx is a Dupin immersion. Inversion of a nonumbilic
isoparametric immersion is not isoparametric, for if a¤ c are constant on M, then
Qa and Qc are constant on M only if jxj2 is constant, which is not possible if x is
nonumbilic. An isoparametric immersion is, a fortiori, Dupin, so its inversion is
Dupin.

Example 4.48. The circular cylinder of radius R> 0,

x W S1�R! R3; x.s; t/D t.Rcoss;Rsin s; t/;

is isoparametric with principal curvatures aD�1=R and cD 0 relative to the normal
in the direction of xs � xt. The axis of this cylinder passes through the origin. Its
inversion is the immersion of revolution whose profile curve is the circle of radius
1=R with one point omitted, �.s/D t. 1R .1C cos s/;0;sins/, where �� < s < � , as
shown in Figure 4.4.

If the cylinder is translated so that the origin lies outside of it, say it becomes
the circular cylinder x.s; t/ D t.2C coss;sin s; t/ then its inversion is illustrated in
Figure 4.5.
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Fig. 4.4 Inversion of
x.s; t/D t.Rcos s;Rsins; t/,
opened to show detail.

Fig. 4.5 Inversion of the
cylinder
x.s; t/D t.2C cos s; sins; t/

4.8.1 Parallel transformations

Let x WM! R3 be an immersion with a smooth unit normal vector field n. For any
constant r 2 R, the parallel transformation of this oriented immersion by r is the
map

QxD xC rn WM! R3: (4.57)

In general, a parallel transformation of x does not come from composing a
diffeomorphism of R3 with x. It is a special case of a Lie sphere transformation.
These are discussed in detail in Section 15.3.
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We begin with a determination of when Qx is an immersion. If .x;e/ is any first
order frame field along x on U �M, with e3 D n on U, then

d QxD dxC rde3 D .!1C r!13/e1C .!2C r!23/e2 D Q!1e1C Q!2e2
shows that Qx is an immersion at any point where

0¤ Q!1^ Q!2 D !1^!2C r.!1^!23 C!13^!2/C r2!13^!23
D .1C r2K�2rH/!1^!2:

Thus, r must not be a root of Kr2�2HrC1D 0. These roots are

H˙pH2�K

K
D

1
2
.aC c/˙

q
1
4
.aC c/2�ac

ac
;

which are 1
a and 1

c , for C=� respectively. These are the radii of curvature of x.
Compare this to Proposition 4.26.

Assume that r is not a radius of curvature of x, so that the parallel transformation
Qx is an immersion. Then .Qx;e/ is a first order frame field along Qx on U with associated
orthonormal coframe field

Q!1 D !1C r!13 ; Q!2 D !2C r!23 : (4.58)

Its induced metric QI D d Qx � d QxD Q!1 Q!1C Q!2 Q!2 is

QI D I�2rIIC r2III

where III D de3 � de3 D !13!13 C!23!23 is the third fundamental form of x. Since
de3 D !13e1C!23e2 is the same for both frames, we have

Q!31 D !31 ; Q!32 D !32 : (4.59)

By (4.10) and (4.58), we then have

hik!
k D !3i D Q!3i D Qhij Q!j D Qhij.!

jC r!j
3/D Qhij.ıjk� rhjk/!

k;

which implies that the symmetric matrices SD .hij/ and QSD .Qhij/ satisfy

SD QS.I� rS/:

We can solve for QS provided that det.I�rS/¤ 0, which is equivalent to the condition
that r�1 not be a principal curvature of x. In that case, QS D S.I � rS/�1, so the
principal curvatures of Qx are the solutions Qa and Qc of the quadratic equation in t,
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0D det.QS� tI/D det..I� rS/�1.1C rt/.S� t

1C rt
I//:

If a and c are the principal curvatures of x, then

QaD a

1� ra
; QcD c

1� rc
: (4.60)

In particular, a point m2M is umbilic for the parallel surface QxD xCre3 if and only
if it is umbilic for x. A frame field .x;e/ is second order for x if and only if .Qx;e/
is second order for Qx, as can be seen from (4.59) and (4.58). The mean and Gauss
curvatures of x and Qx are related by

QH D H� rK

1�2rHC r2K
; QK D K

1�2rHC r2K
: (4.61)

Formulas (4.60) show that the immersions parallel to an isoparametric (respec-
tively, Dupin or canal) immersion are also isoparametric (respectively, Dupin or
canal).

Definition 4.49. A point y 2 R3 is a focal point of x if yD Qx.m/D x.m/C re3.m/
for some point m 2M and some r 2 R for which d Qx.m/ is singular. The multiplicity
of the focal point is the dimension of the kernel of d Qx.m/. The set of all focal points
of x is called the focal locus of x.

We have the following remarkable result of Bonnet’s.

Theorem 4.50 (Bonnet [15]). Let x WM!R3 be an immersion with constant mean
curvature H D .aC c/=2¤ 0 relative to the normal field e3. Consider the parallel
surface QxD xC re3.

If rD 1
2H , then Qx has constant Gaussian curvature QK D 4H2.

If rD 1=H, then Qx has constant mean curvature QH D�H.
If Qx is a parallel surface of x then x is a parallel surface of Qx. Consequently, we

can restate the result as follows. If x has constant positive Gaussian curvature K,

then QxD x˙ 1p
K

e3 has constant mean curvature QH D�˙
p

K
2

.

Proof. The results follow from (4.61). ut
Remark 4.51. In the case of a constant mean curvature immersion x, the mean
curvature H is a principal curvature at a point if and only if the point is umbilic,
while 2H is a principal curvature if and only if the point is parabolic (meaning
0 D a < c). In the case of constant positive Gaussian curvature K, we have

p
K a

principal curvature at a point if and only if the point is umbilic, while �pK is never
a principal curvature.
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Fig. 4.6 A tube about a
space curve.

4.8.2 Tubes

Let f.s/ be a smooth immersed curve in R3 parametrized by arclength s 2 J, for
some connected interval J. Let T D Pf, N, B be its Frenet frame along this curve.
We assume that the curvature �.s/ is positive at every point to insure that the Frenet
frame is defined and smooth on all of J. The Frenet-Serret equations for f are

PfD T; PTD �N; PND��TC �B; PBD��N (4.62)

where � W J!R is the torsion. Let r be a positive constant and define the tube about
f of radius r to be the map

x W J�R! R3; x.s; t/D f.s/C r.cos t N.s/C sin t B.s//: (4.63)

See figure 4.6.
Then

xs D .1� r� cos t/TC r�.�sin t NC cos t B/;

xt D r.�sin t NC cos t B/;

xs�xt D�r.1� r� cos t/.cos t NC sin t B/:

Assume that r < 1=�, so that 1� r� cos t > 0 and x will be an immersion. A first
order frame field .x;e/ is defined along x by

e3 D�cos t N� sin t B;

e1 D TD 1

1� r� cos t
.xs� �xt/;

e2 D e3� e1 D�sin t NC cos t BD 1

r
xt:

(4.64)
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Then

xs D .1� r� cos t/e1C r�e2; xt D re2

shows that the coordinate curves are orthogonal if and only if � is identically zero.
The associated orthonormal coframe field is

!1 D dx � e1D .1� r� cos t/ds; !2 D dx � e2D r.�dsCdt/; (4.65)

so that the area form is

!1^!2 D r.1� r� cos t/ds^dt

and the orientation induced on M D J�R is that of ds^dt. If f has finite length L,
then the area of x.M/ is

Z
J�Œ0;2��

!1^!2 D
Z 2�

0

Z L

0

r.1� r� cos t/dsdtD 2�rL;

a version of Pappus’s Theorem. Moreover,

!31 D de1 � e3 D�� cos tdsD �� cos t

1� r� cos t
!1;

!32 D de2 � e3 D dtC �dsD 1

r
!2

(4.66)

imply that the frame field .x;e/ is second order along x and the principal curva-
tures are

aD �� cos t

1� r� cos t
; cD 1

r
: (4.67)

There are no umbilic points. The principal curvature c is constant on M, so x is a
canal immersion. If f is a simple closed analytic curve, then the tube is a compact,
analytic, canal surface. By (4.65), the lines of curvature of c are the coordinate
curves s D s0, for s0 2 J any constant. The lines of curvature of the principal
curvature a are the integral curves of dtC �dsD 0, by (4.66).

In general, the focal locus associated to the principal curvature c, of a tube (4.63)
about a curve f, is xC c�1e3, which is just f, the curve we began with. It is
special when a focal locus of an immersion degenerates into a curve. In fact, this
characterizes Dupin immersions. See Problem 4.81.

4.8.3 Curvature spheres along canal immersions

Let x WM!R3 be a canal immersion for which the principal curvature a is constant
along its connected lines of curvature. In this subsection we want to prove that the
curvature spheres relative to a are constant along the connected lines of curvature
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of a, and these lines of curvature are just the intersection of the curvature sphere
with x.M/. Moreover, x of these lines of curvature are line segments or arcs of
circles. In particular, they are plane curves. These results are easily pictured for the
case of circular tori of revolution, circular cylinders, and circular cones.

Exercise 14. Use the Rank Theorem to prove the following technical result needed
in the proof of the next proposition. If a smooth map f W M2! Nn has rank equal
to one at every point of M, then any connected level set of f is an embedded curve
� W J �R!M for which there exists a non-zero vector v 2 TqN, where qD f .s/ for
every s 2 J, such that

df�.s/T�.s/M D span v � TqN;

for every s 2 J. For a statement and proof of the Rank Theorem, see Lee [110,
Theorem 7.13, p. 167]. It is not true, in general, that f .M/ is a smooth curve in N.
See Cecil-Ryan [40, Remark 4.7, pp. 143–144] for a counterexample.

Proposition 4.52. Let x W M! R3 be an immersion with unit normal vector field
n W M ! S2 � R3 and with distinct principal curvatures at each point of M. Let
� W J ! M be a connected line of curvature for the principal curvature a, where
J � R is connected and contains 0. Then a is constant on �.J/ if and only if its
curvature sphere is constant on x ı�.J/.

If the principal curvature a is constant on each of its connected lines of curvature,
then x sends its lines of curvature to circles or lines in R3.

See Cecil-Ryan [40, Chapter 2, Section 4] for a statement and proof of this
proposition in arbitrary dimensions.

Proof. Let .x;e/ W U ! E.3/ be a second order frame field on a neighborhood U
containing �.J/ such that e1.�.s// D .x ı �/0.s/ for every s 2 J and e3 D n on U.
Using the notation of Remark 4.12 and Exercise 10, we have

.x ı�/0.s/D dx.� 0.s//D e1.�.s//;

.x ı�/00.s/D de1.� 0.s//D .pe2Cae3/.�.s//
(4.68)

Suppose that a is never zero on U and consider the focal map

f W U! R3; f D xC 1
a

nD xC 1
a

e3;

whose derivative is, by the structure equations

df D�a1
a2
!1e3C ..1� c

a
/e2� a2

a2
e3/!2; (4.69)

where daD a1!1Ca2!2 on U. Then f .�.s//D x.�.s//C 1
a.�.s//e3.�.s// is the center

of the curvature sphere through x.�.s//. By (4.69) and the fact that !2.� 0/D 0, we
have
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.f ı�/0D� a1 ı�
.a ı�/2 e3 ı� D

�
1

a ı�
�0

e3 ı�

and .aı�/0 D a1 ı� on J. Thus, the centers, f .�.s//, of the curvature spheres along
� are constant if and only if their radii, 1=a.�.s//, are constant. But the curvature
spheres along � are constant if and only if their centers and radii are constant.

At a point m 2 M where a.m/ D 0, the curvature sphere at x.m/ is the tangent
plane fy 2 R3 W y �n.m/D x.m/ �n.m/g. If a.�.s//D 0 for all s 2 J, then

.e3 ı�/0.s/D�.a ı�/.s/.e1 ı�/.s/D 0;

for all s 2 J, which shows that e3 ı � is constant on J and thus the tangent planes
along x ı � are all parallel. It follows that they must coincide along the connected
curve � .

We have now proved that if � W J!M is a connected line of curvature of a and if
a ı� is constant on J, then x ı�.J/� x.M/\S, where S is the necessarily constant
curvature sphere (or plane) along xı� . If aı� is a non-zero constant, then the curve
x ı �.J/ lies in a sphere. A spherical curve is a circle if and only if it is a planar
curve. By (4.69),

df�.s/T�.s/M � spanf
�
.1� c

a
/e2� a2

a2
e3
�
.�.s//g

D spanf.ae2�pe3/.�.s//g;
(4.70)

since a1 ı� D .a ı�/0D 0 on J, and where we use the structure equation a2 D .a�
c/p in (4.37). From (4.68) we see that .xı�/0.s/ and .xı�/00.s/ are both orthogonal
to .ae2�pe3/.�.s//, so x ı� is a planar curve if and only if the vectors

.ae2�pe3/.�.s//

are all parallel, for all s 2 J. Without further assumptions about the principal
curvature a, these vectors are not all parallel, in general. See Problems 4.78 and 4.82.

Assume now that a is never zero and that it is constant on each of its connected
lines of curvature. Then a1 D 0 on all of U, and (4.69) shows that the focal map f
has constant rank equal to 1 on M. Use the notation above for a connected line of
curvature � W J!M for the principal curvature a and for a second order frame field
.x;e/ WU! E.3/, where �.J/�U. Then f .�.J//D y0 2R3 is a single point and by
Exercise 14, there is a unit vector v 2 R3 such that

df�.s/T�.s/M D Rv;

for every s 2 J. Then the vectors .ae2� pe3/.�.s// are all non-zero multiples of v,
by (4.70), and therefore the curve x ı�.J/ is in a plane orthogonal to v. Being also
a curve in the curvature sphere along �.J/, this curve must be an arc of a circle.
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We have yet to consider the case when a is constant on each of its connected
lines of curvature and it is zero at some points of M. This case requires a different
proof, which uses the same theorem for surfaces immersed in S3 ( Proposition 5.16)
together with stereographic projection (Proposition 5.23). See Problem 5.51.

For now, we will complete the proof under the added assumption that a is non-
zero on a dense open subset M0 of M. Any connected line of curvature of a in M0
must be sent by x to an arc of a circle, by the argument above. From (4.68), the
curvature � of such an arc must satisfy

�2 D p2Ca2

and be constant on J, so p ı � must be constant on J. Hence, p1 D 0 at every point
of M0, and thus at every point of M, by continuity. This implies that pı� is constant
for any connected line of curvature � . If aD 0 at every point of �.J/, then xı� is in
the plane orthogonal to the constant normal vector e3 ı� and has constant curvature
pı� , by (4.68). It is thus an arc of a circle, if p¤ 0, or a segment of a line, if pD 0.

ut
Exercise 15. Assume the preceding Proposition proved in general. Prove that if the
principal curvature a is constant on each of its connected lines of curvature, and if
p2Ca2¤ 0 on each such line of curvature, then for each connected line of curvature
� W J!M of a, x ı�.J/ is an arc of a circle, whose center is the point

x ı�.s/C 1

p2Ca2
.pe2Cae3/ı�.s/;

and whose radius is 1=
p

p2Ca2, independent of s 2 J.

4.9 Elasticae

We briefly introduce elasticae here in preparation for their role in the Willmore
problem. They are critical curves of a functional that is a one-dimensional version
of the Willmore functional. Special cases of these curves first arose as solutions to a
problem proposed by James Bernoulli in 1691. The modern definition of an elastica,
given in 1744 by Euler, is

Among all curves � of the same length passing through points A and B tangent to given
lines at A and B, the elasticae minimize

R
� �

2ds.

For additional history see the dissertation [111] by R. Levien and the expository
article [161] by C. Truesdell.

For our purposes here, the constraint will be a given free homotopy class.
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Definition 4.53. A free elastic curve in a Riemannian surface .M2; I/ is a smooth
immersion that minimizes the functional

F .�/D
Z
�

�2ds;

over all smooth immersions � W S1 ! M in a free homotopy class. Here � is the
curvature and s is arclength parameter of � .

Free elastic curves in space form geometries have been studied by Bryant and
Griffiths [22], Griffiths [80], and Langer and Singer [105]. In Euclidean geometry,
a circle � of radius R> 0 has curvature � D˙1=R, so

F .�/D
Z
�

�2dsD 2�

R

has no minimum on circles. This contrasts rather surprisingly with the situation in
the hyperbolic plane.

Example 4.54 (Circles in the Poincaré disc). The unit disk D2 D f.x;y/ 2R2 W x2C
y2 < 1g with the Riemannian metric

I D 4

.1� x2� y2/2
.dx2Cdy2/

is the Poincaré disk model of the hyperbolic plane. Orient it by dx^dy> 0. For any
angle � 2 R, the radial curve

�� W R! D; �� .s/D .tanh
s

2
/.cos�;sin�/;

is the geodesic starting at �.0/D 0 with initial velocity P�.0/D .cos�;sin�/. If we
fix r > 0, then the hyperbolic circle of hyperbolic radius r and center 0 is

CD f��.r/ W � 2 Rg � D2;

which is the Euclidean circle centered at 0 with radius tanh r
2
. C is parametrized by

the embedding

� W S1 D R=2�! D; �.t/D .tanh
r

2
/.cos t;sin t/; (4.71)

whose arclength parameter is s D .sinhr/t and whose geodesic curvature is the
constant � D coshr

sinhr D cothr. The integral
R
�
�2ds is minimized when r satisfies

sinhrD 1. See Problem 4.83.
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4.10 Willmore problems

In his 1965 paper [171], T. Willmore introduced the non-negative functional fW on
the set of all immersions x WM! R3 of a given compact oriented surface M,

fW .x/D
Z

M
H2dA;

where H is the mean curvature and dA is the area element of the immersion x. He
asked for the infimum of fW .x/ over all immersions of a given surface M. If a and
c are the principal curvatures of x, then H2 D KC 1

4
.a� c/2 and the Gauss-Bonnet

Theorem imply

fW .x/D 2��.M/C 1
4

Z
M
.a� c/2dA; (4.72)

where �.M/ is the Euler characteristic of M. A compact oriented surface M is
determined up to homeomorphism by a nonnegative integer g, called its genus,
which is related to its Euler characteristic by �.M/D 2�2g. The Euler characteristic
of M is non-negative only in the cases g D 0, when M is homeomorphic to the
sphere, or gD 1, when M is homeomorphic to the torus T2 D S1�S1.

In the gD 0 case, we conclude from (4.72) that

fW .x/
 4�;
with equality if and only if x is totally umbilic, in which case x.M/ must be a
Euclidean round sphere by Theorem 4.23. That this is independent of the radius
of the sphere suggests that the Willmore functional is invariant under homotheties,
that is, under transformations of R3 given by multiplication by a positive constant.

In the g D 1 case, Willmore calculated his functional on a circular torus of
revolution and arrived at the following result.

Example 4.55 ([171]). For constants R > r > 0, consider the circular torus of
revolution x W S1�S1! R3,

x.u;v/D t..RC r cos
u

r
/cosv;.RC r cos

u

r
/sinv;r sin

u

r
/; (4.73)

obtained by rotating the profile circle t.RC r cos u
r ;0;r sin u

r / about the �3-axis (see
Figure 4.7). The calculations of Section 4.40 show that the principal curvatures of x
are aD 1

r and cD cos u
r

RCr cos u
r
, its area form is dAD .RC r cos u

r /du^dv, and thus

fW .x/D R2

4r2

Z 2�

0

Z 2�r

0

1

RC r cos u
r

dudv D �2.R
r /
2q

.R
r /
2�1

;

whose minimum 2�2 occurs if and only if R
r D
p
2; that is, the right triangle in

Figure 4.7 is isosceles.
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Fig. 4.7 Profile circle of a
torus of revolution with
R=r D p

2.

R

r

>

>

Willmore then asked if 2�2 is the absolute minimum of his functional over all
immersions of a torus. His question is known as the

Willmore Conjecture 1. If T2 is a compact oriented surface of genus 1, then for
any smooth immersion x W T2! R3,

fW .x/
 2�2;

with equality if and only if x W T2 ! R3 is a circular torus of revolution (4.73)
with R

r D
p
2.

Of course, Willmore also asked what is the minimum value offW on immersions
of surfaces of genus g 
 2, but he did not offer a conjecture as to the value of these
minima. In the light of (4.72), it seems natural to replace fW with the functional

W .x/D
Z

M
.H2�K/dAD 1

4

Z
M
.a� c/2dA; (4.74)

which is positive for all x except for totally umbilic immersions of the sphere. In
[170], J. White proved that the integrand itself, .H2�K/dA, is invariant under the
transformation

I W R3 n f0g! R3; I .x/D x
jxj2 ;

which is inversion in the unit sphere with center at the origin (see Examples 4.46
and 12.5). By the Liouville Theorem 12.7 and Problem 4.84, it follows that
.H2�K/dA is invariant under any local conformal diffeomorphism of R3. The study
of the functional W .x/ belongs naturally in Möbius geometry. It is taken up in
Section 13.6.

In his Math Review of [170], Willmore reported that in the 1923 paper [160],
G. Thomsen had proved that the integrand of W is invariant under conformal
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transformations. Actually the concept of the Willmore energy appears already in
the 1821 work of S. Germain [73]. Thomsen proved important results about this
functional, which he called the conformal area. He worked in the context of Möbius
geometry, which we shall do in Chapters 12 through 14. Section 14.5 contains an
exposition of a global version of Thomsen’s results.

In the calculus of variations, the first step in finding the minima of W .x/ on
immersions x WM!R3, for a given compact oriented M, is to find its critical points.
An immersion x WM! R3 is a critical point of W .x/ if for any 1-parameter family
of immersions xt WM! R3, for jtj < 
, for some 
 > 0,

d

dt

ˇ̌̌
ˇ
tD0

W .xt/D 0:

Since fW .x/�W .x/ is a constant depending only on M, it follows that the critical
points offW are the same as the critical points ofW . Thomsen states that x WM! R3

is a critical point of W if and only if the mean curvature H, Gauss curvature K, and
Laplace-Beltrami operator� of x satisfy

�HC2H.H2�K/D 0; (4.75)

on M. This is the Euler-Lagrange equation of the Willmore functional W . In a
footnote containing no publication citation, Thomsen attributes the derivation of
this Euler-Lagrange equation to work done in 1922 by W. Schadow.

Definition 4.56. A Willmore immersion x WM! R3 of a compact oriented surface
M is a critical point x WM! R3 of W .

By Schadow’s result, an immersion x WM!R3 of a compact oriented surface M
is Willmore if and only if (4.75) holds for x. The condition (4.75) does not require
that M be compact or oriented. The following is Thomsen’s terminology for this
more general case.

Definition 4.57. A conformally minimal immersion x W M ! R3 of a surface M
(not necessarily compact or oriented) is an immersion that satisfies (4.75) on M.
Following present usage, we shall use the term Willmore immersion instead of
conformally minimal immersion.

An immersion x WM! R3 for which the mean curvature H D 0 at every point
of M is called a minimal immersion. We show in Theorem 8.5 that H D 0 on
M if and only if x is a critical point of the area functional A.x/ D R

M dA. A
minimal immersion clearly satisfies (4.75), so it is also a Willmore immersion.
Part of Thomsen’s results discussed in Section 14.5 characterize when a Willmore
immersion is just a conformal transformation of a minimal immersion.

The Willmore problem has evolved into two separate problems: Prove the
Willmore conjecture and Find all Willmore immersions.



4.10 Willmore problems 103

4.10.1 Willmore conjecture

F. Marques and A. Neves [117] have recently confirmed the conjecture using
methods that lie outside the scope of this book. Hertrich-Jeromin and Pinkall [87]
proved the conjecture for all canal immersions of the torus (see Definition 4.36).
Their proof uses the classification up to conformal transformations of isothermic
canal immersions. These are cylinders, cones, and immersions of revolution. Of
these, the only compact ones are immersions of revolution for which the profile
curve is closed. The key to understanding the Willmore functional on immersions
of revolution is to view the profile curve as a curve in the upper half-plane model of
hyperbolic geometry.

Exercise 16 (Geodesic curvature in upper half-plane H2). The upper half-plane
H2 D f.x;y/ 2 R2 W y> 0g with the Riemannian metric

I D dx2Cdy2

y2

is the upper half-plane model of hyperbolic geometry. Use the orientation
dx^dy> 0. If

� W J!H2; �.s/D .x.s/;y.s//
is a regular curve on connected J � R parametrized by arclength, then 1D j P� j2 D
Px2CPy2

y2
, where dot denotes derivative with respect to s. Prove that the oriented normal

vector of � is ND �Py�1C Px�2, its acceleration vector is the covariant derivative of
P� with respect to P� ,

D P� P� D .Rx� 2PxPyy
/�1C .RyC Px

2� Py2
y

/�2;

and its geodesic curvature � D I.N;D P� P�/ is

� D Px
y
C PxRy� RxPy

y2
:

Example 4.58 (Tori of revolution). Recall the surfaces of revolution discussed
above in Example 4.40. Now, instead of regarding the profile curve as living in
the Euclidean x1x3-plane, we shall regard it as living in the upper half-plane model
of hyperbolic space H2 given by this same plane with x1 > 0, the Riemannian
metric I D dx3dx3Cdx1dx1

x1x1
, and orientation dx3 ^ dx1 > 0. The profile curve �.s/ D

t.f .s/;0;g.s// lies in H2. It is parametrized by hyperbolic arclength if its hyperbolic
norm satisfies

1D j P� j2 D
Pf 2C Pg2

f 2
:
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In H2, its unit tangent vector is T D P� D Pf �1C Pg�3, the principal normal is N D
Pg�1� Pf �3, and the hyperbolic geodesic curvature is

� D
Rf Pg� Pf Rg

f 2
C Pg

f
;

as derived in Exercise 16. Assume now that this curve is periodic of period L > 0,
its hyperbolic length, so the immersion of revolution is

x W R=L�R=2�! R3; x.s; t/D t.f .s/cos t; f .s/sin t;g.s//:

The unit tangent vector fields (in R3)

e1 D xs

f
D
Pf
f

cos t�1C
Pf
f

sin t�2C Pg
f

�3; e2 D xt

f
D�sin t�1C cos t�2;

and unit normal

e3 D e1� e2 D� Pg
f

cos t�1� Pg
f

sin t�2C
Pf
f
�3

define a first order frame field along x with dual coframe field

!1 D fds; !2 D fdt:

Calculating de3, we get

!13 D de3 � e1 D 1

f
.�� Pg

f
/!1; !23 D de3 � e2 D� Pg

f 2
!2;

so the frame is second order with principal curvatures

aD 1

f
.
Pg
f
��/; cD Pg

f 2
:

Here � is the hyperbolic curvature of the profile curve. Thus, the Willmore
functional on x is

W .x/D
Z

M

1

4
.a� c/2!1^!2 D 1

4

Z L

0

Z 2�

0

�2

f 2
f 2dsdtD �

2

Z L

0

�2ds:

By Definition 4.53, a free elastic curve in the hyperbolic plane is a closed curve that
minimizes

R
�2ds, where � is its hyperbolic curvature. Langer and Singer in [105]

proved that for periodic immersions, this integral is 
 4� , with equality precisely
for the hyperbolic circle of hyperbolic radius

s0 D sinh�1 1D log.1Cp2/;

discussed in Problem 4.83.
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Example 4.59 (Tubes). Recall the discussion in Subsection 4.8.2 of the tube x.s; t/
defined in (4.63) about a given space curve f.s/ parametrized by arclength parameter
s in R3. If this curve is closed, meaning that f is periodic of period L, its length, then
the surface M D R=L�R=2� is diffeomorphic to a torus. The principal curvatures
of x are given in (4.67) to be

aD �� cos t

1� r� cos t
; cD 1

r
:

From this we calculate

W .x/D 1

4r

Z 2�

0

Z L

0

1

1� r� cos t
dsdtD 1

2r

Z L

0

Z �

0

1

1� r� cos t
dtds:

For given s, the inner integral is

Z �

0

1

1� r� cos t
dtD �p

1� .r�/2 ;

which leads us to

W .x/D �

2r

Z L

0

dsp
1� .r�/2 :

In their 1970 paper [152], Shiohama and Takagi prove that for given r > 0, this
integral is minimized over all periodic curves f of length L by a circle of radius
RD L

2�
, for which W .x/ becomes

W .x/D �2 R
rq

1� . r
R /
2

:

Willmore showed the minimum value of this is 2�2, achieved when R
r D
p
2.

4.10.2 Willmore immersions

The search for Willmore immersions is an active field of current research. The
goal is to find Willmore immersions x W M! R3 of compact surfaces M. Since a
conformal transformation composed with a Willmore immersion remains Willmore,
we want to know whether two Willmore immersions are conformally distinct. We
will do this in the chapters on Möbius geometry.

One collection of Willmore immersions is the stereographic projection of those
Hopf tori in S3 found by Pinkall [136] to be Willmore. These are derived in
Sections 5.7 and 5.8.
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Minimal immersions in the space form geometries are Willmore immersions.
Thomsen’s Theorem in Section 14.5 uses the concept of isothermic immersion to
identify when a Willmore immersion is Möbius congruent to a minimal immersion
in a classical geometry. One application of his result is Corollary 14.36, which
verifies that, except for the Clifford torus, none of Pinkall’s Willmore tori is Möbius
congruent to a minimal surface in a classical geometry.

Problems

4.60. If S D
�

a 0
0 c

�
as in (4.2.1), with a¤ c, and if A 2 O.2/ and 
 D ˙1, prove

that QSD 
 tASAD
�Qa 0
0 Qc
�

if and only if

A 2
�
˙I2;˙

�
1 0

0 �1
�
;˙

�
0 1

1 0

�
;˙

�
0 �1
1 0

�	
:

Combining this with (4.20), prove that if .x;e/ W U! E.3/ is a second order frame
field on an open connected set U of nonumbilic points of x, then any other on U is
given by .x; Qe/, where QeD .Qe1; Qe2; Qe3/ is one of the sixteen cases

.ıe1;ıe2;
e3/; .ıe1;�ıe2;
e3/; .ıe2;ıe1;
e3/; .ıe2;�ıe1;
e3/;

where ı D˙ and 
 D˙.

4.61. Let x WM!R3 be an oriented immersion with induced metric I. Prove that if
.U;z/ is a complex chart of .M; I/ and if .x;e/ WU!E.3/ is the frame field adapted
to zD xC iy, then

d �dtD 4tzNzdx^dyD .txxC tyy/dx^dy;

for any smooth function t WU! R.

4.62. If .x;e/ W U ! E.3/ is a second order frame field on a connected, open,
umbilic free subset U, then any other on U is given by QeD eD, where the constant
matrix D 2G2 D K�O.1/�O.3/ is one of the sixteen possibilities

D 2 f
0
@ı 0 0

0 �ı 0

0 0 


1
A ;

0
@0 �ı 0ı 0 0

0 0 


1
A W ı;
;� 2 f˙1gg;

The subgroup K �O.2/ was defined in Example 2.17. Prove that the criterion form
˛ D q!1�p!2 is independent of the choice of second order frame field on U.
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4.63. Let x WM! R3 be an immersion of a connected surface M. Let M0 �M be
the set of all nonumbilic points of x. Prove: If M0 is dense in M and if every point
of M possesses a neighborhood on which there exists a smooth second order frame
field, then the criterion form of x on M0 extends uniquely to a smooth 1-form on all
of M.

4.64 (Space curves). Carry out the moving frame reduction on an immersion x W
J! R3, where J � R is any connected open subset.

4.65 (Cylinders). Let � W J ! R2, �.s/ D f .s/�1C g.s/�2 be a smooth, regular
curve in the plane, parametrized by arclength s. Let TD P� be its unit velocity vector,
N its principal normal, and �.s/ its curvature. The cylinder on � is the immersion

x W J�R! R3; x.s; t/D �.s/� t�3: (4.76)

Prove that x is always canal. Prove that x is Dupin if and only if � is constant on J
if and only if � is (an open subset of) a circle or a line. Thus, x is isoparametric if
and only if it is an open subset of a plane or of a circular cylinder.

4.66 (Constant curvature). Prove that a smooth connected curve in S2 with
constant curvature � can be transformed by an element of SO.3/ to an open
submanifold of the circle

� W R! S2; �.s/D .cos.
s

sin˛
/�1C sin.

s

sin˛
/�2/sin˛C�3 cos˛;

where 0 < ˛ < � satisfies cot˛ D �.

4.67. Carry out the calculations of Example 4.28 for the circular cone, which is the
case when the profile curve is a circle, say

˘sin˛.�3/\S2;

for some angle 0< ˛ <�=2. Show that the center of any nonplanar curvature sphere
of this cone lies on the x3-axis.

4.68. Consider the hyperboloid of one sheet x2� z2 D 1 with the parametrization

x W R2! R3; x.s; t/D t.coshscos t;coshssin t;sinhs/:

Find a second order frame field along x and the principal curvatures. Show that
the oriented curvature spheres at a point x.s; t/ are on opposite sides of the tangent
plane there. Show that one of the curvature spheres has its center on the z-axis and
its intersection with the surface is the curvature line through the point x.s; t/. See
Figure 4.8.
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Fig. 4.8 Oriented curvature
spheres and tangent plane at a
point of the hyperboloid.

4.69. Let x WM! R3 be an immersion with induced metric I, second fundamental
form II, third fundamental form III, mean curvature H, and Gauss curvature K.
Prove that III D 2H II�KI.

4.70 (Degree theorem). Prove Proposition 4.33 for the case when the regular value
y is not in the image of g WM! N.

4.71 (Cones). Prove that any cone

x W J�R! R3; x.x;y/D e�y� .x/;

of Example 4.28 is a canal immersion. Prove that it is Dupin if and only if the
curvature � of � is constant if and only if � is a circle. Prove that x is isoparametric
if and only if � D 0 if and only if � is a great circle. See Problem 4.66.

4.72. Prove that a surface of revolution is always canal. Prove that it is Dupin if
and only if the curvature of the profile curve is constant. Describe the possible
surfaces when the curvature of the profile curve is constant. Thus, a circular torus of
revolution is a cyclide of Dupin.

4.73 (Curves of umbilics). Prove that in (4.54) the equation a D c has a solution
for some value of u if and only if L 
 1=p2. Prove that if L > 1=

p
2, then there

are two solutions, which means that there are two circles of latitude that consist of
umbilic points.

4.74. Prove that the mean curvature is identically zero for the immersion of
revolution with profile curve given by the catenary f .u/D coshu, g.u/D u on R.
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4.75 (Multiplicity). Prove that Qx.m/ D x.m/C re3.m/ is a focal point of x of
multiplicity k 
 1 if and only if 1=r is a principal curvature of x of multiplicity k.

4.76 (Parallel surface of a torus). Find the parallel surfaces of a circular torus of
revolution. Find the focal loci.

4.77 (Focal locus). Let x W M! R3 be an immersion with principal curvatures a
and c. Consider a focal locus of x, for example, the image of f D xC 1

a e3. Show that
for a second order frame field .x;e/ on U �M,

df D
�
.1� c

a
/e2� a2

a2
e3
�
!2� a1

a2
e3!1;

where daD a1!1Ca2!2 on U. Explain how to conclude that f is an immersion at a
point m 2 U if and only if x is nonumbilic at m and a1.m/¤ 0. Show that if f is an
immersion at a point m 2 U, then e3.m/ is tangent to f at this point. See Figure 4.9.

4.78 (Tubes). For the tube (4.63), use (4.65) and (4.67) to verify that daD a1!1C
a2!2, where

a1 D P� cos tC �� sin t

.1� r� cos t/3
; a2 D � sin t

r.1� r� cos t/2
:

Prove that a is constant along all of its lines of curvature if and only if a1 is
identically zero on J�R if and only if the curve f is a line (� D 0) or a circle of
radius 1=� (� D 0 and � nonzero constant). Prove further that if � D 0 on J, then the
coordinate curves tD˙�=2 are lines of curvature of a. If also P� ¤ 0, then a1 ¤ 0 if
t ¤˙�=2, so a is constant along only the two lines of curvature t D˙�=2, which
are planar curves, but not lines or circles. Compare with Proposition 4.52.

Fig. 4.9 Green and blue
surfaces are the focal loci of
the orange surface.
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4.79 (Dupin tubes). Use Problem 4.78 and (4.67) to prove that a tube about a space
curve is Dupin if and only if the curve is a line or a circle.

4.80 (Constant torsion). Does there exist a closed curve f WR!R3 (closed means
periodic) with constant positive curvature, which is not a circle? Does there exist a
closed curve with constant torsion? See [106] or [29].

4.81 (Focal locus of Dupin). Prove that for a Dupin immersion, both focal loci are
curves.

4.82 (Counterexample). Here is a tube on which the principal curvature a is
constant along one of its lines of curvature, but the image of that line of curvature
is neither a line segment nor an arc of a circle in R3. This does not contradict the
last statement of Proposition 4.52, because a is nonconstant along any of its other
nearby lines of curvature. Consider the smooth curve f W J! R3 with Frenet frame
field .T;N;B/ W J! SO.3/ satisfying the Frenet-Serret equations (4.62), with

�.s/D secs; �.s/D�1; J D f��
2
< s<

�

2
g � R:

It exists by the Cartan–Darboux Existence Theorem 2.25. For any constant
0 < r < 1, let x WM D J�R! R3 be the tube (4.63) about f.

1. Find the open subset U � J�R consisting of all .s; t/ such that the rank of dx.s;t/
is two.

2. Show that if U0 is the connected component of U containing .0;0/, then f.s;s/ W
s 2 Jg � U0. Moreover, prove that if b 2 J, then the curve �b.s/ D .s;bC s/ is
contained in U0 on some open interval about 0.

3. For each b 2 J, prove that �b is a line of curvature of x for the principal curvature
a. Prove that a is constant along �b if and only if sin bD 0.

4. Let � D �0 W J ! U0. Prove that x ı � D .1� r/fC y0, for some constant point
y0 2R3. Conclude that xı� is not a plane curve, in particular, neither an arc of a
circle nor a segment of a line. See Figure 4.10.

4.83 (Circle elastica in H2). Prove that for the circle (4.71), of hyperbolic
radius r > 0,

F .�/D
Z
�

�2dsD 2� cosh2 r

sinhr

 4�;

with equality only when sinhrD 1. Thus, among hyperbolic circles, F is minimized
by the circle of hyperbolic radius r D sinh�1 1 D log.1Cp2/, whose geodesic
curvature is � D p2. Langer and Singer [105, Theorem 1] prove that this circle
is a free elastic curve in the hyperbolic plane.

4.84 (Homothety invariance of W ). Prove that if x WM! R3 is an immersion of
a compact oriented surface and if r is any positive constant, then

fW .Qx/DfW .x/;
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Fig. 4.10 The curve x ı�
satisfies the Dupin condition.

where QxD rx WM! R3. Actually, prove the stronger result that

. QH2� QK/d QAD .H2�K/dA:

4.85 (Inversion invariance of W ). Prove that if x W M ! R3 n f0g is a smooth
immersion of a compact oriented surface, then Qx D I ı x W M ! R3 is a smooth
immersion and

. QH2� QK/d QAD .H2�K/dA

on M. Here QH, QK, and d QA are the mean curvature, Gauss curvature, and area element,
respectively, of Qx.



Chapter 5
Spherical Geometry

This chapter applies the method of moving frames to immersions of surfaces in
spherical geometry, modeled by the unit three-sphere S3 � R4 with its group of
isometries the orthogonal group, O.4/. Stereographic projection from the sphere
to Euclidean space appears in this chapter. It is our means to visualize geometric
objects in S3. The existence of compact minimal immersions in S3, such as the
Clifford torus, provide important examples of Willmore immersions. The chapter
concludes with Hopf cylinders and Pinkall’s Willmore tori in S3. Their construction
uses the universal cover SU.2/Š S3 of SO.3/.

5.1 Constant positive curvature geometry of the sphere

Consider the unit sphere in R4,

S3 D fx 2R4 W jxj D 1g

with the Riemannian metric induced from the standard inner product on R4. The
standard action of the orthogonal group O.4/ on R4 sends S3 to itself and acts as
isometries on S3. Using the Gram-Schmidt orthonormalization process, one proves
that O.4/ acts transitively on S3. By essentially the same argument used to prove
that E.3/ is the full group of isometries of R3, one proves that O.4/ is the full group
of isometries of S3.

As an origin of S3 we choose the point �0 D t.1;0;0;0/. The isotropy subgroup
of O.4/ at this point is

G0 D f
�
1 0

0 A

�
W A 2O.3/g ŠO.3/

© Springer International Publishing Switzerland 2016
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Hence, S3 Š O.4/=G0 Š O.4/=O.3/ and the natural projection map defines a
principal O.3/-bundle

� WO.4/! S3; �.e/D e�0 D e0; (5.1)

where ei denotes column i of the orthogonal matrix e, for i D 0; : : : ;3. The Lie
algebra o.4/ of O.4/ has a decomposition

o.4/D g0Cm (5.2)

where the Lie subalgebra g0 Š o.3/ is the Lie algebra of G0 and

mD f
�
0 �tx
x 0

�
W x 2 R3g Š R3

is a complementary vector subspace, which is Ad.O.3//-invariant in the sense that

Ad.A/.x;0/D .A�1x;0/ 2m:

Using this decomposition, we can write an element of o.4/ as

.x;X/D
�
0 �tx
x X

�
;X 2 o.3/;x 2 R3 (5.3)

in which case the bracket structure can be described by the formulas

Œ.0;X/; .0;Y/�D .0; ŒX;Y�/;
Œ.0;X/; .y;0/�D .Xy;0/;

Œ.x;0/;.y;0/�D .0;�x tyCy tx/;

(5.4)

which put altogether is

Œ.x;X/; .y;Y/�D .Xy�Yx;�x tyCy txC ŒX;Y�/:

Compare this Lie algebra structure with that of E .3/ described in equation (4.2).
The Maurer–Cartan form of O.4/ is the o.4/-valued 1-form

e�1deD

0
BB@
0 !01 !

0
2 !

0
3

!10 0 !12 !
1
3

!20 !
2
1 0 !23

!30 !
3
1 !

3
2 0

1
CCAD

�
0 �t�

� !

�
D .�;!/ (5.5)



5.1 Constant positive curvature geometry of the sphere 115

in the notation of (5.3), where

� D
0
@!

1

!2

!3

1
A ; ! D .!i

j/;

where !j
i D�!i

j , for i; jD 1; : : : ;3 and we have introduced the convenient notation

!i D !i
0 D�!0i ; (5.6)

for iD 1;2;3. The structure equations are

d!i
j D�

3X
kD0

!i
k^!k

j (5.7)

for i; j;k D 0;1;2;3, which in the matrix notation is

d� D�!^�; d! D�!^!C� ^ t�:

We define a local orthonormal frame field on an open subset U of S3 to be a
smooth local section of (5.1). Explicitly, it is a smooth map e W U ! O.4/ such
that � ı eD idU. Geometrically, at a point x 2 U, we have e.x/ D .e0;e1;e2;e3/
(designating the columns) with e0 D x. Since TxS3 is naturally identified with the
subspace orthogonal to x, it follows that e1;e2;e3 is an orthonormal basis of this
tangent space. If we abuse notation slightly and retain the same letters for the pull-
back of the Maurer–Cartan form by our frame field e, then we have from (5.5)

dxD de0 D !iei (5.8)

Therefore, the Riemannian metric on S3 has the local expression

I D dx � dxD !i!i D t�� (5.9)

and !1;!2;!3 is an orthonormal coframe field in U. Any other frame field on U
must be given by QeD eK, where

K D
�
1 0

0 A

�
W U! G0

is a smooth map, so A W U!O.3/ is a smooth map, and

.Qe1; Qe2; Qe3/D .e1;e2;e3/A
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while Qe0 D e0 D x. In order to compare the pull-back of the Maurer–Cartan form by
each of these frame fields, let us use the decomposition (5.2) to write

e�1deD
�
0 �t�

� 0

�
C
�
0 0

0 !

�
:

For the pull-back of the Maurer–Cartan forms by Qe use the same letters with tildes.
Then

Qe�1dQeD A�1e�1.deAC edA/

D A�1
�
0 �t�

� !

�
AC

�
0 0

0 A�1dA

�

D
�

0 �t�A
A�1� A�1!ACA�1dA

�
;

(5.10)

from which it follows that

Q� D A�1�: (5.11)

One consequence of this is that the Riemannian metric of S3 comes from the group
O.4/ in the sense that, by (5.9) and (5.11) we have

dx � dxD t�� D t Q� Q�:

Consider the frame field e W U ! O.4/ and recall the notational convention (5.6).
From (5.7) again we have

d!i D�!i
j^!j; !i

j D�!j
i

It follows that !i
j , for i; j D 1;2;3, are the Levi-Civita connection forms of I with

respect to the orthonormal coframe field !1;!2;!3. The curvature form ˝ i
j is then

obtained from (5.7) to be

˝ i
j D d!i

j C!i
k^!k

j D�!i
0^!0j D !i^!j

This shows that the metric dx � dx has constant sectional curvature equal to one.
Recall that ˝ i

j D Ri
jkl!

k^!l, where the functions Ri
jkl are the components of the

Riemann curvature tensor. The space has constant sectional curvature c if and only
if Ri

jkl D c.ıikıjl�ıilıjk/, which is equivalent to the condition that˝ i
j D c!i^!j. For

background reference, see [154, Vol. I].
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5.2 Moving frame reductions

Consider a smooth immersion

x WM2! S3

of a smooth surface M. A smooth frame field along x on an open subset U �M is
a smooth map e W U!O.4/ such that � ı eD x; that is, e0 D x. We use the evident
geometric interpretation of these frame fields to define a first order frame field along
x to be a frame field for which e3 is normal to x (but tangent to S3). This is equivalent
to the condition that dxD de0 D !1e1C!2e2, namely, at each point of U

!3 D !30 D 0; !1^!2 ¤ 0: (5.12)

Given a point m 2M, there exists a neighborhood U �M of m on which there is a
first order frame field along x. See Problem 5.33 below.

Let e be a first order frame field along x on U. The induced metric on M, also
called the first fundamental form of x, is

I D dx � dxD !1!1C!2!2

and thus !1;!2 is an orthonormal coframe field for it. By (5.7) we have

d!1 D�!12^!2; d!2 D�!21^!1 (5.13)

since !3 D 0 for a first order frame field. From (5.13) we conclude that !12 is the
Levi-Civita connection form for I with respect to the orthonormal coframe field
!1;!2. Its Gaussian curvature K is given by an application of (5.7),

K!1^!2 D d!12 D�!13^!32 �!10^!02 D !31^!32 C!1^!2 (5.14)

Taking the exterior derivative of (5.12) and using (5.7) together with Cartan’s
Lemma, we find that

!31 D h11!
1Ch12!

2; !32 D h21!
1Ch22!

2

for smooth functions hij on U such that h12 D h21. These functions give a smooth
matrix valued map

SD .hij/ W U!S

where S is the vector space of all 2�2 symmetric matrices. Thus,

�
!31
!32

�
D S

�
!1

!2

�
:
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The second fundamental form of x is the symmetric bilinear form defined on the
tangent space of M by

II D�dx � de3D !31!1C!32!2 D .!1;!2/S
�
!1

!2

�

It is clear from the first equality that II reverses sign when e3 is replaced by �e3 and
otherwise does not depend on the choice of first order frame field e. From (5.14) we
obtain the Gauss equation

K D 1Cdet.S/

where the 1 is coming from the sectional curvature of S3. The mean curvature of x is

H D 1

2
trace.S/D 1

2
.h11Ch22/ (5.15)

From equation (5.16) below we see that H depends only on e3, changing sign when
e3 changes sign. It otherwise does not depend on the choice of first order frame field.

If e W U ! O.4/ is a first order frame field along x, then any other is given by
Qe D eC, where C W U ! G0 is such that Qe3 is normal to dx, so Qe3 D ˙e3. Hence
C W U! G1, where

G1 D
8<
:
0
@1 0

0

�
B 0
0 


�
1
A 2 G0 W B 2O.2/;
 D˙1

9=
;

From (5.10) with now AD
�

B 0
0 


�
we can calculate that

Q� D
� Q!1
Q!2
�
D B�1

�
!1

!2

�
; QS

� Q!1
Q!2
�
D 
B�1

�
!31
!32

�
D 
B�1S

�
!1

!2

�
:

Therefore,

QSD 
B�1SB: (5.16)

This is the same action as that of (4.34). The principal values a and c of S are the
principal curvatures of x at the point. As in the Euclidean case, each orbit of the
action (5.16) contains a unique element in the set

DD f
�

a 0
0 c

�
W a
 jcjg �S
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A point of M is umbilic if aD c and otherwise it is nonumbilic. The set of umbilic
points (aD c) is closed in M.

Definition 5.1. A second order frame field e W U ! O.4/ along x is a first order
frame field for which

!31 D a!1; !32 D c!2 (5.17)

for some functions a;c W U! R.

Lemma 5.2. Let m 2 M. If m is nonumbilic, or if m belongs to an open set of
umbilic points, then there exists a smooth second order frame field on some open
neighborhood of m.

Proof. Same as for the Euclidean case, either Lemma 4.6 or Lemma 4.10. ut
Taking the exterior derivative of (5.17), we arrive at the Codazzi equations

da^!1C .a� c/!21^!2 D 0
dc^!2C .a� c/!21^!1 D 0

(5.18)

In the nonumbilic cases, the isotropy subgroup is finite, same as in the Euclidean
case, so g2 D 0 and second order frame fields are Frenet. In the umbilic case the
isotropy subgroup G2 is all of G1, so m2 D 0 and first order frame fields are also
second order frame fields and they are Frenet. The Maurer–Cartan form !21 remains
to be expressed as a linear combination of the coframe !1;!2. We let

!21 D p!1Cq!2 (5.19)

for some smooth functions p and q on U. By equations (5.13), these functions are
determined by the equations

d!1 D p!1^!2; d!2 D q!1^!2

Taking the exterior derivative of (5.19) completes the structure equations.

Definition 5.3. For any function f on M, we set df D f1!1C f2!2, where the smooth
functions f1 and f2 are called the covariant derivatives of f with respect to the given
coframe field.

5.2.1 Summary of frame reduction and structure equations

Let x WM! S3 be an immersed surface. At a nonumbilic point there exists a smooth
second order frame field e WU!O.4/ on a neighborhood of the point. Its pull-back
of the Maurer–Cartan form of O.4/ satisfies:
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!3 D 0; (first order), !1^!2 ¤ 0
d!1 D p!1^!2; d!2 D q!1^!2

!31 D a!1; !32 D c!2; (second order)

!21 D p!1Cq!2; (third order):

(5.20)

The structure equations of the immersion include (5.18), the Codazzi equations,
which, because !1^!2 ¤ 0 at each point, can be written as

a2 D .a� c/p; c1 D .a� c/q; (Codazzi equations), (5.21)

and the Gauss equations obtained by differentiating (5.19)

p2�q1�p2�q2 D K D acC1; (Gauss equation), (5.22)

where K is the Gaussian curvature of the metric induced on M. The functions a and
c are the principal curvatures of x. They are continuous functions on M, smooth on
an open neighborhood of any non-umbilic point.

If x is totally umbilic on U, then any first order frame is automatically second
order and the above equations with a D c give the structure equations for such a
frame.

5.3 Tangent and curvature spheres

For points x;m 2 S3, the distance from m to x in S3 is

rD cos�1.x �m/ 2 Œ0;��:

Definition 5.4. The sphere Sr.m/ in S3 with center m 2 S3 and radius r 2 Œ0;�� is

Sr.m/D fx 2 S3 W x �mD cosrg: (5.23)

Spheres of radius rD �=2 are called great spheres. Spheres of radius rD 0 or rD �
are called point spheres, since S0.m/D fmg and S�.m/D f�mg.

Note that Sr.m/ is the intersection of S3 with the hyperplane in R4 whose
equation is y �mD cosr. This hyperplane intersects S3 in a great sphere if and only
if it passes through the origin, which happens if and only if rD �=2.

Proposition 5.5. If ˙ denotes the set of all nonpoint spheres in S3, then

˙ D .S3� .0;�//=Z2;
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Fig. 5.1 A point x on
Sr.m/D S��r.�m/ and
on S.y/.
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where Z2 acts on S3� .0;�/ by

�1.m;r/D .�m;� � r/:

Proof. Any sphere in ˙ is given by Sr.m/, for some center m 2 S3 and radius
satisfying 0 < r < � . There is duplication, however, as it is evident from the first
diagram in Figure 5.1 that

S��r.�m/D Sr.m/;

and this is the only duplication. ut
Definition 5.6. An oriented sphere in S3 is a sphere Sr.m/ of radius 0 < r < �
together with a choice of continuous unit normal vector field on it. The canonical
orientation of Sr.m/ is by the unit normal vector field n whose value at x 2 Sr.m/ is

n.x/D m� cosr x
sinr

: (5.24)

Geometrically, the canonical orientation of Sr.m/, for 0 < r < � , is by the unit
normal pointing towards the center m. See Figure 5.2 and Figure 5.3. From now on,
when 0 < r < � , we let Sr.m/ denote this sphere with its canonical orientation.

Exercise 17. Prove that Sr.m/ with unit normal (5.24) is totally umbilic with
constant principal curvature aD cotr.

Exercise 18 (Totally Umbilic Case). Prove that if every point of a connected
surface M2 is umbilic for the immersion x W M! S3, then the principal curvature
aD c relative to a unit normal vector field e3 is constant on M, and x.M/� Sr.m/,
where
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Fig. 5.2 Canonical
orientations when
0 < r < �=2 and r D �=2,
respectively.
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x

Fig. 5.3 Canonical
orientations of Sr.m/ and
S��r.�m/, respectively.
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Fig. 5.4 Sr.m/ with normal
n by (5.24) and angle r D � ,
for 0 < � < � , on left; and
r D 2��� , on right.
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.e3Cax/:

Exercise 19. Prove that the set of all oriented spheres in S3 is the smooth manifold

Q̇ D fSr.m/ Wm 2 S3; 0 < r < �g D S3� .0;�/:

Prove that the map Q̇ ! ˙ which sends an oriented sphere to that sphere without
orientation is two-to-one and onto.
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Fig. 5.5 The pencil
determined by x D �2 and
n D �3.
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Definition 5.7. For any point x 2 S3 and unit tangent vector n 2 TxS3, the pencil of
oriented spheres in S3 determined by the pair .x;n/ is the set of all oriented spheres
through x with unit normal n at x.

An oriented sphere through x with normal n at x must have its center on the open
great semi-circle that runs from x to �x tangent to n at x. The pencil determined by
.x;n/ is the set of spheres

fSr.cosr xC sinr n/ W 0 < r < �g; (5.25)

each with its canonical orientation. See Figure 5.5.

Definition 5.8. An oriented tangent sphere to an immersion x WM2! S3 at a point
m 2M, with unit normal vector n at m, is an oriented sphere through x.m/ with unit
normal n at x.m/.

Each oriented tangent sphere has its center on the oriented normal line

fcosr x.m/C sinr n W r 2Rg;
so the set of oriented tangent spheres at x.m/with normal n must be given by (5.25).

Definition 5.9. An oriented curvature sphere of an immersion x W M2 ! S3 at
m 2M relative to a unit normal vector n of x at m is an oriented tangent sphere
whose principal curvature is equal to a principal curvature of x WM! S3 at m relative
to the normal n.

Remark 5.10. If m 2 M is nonumbilic for x, then there are two distinct oriented
curvature spheres at m relative to n. If m is umbilic, then there is only one, but we
say it has multiplicity two. If a is a principal curvature of x at m relative to n, and if
rD cot�1 a 2 .0;�/, then the oriented curvature sphere relative to n is

Sr.cosr x.m/C sinr n/;

with its canonical orientation, since for 0 < r <� , the principal curvatures of Sr.m/
relative to its canonical orientation are both cotr.
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Curvature spheres have another characterization, which generalizes to Möbius
and Lie sphere geometries, where there is no concept of principal curvatures.
This characterization uses the idea of an oriented tangent sphere map along an
immersion.

Proposition 5.11. Let e WU!O.4/ be a first order frame field along an immersion
x W M2! S3 on a neighborhood U �M. Fix r 2 .0;�/, and consider the oriented
tangent sphere map

S W U! Q̇ D S3� .0;�/;
S.m/D Sr.cosr x.m/C sinr e3.m//D cosr x.m/C sinr e3.m/C r�4:

Then S.m/ is an oriented curvature sphere of x at m 2 U relative to the unit normal
e3.m/ if and only if the rank of dS at m is less than two. The kernel of dSm is the
space of principal vectors at m for the principal curvature cotr. The dimension of
the kernel is the multiplicity of this principal curvature.

Proof. By the structure equations,

dSD cosr dxC sinr de3 D .cosr !10 C sinr !13/e1C .cosr !20 C sinr !23/e2

has rank less than two at a point m 2 U if and only if

0D .cosr !10 C sinr !13/^ .cosr !20 C sinr !20/

D cos2 r !10 ^!20 C cosr sinr.!10 ^!23C!13 ^!20/C sin2 r !13 ^!23
D .cos2 r�2H cosr sin rCK sin2 r/!10 ^!20

at m, where H is the mean curvature of x relative to e3 and K is the Gaussian
curvature. This last expression is zero at m if and only if cotr is a principal curvature
of x relative to e3 at m, which is equivalent to S.m/ being a curvature sphere at m
relative to e3.m/. See Remark 5.10. From the expression above for dS, we see that
v 2 TmM is in its kernel if and only if

�de3v D cotr dxmv;

which means that v is a principal vector for the principal curvature cotr. ut
Example 5.12 (Circular Tori). Fix ˛ to satisfy 0 < ˛ < �=2 and let r D cos˛ and
sD sin˛, so that r2C s2 D 1. Consider the immersion

x.˛/ W R2! S3; x.˛/.x;y/D t.r cos
x

r
;r sin

x

r
;scos

y

s
;ssin

y

s
/: (5.26)

Then x.˛/.Qx; Qy/D x.˛/.x;y/ whenever

.Qx; Qy/� .x;y/ 2 2�rZ�2�sZD �˛
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a lattice in R2 (see Boothby [16, Example 8.7, page 99]), so x.˛/ descends to an
immersion of the torus T˛ DR2=�˛ into S3. For simplicity write xD x.˛/. Let e.˛/D
.e0;e1;e2;e3/ W T˛! SO.4/ be the smooth frame field along x, where

e0 D x; e1 D xx; e2 D xy; e3 D t.scos
x

r
;ssin

x

r
;�r cos

y

s
;�r sin

y

s
/:

Then de0 D e1dxC e2dy implies that e is first order with !1 D dx and !2 D dy, so
!12 D 0.

!31 D de1 � e3 D� s

r
!1 D� tan˛!1

!32 D de2 � e3 D r

s
!2 D cot˛!2;

(5.27)

so e.˛/ is second order and the principal curvatures of x are the constants

aD� tan˛ D cot.
�

2
C˛/ and cD cot˛:

The oriented curvature spheres at x relative to e3 are

S˛C �
2
.�sxC re3/ and S˛.rxC se3/; (5.28)

respectively. By (5.22) the Gaussian curvature of x is identically zero. This contrasts
with the geometry of a compact surface in Euclidean space, which must have a point
of positive Gaussian curvature. By (5.15), the mean curvature of x, relative to the
above unit normal vector field e3, is

H D 1

2
.cot˛� tan˛/D cot2˛ D r2� s2

2rs
:

In particular, H D 0 if and only if ˛ D �=4. The Clifford torus is the circular torus
x.�=4/.

5.4 Isoparametric, Dupin, and canal immersions

Definition 5.13. The definitions of isoparametric, Dupin, and canal immersions
into S3 are identical to those given in Definition 4.36 for immersions into R3.

We shall look briefly at the simple examples of cylinders, cones, and surfaces of
revolution in S3.

Example 5.14 (Cylinders in S3). We want our definition of cylinders in S3 to be
analogous to their definition in R3 given in Problem 4.65. The analog of a plane
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in R3 is a great sphere S2 � S3, which we take to be �?
0 \ S3 D fP3

1 xi�i 2 R4 WP3
1.x

i/2 D 1g. Let � W J ! S2 be a curve parametrized by arclength s, with unit
tangent P� and unit normal N, which satisfies R� D�� C�N, where � W J! R is the
curvature of � . See Example 4.27 for more details on curves in S2. The cylinder in
S3 defined over � is generated by the geodesics (great circles) through each point of
� and perpendicular to the great sphere S2. These lines all pass through the center
of S2, which is˙�0. Thus, a cylinder in S3 is always a cone as well. For reasons that
are apparent from Problem 5.54, we parametrize the cylinder by

y W J�R! S3; y.s; t/D secht � .s/C tanh t �0: (5.29)

Then dyD secht P� dsCsecht.� tanh t � Csecht �0/dt, and N is a unit normal vector
field along y. The second fundamental form is

II D�dy � dND �.s/cosh t !1!1;

where !1 D secht ds, !2 D secht dt is an orthonormal coframe field on J�R.

Theorem 5.15 (Isoparametric surfaces, nonumbilic). Let M be a connected
surface and let x WM! S3 be an immersion with unit normal vector field n WM! S3

and constant distinct principal curvatures a and c. Then acD �1 and, replacing n
by �n if necessary to make c > 0, there exists A 2 SO.4/ such that

x.M/� Ax.˛/.R2/;

where x.˛/ W R2! S3 is a circular torus of Example 5.12 with

cot˛ D c; 0 < ˛ < �=2:

Proof. The proof is a special case of Proposition 3.11. From the assumption that the
principal curvatures are distinct, it follows that every point of M is nonumbilic and
of the same type. There exists a smooth second order frame field e W M! SO.3/
along x with e3 D n. Then a and c constant implies

!21 D 0
by the Codazzi equations (5.21). By the Gauss equation (5.22), we have 0D 1Cac
and (5.17) becomes

!31 D�
1

c
!1; !32 D c!2;

on M. Replacing e D .x;e1;e2;e3/ by e D .x;e2;e1;�e3/, if necessary, we may
assume c > 0. Let h be the 2-dimensional distribution on SO.4/ defined by the
left-invariant 1-form equations

!3 D 0; !21 D 0; !31 D
1

c
!1; !32 D c!2:
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The structure equations imply h satisfies the Frobenius condition. Being also left
invariant, it is a Lie subalgebra of o.4/. The Lie subgroup H of SO.4/ whose Lie
algebra is h is the maximal integral surface of h through the identity element I4 of
SO.4/. All other integral surfaces of h are the left cosets of H. By Example 5.12,
the second order frame field e.˛/ W R2! SO.4/ along x.˛/ is an integral surface of
h, if cot˛ D c and 0 < ˛ < �=2. Hence,

e.˛/.R2/D left coset of H D e.˛/.0;0/H;

for an arbitrarily chosen point e.˛/.0;0/ 2 e.˛/.R2/. Then H D e.˛/.0;0/�1e.˛/.R2/

is a way to find H, and

x.˛/.R2/D e.˛/.0;0/H�0 � S3

is the projection of this coset. To complete the proof, we observe that the second
order frame field e W M ! SO.4/ along x is an integral surface of h, so e.M/ �
e.m0/H, for an arbitrarily chosen point m0 2M. Therefore,

x.M/D e.M/�0 � e.m0/H�0 D e.m0/e
.˛/.0;0/�1x.˛/.R2/;

which is Ax.˛/.R2/, where AD e.m0/e.˛/.0;0/�1 2 SO.4/. ut
The following proposition is identical to Proposition 4.52, but with no separate

cases as arise in Euclidean space due to the distinction between spheres and planes.

Proposition 5.16. Let x WM! S3 � R4 be an immersion with unit normal vector
field e3 WM! S3 and with distinct principal curvatures a and c at each point of M.
Let � W J! M be a connected line of curvature parametrized by arclength for the
principal curvature a, where J � R is connected and contains 0. Then a is constant
on �.J/ if and only if its curvature sphere is constant on x ı�.J/.

If the principal curvature a is constant on each of its connected lines of curvature,
then x sends its connected lines of curvature to arcs of circles in S3.

See Cecil-Ryan [40, Chapter 2, Section 4] for a statement and proof of this
proposition in arbitrary dimensions.

Proof. Let .x;e/ W U! SO.4/ be a second order frame field on a neighborhood U
containing �.J/ such that e1.�.s//D .x ı �/0.s/ for every s 2 J and e3 is the given
unit normal on U. By the structure equations (5.20) and (5.21), we have

.x ı�/0.s/D dx.� 0.s//D e1.�.s//;

.x ı�/00.s/D de1.� 0.s//D .�xCpe2Cae3/.�.s//:

For the smooth function tD cot�1 a WM! R, define the focal map

f WM! S3; f D cos t xC sin t e3 D sin t .axC e3/:
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Then f .�.s// is the center of the curvature sphere through x.�.s// for a. By the
structure equations,

df D a1 sin2 t .sin t x� cos t e3/!1

C .a2 sin2 t .sin t x� cos t e3/C .cos t� csin t/e2/!2;
(5.30)

where daD a1!1Ca2!2 on U. Then a1 sin2 tD�t1, where dtD t1!1C t2!2 on U.
By (5.30) and the fact that !2.� 0/D 0, we have

.f ı�/0 D df .� 0/D�.t1.sin t x� cos t e3//ı�:

Hence, .f ı �/0 D 0 on J if and only if .t ı �/0 D 0 on J if and only the curvature
spheres along �.J/ are constant.

We have now proved that if � W J!M is a connected line of curvature of a and if
a ı� is constant on J, then x ı�.J/� x.M/\S, where S is the necessarily constant
curvature sphere along xı� , whose center is f .�.s//D y0 2 S3, independent of s2 J.

Assume now that a is constant on each of its connected lines of curvature. Then
a1 D 0 on all of U, and (5.30) shows that the focal map f has constant rank equal to
1 on M. Use the notation above for a connected line of curvature � W J!M for the
principal curvature a and for a second order frame field .x;e/ W U! SO.4/, where
�.J/ � U. Then f .�.J//D y0 2 S3 is a single point and by Exercise 14, there is a
unit vector v 2 Ty0S

3 D y?
0 � R4 such that

df�.s/T�.s/M D Rv;

for all s 2 J. It follows from this and (5.30) that v must be a multiple of

.a2 sin2 t .sin t x� cos t e3/C .cos t�asin t/e2/.�.s//;

which is orthogonal to .x ı �/0.s/ D e1.s/, for all s 2 J. Therefore, x.�.s// � v
is constant on J, which means that x ı �.J/ lies in a sphere centered at v (or,
equivalently, in a hyperplane of R4 orthogonal to v). Since v and y0 are linearly
independent, xı�.J/ lies in the intersection of two distinct spheres of S3, and hence
must be an arc of a circle. ut

5.4.1 Surfaces of revolution

Example 5.17 (Surfaces of revolution). Begin with a profile curve in the great
sphere �?

1 \S3 D S2,

� W J! S2; � .y/D f .y/�0Cg.y/�2C l.y/�3;
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parametrized by arclength y. Assume that f .y/ > 0 for all y 2 J. Then TD P� is the
unit tangent vector, R� D�� C�N, where � W J! R is the curvature and

N.y/D p.y/�0Cq.y/�2Cm.y/�3

is the unit normal, which satisfies PND��T. The surface of revolution generated by
this curve is

x W J�R! S3; x.x;y/D A.x/� .y/D t.f .y/cosx; f .y/sin x;g.y/; l.y//;

where

A.x/D
0
@cosx �sinx

sinx cosx
0

0 I2

1
A 2 SO.4/;

for each x2R. A second order frame field along x is given by eD .e0; : : : ;e3/, where

e0 D x; e1 D 1

f
xx; e2 D xy; e3 D A.x/N.y/:

The orthonormal coframe is !1 D f .y/dx, !2 D dy. The coordinate curves are the
lines of curvature. The principal curvatures are a D �p.y/=f .y/, c D �.y/. So, a
is always constant along its lines of curvature, but c is constant along its lines of
curvature if and only if � is constant.

5.5 Tubes, parallel transformations, focal loci

Exercise 20 (Curves). Let f W J! S3 be a smooth curve, with arc-length parameter
s, where J is an interval in R. Let dot denote derivative with respect to s. The smooth
function � D jRf and fj W J!R is called the curvature of f. Use the method of moving
frames to show that, if � > 0 on J, then there exists a unique frame field

E D .f;T;N;B/ W J! SO.4/

along f, called the Frenet frame, such that

PfD T; PTD �N� f; PND��TC �B; PBD��N;

where the smooth function � W J! R is called the torsion of f.

Definition 5.18 (Tubes). Fix a real number r satisfying 0 < r < �=2. The tube of
radius r about the curve f is the map
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x W J�R! S3; x.s; t/D cosr f.s/C sinr .cos t N.s/C sin t B.s//: (5.31)

Conditions on r and � are needed in order for x to be an immersion. See
Problem 5.46.

Definition 5.19 (Parallel transformation). Let x W M ! S3 be a smoothly
immersed surface with unit normal vector field e3. For any constant r 2 R, the
parallel transformation of x by r in direction e3 is the map

Qx WM! S3; QxD cosr xC sinr e3:

If r is an even multiple of � , then Qx D x, while if it is an odd multiple of � , then
Qx D �x. We call these cases trivial parallel transformations. Otherwise, we call
them non-trivial. If Qx is singular at a point m 2M, meaning that the rank of d Qx at m
is less than two, then Qx.m/ is called a focal point of x.

Exercise 21 (Focal loci). Prove that the parallel transformation Qx of x W M! S3

by r in direction e3 is singular at m 2M if and only if cotr is a principal curvature
of x at m.

Definition 5.20. Let x WM! S3 be an immersion with unit normal e3 WM! S3. If
a WM!R is a principal curvature of x WM! S3 relative to e3, then a is continuous
on M, and smooth off the umbilic set. Let r D cot�1.a/ WM! R, with 0 < r < � .
The image of

f WM! S3; f .m/D cosr xC sinr e3

is called a focal locus of x.

5.6 Stereographic projection

Given a point p 2 S3, express the orthogonal direct sum of the span of p, denoted
fpg, and its orthogonal complement by

R4 D fpg˚p? Š R˚R3; xD x0pCy;

where x0 2 R and y 2 p? is the orthogonal projection of x onto p?.

Definition 5.21. Stereographic projection from the point p is the map

Sp W S3 n fpg! p?; Sp.x/D 1

1� x0
y: (5.32)

Stereographic projection has an inverse,
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S �1
p .y/D pC 2

jy�pj2 .y�p/D 1

jyj2C1


.jyj2�1/pC2y

�
;

for any y 2 p? Š R3. Its differential at x 2 S3 is

dSp D 1

.1� x0/2
ydx0C 1

1� x0
dy;

so dSp � dSp D dx�dx
.1�x0/2

shows that Sp is a conformal diffeomorphism with

conformal factor 1=.1� x0/ (see Definition 12.1).
If f W U � R3! R3 is a local conformal diffeomorphism of R3, then

S �1
p ı f ıSp

is a local conformal diffeomorphism of S3.

Definition 5.22. The default stereographic projection is from ��0,

S DS��0 W S3 n f��0g ! R3;

where we identify �?
0 with R3 by

�?
0 D fy 2 R4 W y0 D 0g Š R3:

If xD x0�0CP3
1 xi�i 2 S3 n f��0g, and if yDP3

1 xi�i, then

S .x/D 1

1C x0
y; S �1.y/D 1

1Cjyj2


.1�jyj2/�0C2y

�
:

In the following we use the notation introduced in Examples 4.21 and 4.22
for oriented spheres and planes in R3. Stereographic projection being a conformal
diffeomorphism implies that it and its inverse take a vector normal to an immersed
surface to a vector normal to the image surface. The following proposition shows
that stereographic projection and its inverse send oriented spheres to oriented
spheres (thinking of oriented planes as oriented spheres with infinite radius). They
do not take the center of the oriented sphere to the center of the image sphere,
however. This feature makes the proof somewhat more difficult than one might
expect.

Proposition 5.23. Stereographic projection Sp from a point p 2 S3 sends an
oriented sphere in S3 to an oriented sphere or plane in R3 Š p? oriented by the
image normal vector. The image is a plane if and only if the sphere in S3 passes
through p. If mDm0�0CP3

1mi�i 2 S3, if m0 DP3
1mi�i, and if 0 < r < � , then

S .Sr.m//D
(

S sinr
m0Ccosr

. m0

m0Ccosr
/; if m0C cosr¤ 0.

˘cot r.
m0

sinr /; if m0C cosrD 0.
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Conversely, inverse stereographic projection S �1
p sends any oriented sphere in

R3 to an oriented sphere in S3 not passing through p, with image normal, and it
sends any oriented plane in R3 to an oriented sphere passing through p, with image
normal. If 0¤ R 2R and if c 2R3, then

S �1.SR.c//D Sr.m/;

where

mD 1CR2�jcj2
D

�0C 2

D
c; rD cos�1 1Cjcj2�R2

D
2 .0;�/; (5.33)

and

DD R

jRj
p
.1CR2�jcj2/2C4jcj2: (5.34)

If h 2 R and if n is a unit vector in R3, then

S �1.˘h.n//D Sr.m/;

where

mD �h�0Cnp
h2C1 ; rD cos�1 hp

h2C1 2 .0;�/: (5.35)

Proof. Recall that Sr.m/D fx 2 S3 W x �mD cosrg is oriented by

n.x/D m� cosr x
sinr

;

so ��0 2 Sr.m/ if and only if m0CcosrD 0. It suffices to prove the theorem for the
default stereographic projection S (see Problem 5.50). Now

S .Sr.m//D fy 2 R3 WS �1.y/ 2 Sr.m/g

D fy 2 R3 W . 1�jyj
2

1Cjyj2 �0C 2

1Cjyj2y/ �mD cosrg

D fy 2 R3 W .m0C cosr/jyj2�2m0 � yC cosr�m0 D 0g:

If m0C cosr ¤ 0, then we can divide through by it, complete the square, and keep
in mind that .m0/2Cjm0j2 D jmj2 D 1, to conclude that

S .Sr.m//D fy 2R3 W jy� m0

m0C cosr
j2 D sin2 r

.m0C cosr/2
g D SR.c/;
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where

cD m0

m0C cosr
; RD ı sinr

m0C cosr
;

where ıD˙1. To determine the value of ı, let xD x0�0Cy 2 Sr.m/, where y 2 �?
0 ,

and compare the image normal dSxn.x/ with

1

R
.c�S .x//D 1

R.m0C cosr/
.m0� m0C cosr

1C x0
y/:

For this, apply

dSx D �1
.1C x0/2

ydx0C 1

1C x0
dy

to n.x/ given above to get

dSxn.x/D 1

.1C x0/sinr
.m0� m0C cosr

1C x0
y/:

Hence, the two normals point in the same direction if and only if R.m0C cos r/ is
positive, so ı DC1. If m0C cosrD 0, then

S .Sr.m//D fy 2R3 W �m0 � yC cosrD 0g

D fy 2R3 W m0

sinr
� yD cotrg D˘cot r.

m0

sinr
/;

since now j m0

sinr j D 1, and the calculation above shows that now

dSxn.x/D 1

1C x0
m0

sin r
;

which is a positive multiple of the unit normal m0

sinr .
For the converse, if R¤ 0 and if c 2R3, then

SR.c/D fy 2 R3 W jy� cj2 D R2g
is oriented by the normal vector .c�y/=R at y 2 SR.c/. If x 2 S3, with xD x0�0Cy,
where y 2 �?

0 , then jyj2 D .1C x0/.1� x0/, so

S �1.SR.c//D fx 2 S3 n f��0g W y
1C x0

DS .x/ 2 SR.c/g

D fx 2 S3 W jyj2�2.1C x0/y � cC .1C x0/2.jcj2�R2/D 0g
D fx 2 S3 W 2y � cC .1CR2�jcj2/x0 D 1Cjcj2�R2g
D fx 2 S3 W x � ..1CR2�jcj2/�0C2c/D 1Cjcj2�R2g D Sr.m/;
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where

mD .1CR2�jcj2/�0C2c
D

; cosrD 1Cjcj2�R2

D
;

and D D ˙p.1CR2�jcj2/2C4jcj2. In order to determine the sign of D, we
compare the normal n.S �1.y// to Sr.m/ at S �1.y/ with the normal dS �1

y . c�y
R /.

It suffices to do this at just one point y 2 SR.c/, which for simplicity we choose to
be yD cCR�1, where the unit normal is c�y

R D��1. Then

dS �1
y .��1/D 2

.1Cjyj2/2 .2y1�0C2y1y� .1Cjyj2/�1/;

where y1 D y � �1, and

n.S �1.y//D m� cosr S �1.y/
sinr

D 2R.2y1�0C2y1y� .1Cjyj2/�1/
D.1Cjyj2/sinr

;

since yD cCR�1 implies jcj2 D jyj2� 2Ry1CR2. These two normals point in the
same direction if and only if R=D is positive; that is, D has the same sign as R.

Finally, if h 2 R and n is a unit vector in R3, then

S �1˘h.n/DS �1fy 2 R3 W y �nD hg D fx 2 S3 n f��0g WS .x/ �nD hg
D fx 2 S3 W x �nD .1C x0/hg

D fx 2 S3 W x � �h�0Cn

ı
p

h2C1 D
h

ı
p

h2C1g D Sr.m/;

where

mD �h�0Cn

ı
p

h2C1; rD cos�1 h

ı
p

h2C1 2 .0;�/;

and ı D˙1. The sign must be chosen so that, if y 2˘h.n/, then

dS �1
y nD 2

.1Cjyj2/2 .�2h�0C .1Cjyj2/n�2hy/

points in the same direction as

n.S �1.y//D 1

ı
p

h2C1.1Cjyj2/ .�2h�0C .1Cjyj2/n�2hy/;

which implies that ı DC1. ut
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Proposition 5.24. Stereographic projection from a point in S3 and its inverse take
oriented curvature spheres of an immersed surface to oriented curvature spheres of
the image surface. Any curvature vector of the oriented curvature sphere is also a
curvature vector for the image surface.

Remark 5.25. In the light of Proposition 5.23, this proposition is obvious, since
diffeomorphisms always preserve tangency and rank, and stereographic projection
and its inverse also send oriented spheres to oriented spheres. Nevertheless, we think
a detailed proof is instructive.

Proof. It suffices to prove this result for the default stereographic projection S and
its inverse. Let x WM2! S3 be an immersed surface with unit normal vector n at a
point p 2 M such that x.p/¤ ��0. Let e W U � M! SO.4/ be a first order frame
field along x with e3.p/D n. If S is an oriented curvature sphere of x at p relative to
n, then

SD Sr.xcosrC e3 sinr/.p/;

where r 2 .0;�/ is a constant for which cotr is a principal curvature at p relative to
n and the map

mD xcosrC e3 sinr W U! S3

is singular at p; that is, the dimension of the kernel of

dmp D dm0
p�0Cdm0

p

is at least one, where m D m0�0CP3
1mi�i D m0�0Cm0. Thus, S is an oriented

curvature sphere if and only if there exists a nonzero vector v 2 TpM such that

dm0
pv D 0 and dm0

pv D 0: (5.36)

Now S .Sr.m// is an oriented tangent plane or sphere to S ı x at a point of U,
depending on whether m0C cosr is zero or not, respectively.

If m0.p/C cosr ¤ 0, then we may choose U small enough so that this is true at
every point of U. Then S .Sr.m//D SR.c/ is an oriented sphere tangent to S ı x W
M! R3 at each point of U, where

cD m0

m0C cosr
; RD sinr

m0C cosr
¤ 0:

Let .S ı x; Qe1; Qe2; Qe3/ W QU � U! E.3/ be a first order frame field along S ı x such
that

Qe3 D c�S ı x
R

D 1

sinr
.m0� .m0C cosr/S ı x/ (5.37)
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at every point of the connected set QU. Consider the parallel transformation of S ıx
on QU given by

yDS ı xCR0 Q�3 W QU! R3;

where R0 D R.p/D sinr
m0.p/Ccosr

. Then

dyp D d.S ı x/pC R0
sinr

.dm0
p� .m0.p/C cosr/d.S ı x/p�S ı x.p/dm0

p/

D R0
sinr

.dm0
p�S ı x.p/dm0

p/

shows that dypv D 0, if (5.36) holds, so SR0.c.p// is an oriented curvature sphere of
S ı x at p relative to Qe3.p/ and that v is one of its principal curvature vectors.

If m0.p/C cosrD 0, then

S .Sr.m.p///D˘cot r.
m0.p/
sinr

/

is an oriented tangent plane to S ı x at p with unit normal m0

sinr D Qe3.p/, by (5.37),
and

dQe3p D 1

sinr
.dm0

p�S ı x.p/dm0
p/

has rank less than two, by (5.36). Thus zero is a principal curvature of S ıx at p and
this oriented tangent plane is an oriented curvature sphere at p. This formula also
shows that any principal curvature vector v 2 TpM of x is also a principal curvature
vector for S ı x.

Now consider the inverse stereographic projection S �1 W R3 ! S3 applied to
the immersed surface y W M2 ! R3 to give an immersion x DS �1 ı y W M! S3.
Suppose SR.c.p// is an oriented curvature sphere of y at p 2M, relative to the unit
normal n at p. Let

.y; Qe1; Qe2; Qe3/ W U! E.3/ (5.38)

be a first order frame field along y on a neighborhood U containing p, such that
Qe3.p/D n. Then

cD yCRQe3 W U! R3

defines an oriented tangent sphere map SR.c/ along y on U whose value at p is
the given curvature sphere. Thus, there exists a nonzero vector v 2 TpM such that
dcpv D 0.
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S �1.SR.c// D Sr.m/ is an oriented tangent sphere map along x, where m W
U ! S3, r W U ! .0;�/, and D W U ! R n f0g are the smooth maps defined in
equations (5.33) and (5.34). The unit normal to Sr.m/ at x is

e3 D m� cosr x
sin r

: (5.39)

To obtain an oriented tangent sphere map along x on U with constant radius, we let
r0 D r.p/ and let

SD cosr0 xC sinr0 e3 D .cosr0� sinr0 cotr/xC sinr0
sinr

m: (5.40)

By the calculation requested in Exercise 22 below, it follows that for any curvature
vector v 2 TpM for SR.c/, we have dSpv D 0, which means that Sr.p/.m.p// is an
oriented curvature sphere of x at p relative to e3.p/, and that v is a curvature vector
of it.

Finally, suppose that˘h0 .n/ is an oriented curvature sphere of y at p 2M relative
to the unit normal n at p, where h0 D y.p/ � n. In terms of the first order frame
field (5.38), there must exist a non-zero vector v 2 TpM such that dQe3pv D 0, so v is
a principal curvature vector for the principal curvature zero.

Now S �1.˘h.e3// D Sr.m/ is an oriented tangent sphere map along x on U,
where m W U! S3 and r WU! .0;�/ are the smooth maps defined in (5.35). Using
the unit normal e3 to Sr.m/ at x defined in (5.39), we obtain the oriented tangent
sphere map (5.40) along x on U with constant radius r0 D r.p/. By the calculation
requested in Exercise 23 below, it follows that for a principal curvature vector v 2
TpM for which dQe3pvD 0, we have dSpvD 0 as well. Thus,S �1.˘h0 .n//D Sr0.m0/

is an oriented curvature sphere of x at p relative to the unit normal e3.p/, and v is a
principal curvature vector of it. ut
Exercise 22. In the notation of the preceding proof, use equations (5.33) and (5.34)
to calculate dmp and dDp in order to verify that dSpvD 0 for any v 2 TpM for which
dcpv D 0.

Exercise 23. In the notation of the preceding proof, use equation (5.35) to calculate
dmp and drp in order to verify that dSpv D 0 for any v 2 TpM for which dQe3pv D 0.

5.7 Hopf cylinders

The Hermitian inner product on C2 is given by hz;wi D tz Nw. Its real part is a
Euclidean inner product on C2 as a vector space over R, which makes the map

 W C2! R4;  

�
x0C ix1

x2C ix3

�
D t.x0;x1;x2;x3/ (5.41)
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an isometric isomorphism onto R4 with its standard dot product. Under this
identification, the sphere

S3 D fz 2 C2 W hz;zi D 1g
is the standard unit sphere in R4. The complex projective line CP1 is the set of orbits
of C2 n f0g under the right multiplication action of C�, the multiplicative group of
nonzero complex numbers. Denote the orbit of the vector z 2 C2 by Œz� 2 CP1. For
more detail see Example 7.14. Restriction to S3 of the standard projection

C2 n f0g! CP1; z 7! Œz�

is the Hopf fibration when we identify CP1 with S2 as explained below. This
fibration is a principal S1 bundle whose fiber over a point Œz� 2CP1 is the circle

fza W a 2 S1 � Cg � S3:

The complex projective line CP1 is biholomorphically equivalent to the Riemann
spherebCD C[f1g by

� W CP1!bC; �

�
z
w

�
D z

w
; �

�
1

0

�
D1:

The inverse of stereographic projection from �1 2 S2 onto the Riemann sphere bC is
a biholomorphic equivalence

S �1 WbC! S2; S �1.xC iy/D t.x2C y2�1;2x;2y/=.x2C y2C1/:

Definition 5.26. The Hopf fibration �h W S3! S2 is the map

�h.z/DS �1 ı � ı Œz�DS �1.
z

w
/D

0
@jzj

2�jwj2
2<.z Nw/
2=.z Nw/

1
A ;

where zD t.z;w/ 2 S3 � C2, so jzj2Cjwj2 D 1.

We continue with another description of this Hopf fibration that better accommo-
dates the action of the group of isometries, SO.3/, of S2. The special unitary group

SU.2/D fA 2GL.2;C/ W A tNAD I; detAD 1g:
The map

S3 � C2! SU.2/; zD
�

z
w

�
7! .z;z�/D

�
z �Nw
w Nz

�
(5.42)
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is a diffeomorphism. In addition, for any a 2 S1,

za 7!
�

z � Nw
w Nz

��
a 0
0 Na
�
:

The Lie algebra of SU.2/ is

su.2/D fX 2 gl.2;C/ W XC t NX D 0; trace X D 0g D f
�

it �Nz
z �it

�
W t 2 R; z 2 Cg:

The Killing form of su.2/ is the positive definite inner product

hX;Yi D �1
2

trace XY: (5.43)

The set of vectors

I D
�

i 0
0 �i

�
; J D

�
0 i
i 0

�
; K D

�
0 �1
1 0

�
;

is an orthonormal basis of su.2/ for the Killing form. The map

R3! su.2/; t.t;x;y/ 7! tI C xJ C yK (5.44)

is a linear isometry, where R3 has the standard dot product and su.2/ has the Killing
form inner product (5.43). In particular, this map sends the standard sphere S2 �R3

isometrically onto

f
�

it ix� y
ixC y �it

�
W t;x;y 2 R; t2C x2C y2 D 1g � su.2/: (5.45)

The adjoint action of SU.2/ on su.2/ is

Ad.A/X D AXA�1:

It preserves the Killing form (5.43). The orbit of I under this action is the standard
2-sphere (5.45). Under the identifications S3 D SU.2/ in (5.42) and R3 D su.2/
in (5.44), the Hopf fibration �h.z/ of Definition 5.26 satisfies

Ad.z;z�/I D .jzj2�jwj2/I C<.2z Nw/J C=.2z Nw/K D �h.z/:

Since the adjoint action of SU.2/ on su.2/ is isometric and SU.2/ is connected, the
matrix of Ad.A/ relative to the orthonormal frame I ;J ;K must be an element of
SO.3/. Define the map

�s W SU.2/! SO.3/; (5.46)
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by �s.z;z�/ is the matrix of Ad.z;z�/ relative to the orthonormal frame I ;J ;K ,

�s.z;z�/D
0
@jzj

2�jwj2 �<.2zw/ =.2zw/
<.2z Nw/ <.z2� Nw2/ =.Nz2Cw2/
=.2z Nw/ =.z2� Nw2/ <.Nz2Cw2/

1
A ;

where z D t.z;w/ 2 S3. The map (5.46) is a 2:1 Lie group homomorphism whose
induced Lie algebra isomorphism

d�s W su.2/! o.3/

sends a skew-hermitian matrix X 2 su.2/ to the matrix of the skew-symmetric
operator on su.2/ŠR3 given by

d�s.X/L D XL CL t NX D XL �L X;

for any L 2 su.2/. The matrix of the operator d�sX relative to the orthonormal
frame I ;J ;K is

d�s

�
it �Nz
z �it

�
D 2

0
@ 0 �x y

x 0 �t
�y t 0

1
A 2 o.3/; (5.47)

where t;x;y 2 R and zD xC iy.
Consider an immersed curve � W N! S2 with parameter s satisfying j P�.s/j D 1.

Here N � R is an interval. A frame field along � is a smooth map G W N! SO.3/
such that � ıG D � , where the projection

� W SO.3/! S2; �.A/D A�1 D A1;

is the first column of A, where �1;�2;�3 is the standard basis of R3. The Frenet frame
along � is

G D .�; P�;� � P�/;
which is the unique frame field along � satisfying

G �1dG D
0
@0 �1 0

1 0 ��
0 � 0

1
Ads;

for some function � W N! R, called the curvature of � .

Definition 5.27. A spinor lift of a frame field G W N! SO.3/ along � , is a smooth
map � W N! S3 Š SU.2/ such that G D �s ı� W N! SO.3/.
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Since �s W S3 Š SU.2/! SO.3/ is a 2:1 covering projection, and since N is
simply connected, any frame field G W N! SO.3/ along � has a spinor lift � , and
the only other one is �� . Notice that �h ı� D � , so that � W N! S3 is at the same
time a section of the Hopf fibration over � . We have the commuting diagram

SU.2/
�

% # �s

Š
&

N � R
G! SO.3/

�s S3
�

& # �
�h.

S2

Proposition 5.28. If � W N! SU.2/ is a spinor lift of the Frenet frame G W N !
SO.2/ of a unit speed curve � W N! S2, and if d� D P� ds, then

� �1 P� D
�

i�=2 �1=2
1=2 �i�=2

�
W N! su.2/; (5.48)

where � W N! R is the curvature of � . Writing � D .�1;�2/, the columns of � , so
�2 D � �

1 , (5.48) says

P�1 D i�

2
�1C 1

2
�2; P�2 D�1

2
�1� i�

2
�2: (5.49)

Proof. We have �s ı� D G , the Frenet frame along � , so

d�s.�
�1 P� /D G �1 PG D

0
@0 �1 0

1 0 ��
0 � 0

1
AD d�s

�
i�=2 �1=2
1=2 �i�=2

�
;

by (5.47). The result now follows since d�s is an isomorphism. ut
Relative to the hermitian inner product on C2 given by hz;wi D tz Nw, the columns

�1;�2 of a map � WN! SU.2/ form a unitary frame of C2 at each s 2 N. If � is the
spinor lift of the Frenet frame of a unit speed curve � W N! S2, then (5.49) implies
�1 W N! S3 is a curve satisfying

j P�1j2 D 1

4
.�2C1/:

Definition 5.29 (Pinkall [136]). If � W N ! S2 is a unit speed curve and if � D
.�1;�2/ WN! SU.2/ is a spinor lift of the Frenet frame field along � , then the Hopf
cylinder over � is

f� W N�R! S3; f� .s;�/D ei��1.s/: (5.50)
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The Hopf cylinder (5.50) satisfies

df� D P�1ei�dsC i�1e
i�d�: (5.51)

Using the fact that the standard metric on S3 is the real part of the hermitian inner
product on C2, we find its first fundamental form is

I D hdf� ;df� i D 1

4
.�dsC2d�/2C 1

4
ds2:

We conclude that an orthonormal coframe field for I on N�R is given by the closed
1-forms

˛1 D 1

2
ds; ˛2 D d�C �

2
dsD 1

2
d'; (5.52)

where

' D 2�C
Z s

0

�.u/du:

The metric I is flat (its Gaussian curvature is zero) and

df� D ei��2˛
1C iei��1˛

2;

by (5.49), (5.51), and (5.52). Then

eD . ı f� ; ı e1; ı e2; ı e3/ W N�R! SO.4/;

is a first order frame field along f� , where  W C2! R4 is the isomorphism (5.41),
and

e1 D ei��2; e2 D iei��1; e3 D�iei��2 W N�R! C2:

Then

de3 D�iei� P�2dsC ei��2d� D .˛2�2�˛1/e1C˛1e2 D ˛13e1C˛23e2;

and the mean curvature H and Hopf invariant h relative to e of f� are

H D 1

2
.h11Ch22/D 1

2
.2�C0/D �; hD h11�h22

2
� ih12 D �C i: (5.53)

Suppose now that � is a closed curve of length l> 0, by which we mean that N DR
and �.sC l/ D �.s/, for all s 2 R. Then f� W R2 ! S3 is doubly periodic, f� .sC
l;� C 2�/ D f� .s;�/, for all .s;�/ 2 R2, so it is an immersion of the torus T2 D
R2=.lZ� 2�Z/. The Frenet frame G W R! SO.3/ is also periodic of period l, but
its spinor lift � W R! SU.2/ is periodic of period l or 2l.
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5.8 Willmore tori

Definition 5.30 (Willmore [171], Bryant [20]). The Willmore functional for an
immersion f WM2! S3 of a compact surface M is

W .f /D
Z

M
.H2C1/dA;

where H is the mean curvature and dA is the induced area element of f . A Willmore
immersion of M is a critical point f of W.

In [171], Willmore proved that a torus of revolution in R3 is a Willmore
immersion if and only if the torus is obtained by revolving a circle of radius b about
a line a distance a from its center with a=bDp2.

The Willmore functional of a Hopf torus f� W T2 ! S3 of an l-periodic curve
� W R! S2 is

W .f� /D 1

2

Z 2�

0

Z l

0

.1C�.s/2/dsd� D �
Z l

0

.1C�.s/2/ds;

by (5.53) and since dA D ˛1 ^˛2 D 1
2
ds^ d� . By Palais’s Principle of symmetric

criticality [134], the immersion f� is an extremal of the Willmore functional if and
only if the unit speed curve � W R=lZ! S2 is an extremal curve of the functional

E .�/D
Z l

0

.1C�.s/2/ds:

As derived in Griffiths [80, (I.d.35), p. 73]), the Euler-Lagrange equation for this
functional is

R�C 1
2
.�3C�/D 0: (5.54)

Curves in S2 whose curvature satisfies this equation are called elastic curves. As
our interest is in periodic solutions, we choose a maximum point of � as the initial
point, so the initial conditions are

�.0/D �0 
 0; P�.0/D 0:

The solution to this initial value problem is expressed in terms of a Jacobian elliptic
function as

�.t/D
r

2m

1�2m
cn.

tp
2�4m

/; (5.55)
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where

mD �20

2.1C�20/
2 Œ0; 1

2
/

and
p

m is the modulus of the Jacobian elliptic function cn. This solution is periodic
of period

!m D 4
p
2�4mK.m/; (5.56)

where

K.m/D
Z 1

0

dtp
1� t2

p
1�mt2

D
Z �=2

0

d�p
1�msin2 �

is an elliptic integral of the first kind.

Exercise 24. The Jacobian elliptic functions snu, cnu, and dnu of modulus
p

m
satisfy the elementary identities

snuD x; , uD
Z x

0

dtp
1� t2

p
1�mt2

;

cnuD
p
1� sn2u; dnuD

p
1�msn2u;

sn0uD cnu dnu; cn0uD�snu dnu; dn0uD�msnu cnu;

for �K.m/ < u < K.m/. They extend as periodic functions to all u 2 R, with snu
and cnu of period 4K.m/ and dnu of period 2K.m/. See, for example, Bowman
[17, Chapter I] for an elementary exposition of these and many other properties of
Jacobian elliptic functions.

Using these identities, prove that �.t/ defined in (5.55) is the solution of (5.54)
satisfying the given initial conditions and that it is periodic of period !m defined
in (5.56).

For a general value of m 2 .0;1=2/, the curve � W R! S2 of curvature � defined
in (5.55) is not periodic. We search for values of m for which � is periodic. To do
this, we consider the Maurer–Cartan equation (5.48) for the spinor lift � W R!
SU.2/ of the Frenet frame of � . It is the solution � W R! SU.2/ of the initial value
problem (IVP)

� 0.t/D � .t/A.t/; � .0/D I2; (5.57)

where

A.t/D
�

i�.t/=2 �1=2
1=2 �i�.t/=2

�
W R! su.2/
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is periodic of period !m D 4
p
2�4mK.m/. The curve � D �h ı�1 is periodic if and

only if there exists a positive number 	 such that � .tC 	/D˙� .t/, for all t 2 R,
since �h.�z/D �h.z/, for every z 2 S3. The existence of 	 is governed by the proper
values of the monodromy operator of the IVP,

Mm D � .!m/ 2 SU.2/:

Lemma 5.31. Let G be a Lie group, and let A W R! G be a smooth, !-periodic
curve in G; i.e., ! > 0 and A.tC!/ D A.t/, for every t 2 R. If � W R! G is the
solution to the IVP

� 0.t/D � .t/A.t/; � .0/D I;

and if M D � .!/ is its monodromy operator, then

� .n!/DMn; (5.58)

and, thus

� Œn!;.nC1/!�DMn� Œ0;!�; (5.59)

for any integer n 2 Z.

Proof. Recall from the Cartan–Darboux Theorem, that the solution to this IVP is
unique, and for any B 2 G, the solution to this IVP with initial condition Q� .0/D B
is Q� .t/D B� .t/. Consider the curve

Q� .t/D � .tC!/:

Then Q� .0/DM and

Q� 0.t/D � 0.tC!/D � .tC!/A.tC!/D Q� .t/A.t/;

by the !-periodicity of A.t/. Hence, Q� .t/DM� .t/, by our initial remark, and so

� .2!/D Q� .!/DM2:

The result for any whole number follows by induction on n. For the case of negative
integers, consider the curve Q� .t/ D � .t�!/, which is a solution to the IVP with
initial condition Q� .0/D � .�!/, so

Q� .t/D � .�!/� .t/;
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for all t 2 R. In particular,

I D � .0/D Q� .!/D � .�!/� .!/

implies that � .�!/DM�1. The result for any negative integer �n now follows by
induction on n. This completes the proof of (5.58). For the second result, for any
integer n 2 Z, the curve

Q� .t/D � .tCn!/

is the solution to the IVP with initial condition Q� .0/DMn, and therefore

Q� .t/DMn� .t/;

for all t 2 R, which implies (5.59). ut
Exercise 25. Prove that the proper values of any matrix A 2 SU.2/ are e˙i' , for
some ' 2 R. Thus, A is diagonalizable, that is, there exists P 2 SU.2/ such that

AD P�1
�

ei' 0

0 e�i'

�
P:

In particular, Aq D I2, for some whole number q, if and only if ' D 2� p
q for some

integer p.

The proper values of Mm are e˙i'm . The dependence of 'm on m 2 Œ0;1=2/ can be
determined numerically to be continuous, strictly decreasing from '0 D .2�

p
2/�

to 0. Its graph as a function of m is shown in Figure 5.6.

Exercise 26. Prove that '0 D .1�
p
2
2
/2� .

We conclude from this brief digression that the solution � .t/ of the IVP (5.57) is
periodic if and only if

'm D 2� p

q
; (5.60)

for some integers p and q. For any value 2� p
q 2 .0;.1�

p
2
2
/2�/, the graph of 'm in

Figure 5.6 shows that there exists a value of m 2 .0;1=2/ such that (5.60) holds. In
effect, one needs to invert the function m 7! 'm. This can be done numerically. The
evidence from these calculations is that the resulting periodic curve � D �h ı�1 is
simple only if pD 1 and qD 2Qq for any whole number Qq
 2. If 'm D �=Qq, then

�.R/D[n2Z
Qq�s.M

n/�Œ0;!m�;
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Fig. 5.6 Graph of 'm as function of m 2 Œ0;1=2/.

by Lemma 5.31, Exercise 25, and the property of the covering projection �s W
SU.2/! SO.3/ that �s.�B/ D �s.B/. Thus, the curve � is Qq!m-periodic with a
ZQq rotational symmetry coming from the invariance of �.R/ under the action of the
group f�s.Mn/ W n 2 ZQqg.

Figure 5.7 shows the embedded elastic curve � D �h ı �1 coming from the
solution of the IVP (5.57) for the case 'm D 2� 1

6
. The numerical estimate for m is

0:38922046026524204. The picture shows the three-fold rotational symmetry and
antipodal symmetry of the curve.

The Clifford cylinder over this 3!m-periodic curve � D�h ı�1 is thus a Willmore
immersion of a torus,

f� W R2=.2�Z�3!mZ/! S3; f� .s;�/D ei��1.s/;

found by Pinkall [136]. Figure 5.8 shows S�1 ı f� .R2/, its stereographic projection
from �1 2 S3 into R3.

Eventually we shall see that if an immersion of a surface into S3 is Willmore,
then this property is preserved under any conformal transformation of S3 (see
Chapter 12). Any minimal isometric immersion of a surface into S3 is Willmore,
so we want to check whether Pinkall’s Willmore tori are conformally equivalent to
minimal immersions. With the exception of the Clifford torus, they are not, but to
prove this we need the concept of isothermic immersions into Möbius space, a topic
covered in Chapter 14. In Corollary 14.36 of Section 14.6 we prove that, except for
the case when �.R/ is a great circle as in Problem 5.57, the Hopf torus f� is not
isothermic and therefore it is not conformally equivalent to a minimal immersion
in S3.
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Fig. 5.7 Graph of
�3 D �h ı�1 W R ! S2 when
'm D 2�=6.

Fig. 5.8 The Pinkall torus
over � from 'm D �=3.
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Problems

5.32. Prove that the volume form dV D !1 ^!2^!3 defined by the orthonormal
coframe field !1, !2, !3 of (5.8) of any local frame field e W U � S3! SO.3/ is
independent of the choice of such a local frame field. Prove that

Z
S3
!1^!2^!3 D 2�2:

5.33. Let .U; .x;y// be a coordinate chart in M. Explain why x is an immersion if
and only if x;xx;xy are linearly independent at each point of U. Prove that given
a point m 2 M there exists a first order frame field along x on some neighborhood
of m.

5.34. The set Sr.m/ in (5.23) can be defined for every r 2 R. Given r 2 R, prove
there exists a unique integer n such that jr�2�nj is in the closed interval Œ0;��, so
Sr.m/ is the sphere with center m and radius jr�2�nj.
5.35. To a point y 2 R4 outside of S3 (meaning jyj > 1), associate the sphere (see
the second diagram in Figure 5.1)

S.y/D fx 2 S3 W x � yD 1g:

Prove that S.y/D Sr.y=jyj/, where rD arcsecjyj 2 .0;�=2/.
For any point p 2RP3, let

S.p/D fx 2 S3 W x � yD 0 for any 0¤ y 2 pg:

Prove that S.p/ is the great sphere centered at y=jyj, for any y 2 p, and that we have
the decomposition and one-to-one correspondence

˙ D fS.y/ W y 2 R4; jyj> 1g[fS.p/ W p 2RP3g
$ fy 2 R4 W jyj> 1g[RP3:

5.36. Prove that for given r satisfying 0 < r < � , the vector field n defined at x 2
Sr.m/ by (5.24) is a smooth, normal vector field on Sr.m/. Hint: If x is restricted to
Sr.m/, then x �mD cosr. A vector n tangent to S3 at x is normal to Tx.Sr.m// if and
only if n � dxD 0.

5.37. For m 2 S3 and 0 < r < � , we know that Sr.m/D S��r.�m/. Prove that the
canonical orientation of Sr.m/ is opposite to the canonical orientation of S��r.�m/.

5.38. Prove that the tangent space to Sr.m/ at a point x0 2 Sr.m/ is

Tx0Sr.m/D fz 2R4 W z � x0 D 0D z �mg:
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5.39. If m 2 S3 and if r is a real number not an integral multiple of � , then n.x/
defined in (5.24) defines an orientation on the sphere Sr.m/, which by Problem 5.34
has center m and radius jr�2�jj, for some unique integer j.

(1) Prove that if r�2�j> 0, then Sr.m/ has the canonical orientation of Sr�2� j.m/,
whereas if r � 2�j < 0, it has the orientation opposite to the canonical
orientation.

(2) For the special case illustrated in Figure 5.4, prove that if � < r < 2� ,
then Sr.m/ D S2��r.m/ as spheres, but the orientations defined by (5.24) are
opposite.

5.40. Prove that the oriented curvature spheres of x WM! S3 at m 2M relative to
the unit normal�n at m are the same spheres as those relative to n, but with opposite
orientations.

5.41. Prove that the area
R

T˛
dx^dy of the circular torus x.˛/ is 2�2 sin2˛. Among

the circular tori, the Clifford torus has the maximum area, but is the only minimal
immersion in the sense that its mean curvature is identically zero.

5.42. Prove that the cylinder (5.29) has principal curvatures a D �.s/cosh t and
cD 0. Conclude that y is always canal and that it is Dupin if and only if � is constant.
It is never isoparametric.

5.43. Observe that the coordinate curves of the circular torus x.˛/ of Example 5.12
are the lines of curvature. Prove that each curvature sphere (5.28) is constant along
its lines of curvature.

5.44. Prove that the surface of revolution x is Dupin if and only if it is isoparametric
if and only if it is a circular torus.

5.45. Find all curves in Exercise 20 for which the curvature � and the torsion � are
constant.

5.46. Prove that if cotr > �.s/, for all s 2 J, then the tube x W J�R! S3 defined
in (5.31) about the curve f W J! S3 with curvature � > 0 is an immersion. Find the
principal curvatures of x when it is an immersion.

5.47. Find the focal loci of the circular torus x.˛/ W R2 ! S3 defined in Exam-
ple 5.12. Prove that a generic parallel transformation of a circular torus x.˛/ is
another circular torus. What constitutes generic?

5.48 (Principal curvatures). If e D .x;e1;e2;e3/ is a first order frame field along
an immersion x WM! S3, prove that QeD .Qx;e1;e2; Qe3/, where

Qe3 D�sin r xC cosr e3;

is a first order frame field along the parallel transformation Qx of x by r in direction
e3 (see Definition 5.19). Find the principal curvatures of Qx in terms of the principal
curvatures of x.
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5.49. Prove that parallel transformation of an immersion x W M2 ! S3 with unit
normal e3 by r 2R is conformal if and only if the mean curvature H of x is constant.
Conformality of the parallel transformation means

d Qx � d QxD e2udx � dx

for some smooth function u WM! R.

5.50. Prove that if p 2 S3 and if A 2O.4/ is any isometry of S3, then

Sp ıAD AıStAp:

In particular, given any points p;q 2 S3, if A is chosen so that AqD p, then

Sp D AıSq ıA�1:

5.51. Use Propositions 5.16 and 5.23, to give an alternate, complete proof of
Proposition 4.52.

5.52 (Cyclides of Dupin). Prove that S ıx.˛/ W T˛!R3 is a Dupin immersion (see
Definition 4.36), where x.˛/ WR2! S3 is the circular torus defined in Example 5.12,
and S is any stereographic projection.

5.53. Prove equivariance of the Hopf fibration �h in the sense that

�h.Az/D �s.A/�h.z/;

for any A 2 SU.2/ and z 2 S3.

5.54. Find the default stereographic projection of the cylinder in S3 defined in
Example 5.14.

5.55. Prove that with the right-action of the circle group S1 � C on S3 given by

S3�S1! S3;
�

z
w

�
eit D

�
zeit

weit

�
;

the Hopf fibration is a principal S1-bundle.

5.56. For the map (5.46), find �s.z/ when zD t.eit;0/, for any real value of t.

5.57. The unit speed curve � WR! S3, �.s/D t.0;coss;sin s/, is periodic of period

2� and has curvature � D 0. Show its Frenet frame is G .s/ D
0
@ 0 0 1

coss �sin s 0
sins coss 0

1
A ;

whose spinor lift � .s/D 1p
2

�
ei s
2 �ei s

2

e�i s
2 e�i s

2

�
is periodic of period 4� . Show that
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Fig. 5.9 Stereographic
projection of Clifford torus
from ��0 2 S3 showing the
s� -parameter curves.

Fig. 5.10 Stereographic
projection of Clifford torus
from ��0 2 S3 showing the
xy-parameter curves.

f� .s;�/D �1.s/ei� D 1p
2

�
ei.�Cs=2/

ei.��s=2/

�
D 1p

2

�
eix

eiy

�
;

where xD �C s=2, yD � � s=2. With the parameters x;y, this is the Clifford torus
of Example 5.12. Figure 5.9 shows S ı f� .s;�/, its stereographic projection from
�
0, with the s�-parameter curves. The s-constant curves are the fibers, and the
�-constant curves are the sections. Use its stereographic projection from the point
��0 2 S3 in the xy-parameters,



Problems 153

x.x;y/D 1p
2C cosx

t.sinx;cosy;siny/;

to show that the image is a torus obtained by rotating a circle of radius bD 1 about
a line in its plane a distance aDp2 from its center, so a=bDp2. See Figure 5.10.

The example in this problem illustrates that a rotation of 2� in Euclidean space
is distinguishable from a rotation of 4� . From 0 to 2� , the corresponding closed
path G .Œ0;2��/ in SO.3/ is not null-homotopic, while from 0 to 4� it is. In other
words, the spinor lift of rotation through 2� is not closed, while the spinor lift of
the rotation through 4� is closed.



Chapter 6
Hyperbolic Geometry

This chapter applies the method of moving frames to immersions of surfaces in
hyperbolic geometry H3, for which we use the hyperboloid model with its full group
of isometries OC.3;1/. Moving frames lead to natural expressions of the sphere at
infinity and the hyperbolic Gauss map. The Poincaré ball model is introduced as
a means to visualize surfaces immersed in hyperbolic space. As in the chapters on
Euclidean and spherical geometry, the notions of tangent and curvature spheres of
an immersed surface are described in detail as preparation for their fundamental role
in Lie sphere geometry. The chapter concludes with many elementary examples.

6.1 The Minkowski space model

Let R3;1 denote Minkowski space, which is R4 with the inner product of signature
.3;1/ defined by

hx;yi D
3X
1

xiyi� x4y4 (6.1)

where vectors in R3;1 are expressed in terms of the standard orthonormal basis
�1;�2;�3;�4 of R3;1, with �4 the time-like vector, h�4;�4i D�1. A basis x1;x2;x3;x4
of R3;1 is orthonormal if

hxi;xji D gij; i; jD 1;2;3;4;
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Fig. 6.1 H3 in the 3-d slice
x3 D 0

x1

x4

x2

where the gij are the entries of

I3;1 D

0
BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1
CCA :

Hyperbolic space H3 is the upper component of the hyperboloid,

H3 D fx 2R3;1 W hx;xi D �1 and x4 
 1g:

The lower component is �H3. See Figure 6.1.
For any x 2H3, the Minkowski inner product restricted to x? is positive definite.

To see this, let R3 denote the subspace of R3;1 spanned by �1;�2;�3, so that we have
a direct sum decomposition

R3;1 D R3˚R�4; xD x0C x4�4:

where x0 is the orthogonal projection of x onto R3. If x0 2H3, then

.x4/2�jx0j2 D 1; x4 
 1:

If y 2 x?, then yD y0C y4�4 and

0D hx;yi D x0 � y0� x4y4:

The Cauchy–Schwarz inequality implies

jx4y4j D jx0 � y0j 	 jx0jjy0j;
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so

.y4/2 	 jx
0j2jy0j2
.x4/2

:

Therefore,

hy;yi D jy0j2� .y4/2 
 jy0j2� jx
0j2jy0j2
.x4/2

D jy
0j2

.x4/2

 0

with equality if and only if y0 D 0 if and only if y D 0 (because x4y4 D x0 � y0 and
x4 > 0).

Exercise 27. Prove that the tangent space of H3 at any point x 2H3 is

TxH3 D x? D fy 2R3;1 W hy;xi D 0g (6.2)

so the Minkowski inner product restricted to TxH3 is positive definite, for any
x 2H3, which means that the induced metric on H3 is a Riemannian metric.

The Lie group of linear transformations of R3;1 that preserve the Minkowski
inner product is the Lorentz group, which is represented in the standard basis by the
matrix group

O.3;1/D fA 2GL.4;R/ W tAI3;1AD I3;1g: (6.3)

Remark 6.1. The group of isometries of R3;1 is the analog of the Euclidean group
given by the semi-direct product E.3;1/ D R4 ÌO.3;1/. For an exposition of the
method of moving frames applied to the study of certain surfaces immersed in R3;1

acted upon by E.3;1/ see Elghanmi’s paper [64].

An element A 2 O.3;1/ sends a sheet of the hyperboloid into a sheet of the
hyperboloid. It will thus send H3 to itself if and only if A maps �4 into H3. Since
A�4D A4, the last column of A, it follows that the subgroup of O.3;1/ that sends H3

to itself is

OC.3;1/D fA 2O.3;1/ W A44 
 1g: (6.4)

The group OC.3;1/ acts as isometries on H3 with its induced Riemannian metric.
This action is transitive if for any point x 2 H3, there exists a matrix A 2 OC.3;1/
such that

A�4 D xI
that is, x must be the last column of A. The induced metric on x? is positive definite,
so there exists an orthonormal basis A1; : : : ;A3 of x?. Then A D .A1;A2;A3;x/ 2
OC.3;1/ sends �4 to x. If det A D �1, then interchanging the first two columns
gives a matrix A in

SOC.3;1/D fA 2OC.3;1/ W det AD 1g; (6.5)
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satisfying A�4 D x, thus showing that SOC.3;1/ acts transitively on H3. Therefore,
H3 with the induced Riemannian metric is homogeneous, so it is a complete
Riemannian manifold.

For the origin in H3 we take �4. We denote the isotropy subgroup of OC.3;1/ at
the origin by a slight abuse of notation as

O.3/D f
�

B 0
0 1

�
W B 2O.3/g: (6.6)

We have a principal O.3/-bundle

� WOC.3;1/!H3; e 7! e�4 D e4; (6.7)

where ei denotes column i of the matrix e, for i D 1; : : : ;4. The Lie algebra of
OC.3;1/ is

o.3;1/D fX 2 gl.4;R/ W tXI3;1C I3;1X D 0g

D f
�

X x
tx 0

�
W X 2 o.3/; x 2R3g:

(6.8)

It has a vector space direct sum

o.3;1/D o.3/Cm

where o.3/ is the Lie algebra of O.3/ contained in o.3;1/ as shown in (6.8), and

mD f
�
0 x
tx 0

�
W x 2 R3g Š R3

is a complementary vector subspace. Using this decomposition, we can write an
element of o.3;1/ as

.X;x/D
�

X x
tx 0

�
; X 2 o.3/; x 2 R3; (6.9)

in which case the bracket structure can be described by the formulas

Œ.X;0/;.Y;0/�D .ŒX;Y�;0/
Œ.X;0/;.0;x/�D .0;Xx/

Œ.0;x/; .0;y/�D .x ty�y tx;0/

Compare this Lie algebra structure with that of E .3/ described in (4.2) and of
o.4/ in (5.4). The Maurer–Cartan form of OC.3;1/ is the o.3;1/-valued 1-form


D e�1deD
�
! �
t� 0

�
D .!;�/ (6.10)
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in the notation of (6.9), where

� D t.!1;!2;!3/; ! D .!i
j/D�t!;

!i D !i
4 D !4i and !i

j D 
i
j, for i; jD 1;2;3. The structure equations are

d
i
j D�

4X
kD1


i
k^
k

j ; i; jD 1; : : : ;4; (6.11)

which in the matrix notation is

d� D�!^�; d! D�!^!�� ^ t�:

We define a local orthonormal frame field on an open subset U of H3 to be a smooth
local section of (6.7). Explicitly, it is a smooth map

e W U!OC.3;1/; (6.12)

such that e4.x/D x. Since TxH3 is naturally identified with the subspace orthogonal
to x, it follows that e1;e2;e3 is an orthonormal basis of this tangent space. If we
abuse notation slightly and use the same letters for the pull-back of the Maurer–
Cartan form by our frame field e, then we have from (6.10)

dxD de4 D
3X

iD1
!iei:

The Riemannian metric on H3 has the local expression

I D hdx;dxi D
3X

iD1
!i!i; (6.13)

and !1;!2;!3 is an orthonormal coframe field in U. Incidentally, this also shows
that the induced metric I is positive definite. Any other frame field on U must be
given by QeD eA, where

AD
�

B 0
0 1

�
; B W U!O.3/ (6.14)

is a smooth map, so

.Qe1; Qe2; Qe3/D .e1;e2;e3/B;
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while Qe4 D e4 D x. In order to compare the pull-back of the Maurer–Cartan form by
each of these frame fields, we write

Qe�1dQeD . Q!; Q�/:

Then, with A given by (6.14),

Qe�1dQeD A�1e�1.deAC edA/

implies that

Q� D B�1�; Q! D B�1!BCB�1dB: (6.15)

One consequence of this is that the metric I on H3 actually comes from the group
OC.3;1/, in the sense that, from (6.13) and (6.15) we have

hdx;dxi D t�� D t Q� Q�

For the frame field e W U!OC.3;1/, we get from (6.11), for i; jD 1;2;3,

d!i D�
3X

jD1
!i

j^!j; !i
j D�!j

i ;

for j D 1;2;3. It follows that these !i
j are the Levi-Civita connection forms of I

relative to the orthonormal coframe field !1;!2;!3. They determine the covariant
derivative of a local vector field X DP3

1 �
iei on U, where ei is column iD 1;2;3 of

e, with respect to a tangent vector v 2 TxH3 by

DvX D
3X

jD1
.v.� j/C

3X
iD1

� i!
j
i .v//ej:

In spherical geometry we used without comment the fact that the intrinsic
distance between points p;q 2 S3 is rD cos�1.p �q/ 2 Œ0;��. An analogous formula
is true in hyperbolic geometry (see Problem 6.38). The intrinsic distance between
points p;q 2H3 is

d.p;q/D cosh�1.�hp;qi/ 2 .0;1/:

Definition 6.2. For any non-zero real number r and any point m 2H3, the oriented
sphere of signed radius r and center m is the set Sr.m/ of all points in H3 a distance
jrj from m,

Sr.m/D fx 2H3 W hx;mi D �coshrg;
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oriented by the unit normal vector field

e3.x/D m� coshr x
sinhr

:

The curvature forms ˝ i
j of the Levi-Civita connection forms !i

j on H3 are,
by (6.11),

˝ i
j D d!i

j C
3X

kD1
!i

k^!k
j D�!i

4^!4j D�!i^!j:

This shows that I has constant sectional curvature equal to minus one. For any local
frame field (6.12) in H3, the 3-form !1^!2^!3 is non-zero at every point of U. If
QeD eA, where A is given by (6.14), then

Q!1^ Q!2^ Q!3 D .detB/!1^!2^!3; (6.16)

where detB D ˙1, since B 2 O.3/. Thus, an orientation is defined on H3 by the
volume form defined in (6.16), if we insist that B 2 SO.3/. This is accomplished
by taking only frames (6.12) that take values in SOC.3;1/, defined in (6.5), which
is the connected component of the identity of OC.3;1/. The isotropy subgroup of
SOC.3;1/ at �4 is

SO.3/Š
��

B 0
0 1

�
2 SOC.3;1/ W B 2 SO.3/

	
;

by the same abuse of notation used in (6.6).

6.2 The sphere at infinity

In Euclidean space, we can use parallel translation to identify the unit sphere S2

with center at the origin with the unit sphere S2x with center at an arbitrary point x.
With these identifications, we can then say that two lines, parametrized by arclength
as xC tu and yC tv, where u 2 S2x and v 2 S2y, are parallel if and only if vD˙u. It
follows that parallelism is an equivalence relation on the set of all lines.

Similar identifications of the unit tangent spheres can be made in Hyperbolic
space, but their role in identifying parallel lines is very different. For one thing,
parallelism is not an equivalence relation on the set of all lines in Hyperbolic space.
As in R3, a line in H3 is the trace of a geodesic. Given a line l and a point x not
on the line, then in Euclidean geometry there exists a unique line l0 through x and
parallel to l. Indeed, this line is obtained by dropping the unique line m through x
perpendicular to l at the point b on l, and then constructing the unique line l0 through
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Fig. 6.2 Ray
!

xw is a limiting
parallel ray.

b

x

l’

l
z

w
y

m

x perpendicular to m. In Hyperbolic geometry, these constructions remain valid and
the line l0 through x is parallel to l, but the hyperbolic parallel postulate requires that
there must be at least one other line through x parallel to l. This line must contain a

ray
!
xy parallel to l and making an acute angle with m. If the angle is small enough,

then the ray
!
xz will meet l at some point z 2 l. There is a limiting ray

!
xw parallel

to l such that any ray between
!
xb and

!
xw meets l, while any ray

!
xy such that

!
xw is

between
!
xy and

!
xb does not intersect l. See Figure 6.2.

There is also a limiting ray
!

xw0 on the opposite side of m, symmetric to
!
xw in the

sense that the angle wxb is congruent to angle w0xb. See [78, Theorem 6.6, p. 196]
for details.

A line l0 is asymptotically parallel to a line l, if l0 contains a limiting ray to l.
Otherwise, they are called divergently parallel. Parallel lines of this second type are
characterized by having a common perpendicular. Asymptotical parallelism is an
equivalence relation on the set of lines of Hyperbolic space. See [78, Theorem 6.7,
p. 199].

The following identification of the unit tangent sphere S2x, at any point x 2H3,
with a single sphere S21, produces a criterion for when two lines in H3 are
asymptotically parallel.

The light cone in R3;1 is

N3 D fn 2R3;1 n f0g W hn;ni D 0g: (6.17)

The multiplicative group of nonzero real numbers R� acts smoothly on N by

R��N! N; .t;n/ 7! tn:

Definition 6.3. The sphere at infinity of H3 is the quotient space

S21 D N=R�: (6.18)

S21 is diffeomorphic to a 2-sphere because each equivalence class in it has
a unique representative in the intersection of N with the hyperplane x4 D 1.
Dropping this intersection down to the coordinate hyperplane x4 D 0, we get the
diffeomorphism
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S21! S2�4 ; Œn� 7! yD 1

n4
n� �4 D 1

n4

3X
1

ni�i;

whose inverse mapping is y 7! ŒyC�4�. Here the unit sphere in the hyperplane x4D 0
is identified with the unit tangent sphere at �4 to H3,

S2�4 D fy 2 �?
4 � R3;1 W hy;yi D 1g:

For any point x 2H3, the unit tangent sphere in TxH3 D x? is

S2x D fv 2 x? � R3;1 W hv;vi D 1g:

We have a smooth diffeomorphism

b W S2x! S21; b.v/D Œn�D ŒxCv�; (6.19)

whose inverse is b�1Œn�D vD� 1
hn;xi n�x. In Proposition 6.17 below we will define

a topology on the disjoint union H3[S21 for which

lim
t!1�.t/D ŒxCv� 2 S21;

where �.t/ is the geodesic in H3 starting at �.0/ D x with unit velocity
P�.0/D v 2 S2x.

Remark 6.4. 1). If x 2H3 and if v 2 S2x, then xCv 2 N.
2). If x 2H3 and if n 2 N, then hn;xi ¤ 0, since we know that the inner product

is positive definite on x?.

6.2.1 Conformal structure on S21

The linear action of OC.3;1/ on R3;1 sends N to N, and it commutes with the action
of R� on N. Thus, we have an action

OC.3;1/�S21! S21; .e; Œn�/ 7! Œen�: (6.20)

Since OC.3;1/ acts by isometries on H3, it sends the unit tangent sphere S2x at x2H3

to the unit tangent sphere S2ex at ex 2 H3, for any e 2 OC.3;1/. This action and the
action (6.20) commute with the diffeomorphisms (6.19) in the sense that if x 2 H3

and y 2 S2x, then ŒxCy� 2 S21, and if e 2OC.3;1/, then ey 2 S2ex and

ŒexC ey�D eŒxCy�:
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Lemma 6.5. The action (6.20) of SOC.3;1/ on S21 is transitive and its isotropy
subgroup at Œ�3C�4� is

G0 D

8̂
<
:̂K.t;u;A/D

0
B@

A �Au=t Au=t
tu t2C1�juj2

2t
juj2Ct2�1

2t
tu t2�juj2�1

2t
juj2Ct2C1

2t

1
CA W t > 0; u 2 R2

A 2 SO.2/

9>=
>; :

Proof. Exercise. ut
Thus, S21 is the homogeneous space SOC.3;1/=G0 and we have the principal

G0-bundle

� W SOC.3;1/! S21; �.e/D Œe3C e4�D eŒ�3C�4�: (6.21)

The Lie algebra of G0 is

g0 D
8<
:
0
@a �v v

tv 0 s
tv s 0

1
A W s 2 R; v 2 R2; a 2 o.2/

9=
; :

A complementary subspace to g0 in o.3;1/ is

n0 D
8<
:X.v/D

0
@ 0 v v
�tv 0 0

tv 0 0

1
A W v 2R2

9=
;Š R2:

The adjoint action of G0 does not leave n0 invariant. This action by K DK.t;u;A/ 2
G0 followed by projection onto n0 takes X D X.v/ to

.K�1XK/n0 D X.ttAv/:

The n0-component of the Maurer–Cartan form of SOC.3;1/ is determined by the
left-invariant R2-valued 1-form

' D
�
'1

'2

�
; ' i D 1

2
.!iC!i

3/; iD 1;2:

That is,

.e�1de/n0 D
0
@ 0 ' '

�t' 0 0
t' 0 0

1
A :
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Exercise 28 (Conformal structure on S21). Given a point of S21, there exists an
open neighborhood U containing this point on which there exists a frame field, that
is, a section of (6.21),

e W U! SOC.3;1/: (6.22)

Then e�'1;e�'2 is a coframe field on U and

t'' D '1'1C'2'2 (6.23)

is a Riemannian metric on U. Conclude that the sections of (6.21) define a conformal
structure on S21, which is a collection of Riemannian metrics any two of which are
conformally related on their common domain of definition. Prove that the action
of SOC.3;1/ on S21 is conformal. Hint: any other frame field on U is given by
Qe D eK.t;u;A/, where t W U ! RC, u W U ! R2, A W U ! SO.2/ are any smooth
maps. If Q' D Qe�', prove that Q' D ttA', so

t Q' Q' D t2 t'': (6.24)

Remark 6.6. If the frame field (6.22) is eD .e1;e2;e3;e4/, then

nD e3C e4 W U! N

is a section of the projection

N! N=R� D S21; (6.25)

and

dnD 2'1e1C2'2e2;

so

hdn;dni D 4t'':

This shows that the sections of (6.25) are conformal if N is given the degenerate
pseudometric induced from its embedding N � R3;1.

6.3 Surfaces in H3

Consider a smooth immersion

x WM!H3
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of a smooth surface M. A smooth frame field along x on an open subset U �M is a
smooth map e W U!OC.3;1/ such that � ı eD x; that is, e4 D x. We define a first
order frame field along x to be a frame field for which e3 is normal to x (but tangent
to H3). This is equivalent to the condition that dx D de4 D !1e1C!2e2, namely,
that

!3 D !34 D 0: (6.26)

Let e be a first order frame field along x on U. The metric induced on M by x and
the Riemannian metric on H3, also called the first fundamental form of x, is

I D hdx;dxi D !1!1C!2!2;

so !1 D !14 , !2 D !24 is an orthonormal coframe field for it. By (6.11)

d!1 D�!12^!2; d!2 D�!21^!1; (6.27)

since !3D 0 for a first order frame field. From (6.27) we conclude that !12 D�!21 is
the Levi-Civita connection form for I with respect to the orthonormal coframe field
!1;!2. The Gaussian curvature is then K, given as an application of (6.11), by

K!1^!2 D d!12 D�!13^!32 �!14^!42 D !31^!32 �!1^!2: (6.28)

Taking the exterior derivative of (6.26) and using (6.11) together with Cartan’s
Lemma, we find that

!31 D h11!
1Ch12!

2; !32 D h21!
1Ch22!

2; (6.29)

for smooth functions hij on U such that h12 D h21. Consider the smooth map

SD .hij/ WU!S ;

where S is the vector space of all 2�2 symmetric matrices. We define the second
fundamental form of x to be the symmetric bilinear form

II D !31!1C!32!2 D hij!
i!j: (6.30)

The dependence of II on the choice of first order frame field e will be determined
from equations (6.31) below. We see that (6.28) becomes the Gauss equation

K D�1CdetS;

where the �1 is coming from the sectional curvature of H3.
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6.4 Moving frame reductions

If e W U! OC.3;1/ is a first order frame field along x, then any other is given by
Qe D eA, where A W U! O.3/ is such that Qe3 is normal to dx, so Qe3 D˙e3. Hence
A W U! G1 �O.3/, where

G1 D
8<
:
0
@C 0 0

0 
 0

0 0 1

1
A W C 2O.2/; 
 D˙1

9=
; :

From (6.15) with BD
�

C 0

0 


�
, we have

� Q!1
Q!2
�
D C�1

�
!1

!2

�
;

� Q!31
Q!32

�
D 
C�1

�
!31
!32

�
:

Hence, by (6.30),

eII D . Q!31 ; Q!32/
� Q!1
Q!2
�
D 
.!31 ;!32 /tC�1C�1

�
!1

!2

�
D 
II; (6.31)

and

QSD 
C�1SC: (6.32)

This is the same action as (4.34) and (5.16). Let the functions a and c on M denote
the principal values of S. These are the principal curvatures of x at the point. As
in the Euclidean case, each orbit of the action (6.32) contains a unique element in
the set

DD f
�

a 0
0 c

�
W a
 jcjg �S : (6.33)

As in that case a point of M is umbilic if aD c and otherwise it is nonumbilic. The
set of umbilic points (aD c) is closed in M.

We define a second order frame field e WU!OC.3;1/ along x to be a first order
frame field for which

!31 D a!1; !32 D c!2; (6.34)

for some functions a;c W U! R.
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Lemma 6.7. Let m 2 M. If m is nonumbilic, or if m belongs to an open set of
umbilic points, then there exists a smooth second order frame field on some open
neighborhood of m.

Proof. Same as the proofs of Lemma 4.6 or Lemma 4.10 in the Euclidean case. ut
Taking the exterior derivative of (6.34), we arrive at the Codazzi equations

da^!1C .a� c/!21^!2 D 0; dc^!2C .a� c/!21^!1 D 0:

The isotropy subgroup at this stage is finite, except in the totally umbilic case, so
the frame reduction is completed. The totally umbilic case is considered below.
The remaining Maurer–Cartan form is !12 D �!21 , which we set equal to a linear
combination of the coframe field

!21 D p!1Cq!2;

for some smooth functions p;q W U! R, determined from

d!1 D p!1^!2; d!2 D q!1^!2:

Taking the exterior derivative of this equation completes the structure equations. For
any function f on M, we set df D f1!1C f2!2, where the smooth functions f1 and f2
are called the derivatives of f with respect to the given coframe field.

6.4.1 Summary of frame reduction and structure equations

Proposition 6.8. Let x W M! H3 be an immersed surface. At a nonumbilic point
there exists a smooth second order frame field e W U! G on a neighborhood of the
point. Its pull-back of the Maurer–Cartan form of G satisfies:

!34 D 0; (first order), !14^!24 ¤ 0;
!31 D a!14 ; !32 D c!24 ; (second order);

!21 D p!14Cq!24 ;

a2 D .a� c/p; c1 D .a� c/q; (Codazzi equations),

p2�q1�p2�q2 D K D ac�1; (Gauss equation)

The functions a and c are the principal curvatures of x. They are continuous
functions on M, smooth on an open neighborhood of any nonumbilic point (D point
where a¤ c). At a nonumbilic point we may assume that a> c on U. The Gaussian
curvature of the metric induced on M is K D�1Cac.
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If x is totally umbilic on U, then any first order frame is automatically second
order and the above equations with a D c give the structure equations for such a
frame.

6.5 Totally umbilic immersions

The set of totally umbilic surfaces in H3 includes spheres and analogs of planes, but
also horospheres and ultraspheres, which have no analogs in Euclidean or spherical
geometry.

Lemma 6.9. If a 2 R, y 2H3, and v 2 TyH3 D y?, then the set

S.ayCv/D fx 2H3 W hx;ayCvi D �ag (6.35)

is a smoothly embedded, totally umbilic, surface in H3 passing through the point y,
with unit normal vector v at y. A unit normal vector field at x 2 S.ayCv/ is

e3 W S.ayCv/! R3;1; e3.x/D ayCv�ax: (6.36)

Proof. Let pD ayCv, so hp;pi D 1�a2. Consider the smooth map

F W R3;1! R2; F.x/D .hx;piCa;hx;xiC1/:

Then S.p/D F�1.0;0/ and

dFx D .hdx;pi;2hx;dxi/D .�p0dx0C
3X
1

pidxi;�2x0dx0C2
3X
1

xidxi/

has rank two at every point x 2 S.p/. In fact, if it has rank less than two at x 2 S.p/,
then xD tp for some t 2 R, so �aD hx;pi D t.1�a2/, which implies that a2 ¤ 1,
tD a

a2�1 , and�1D hx;xiD a2

1�a2
, a contradiction. The map e3 W S.p/!R3;1 defined

in (6.36) is smooth. At x 2 S.p/, the vector e3.x/ has unit length, and hx;e3i D 0
shows that e3.x/ 2 TxH3. It is normal to S.p/ at x, since

hdx;e3.x/i D hdx;pi�ahdx;xi D 0;

where both of the last two terms are zero because hx;pi and hx;xi are constant on
S.p/. Then de3x D �adx shows that x is totally umbilic with principal curvature
equal to a at every point. Note e3.y/D v. ut
Remark 6.10. For the given y 2 H3, if we replace a with �a and v with �v, then
S.�ay� v/ D S.ayC v/, but with the opposite orientation, whose value at y is
now �v.
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Lemma 6.11. If jaj> 1, y 2H3, unit vector v 2 y?, then with its orientation (6.36),
S.ayCv/ is the oriented sphere of signed radius r and center m 2H3, where

coshrD jajp
a2�1; sinhrD coshr

a
; mD coshr yC sinhr v: (6.37)

Proof. Follows from Definition 6.2 and Lemma 6.9. The center m lies on the
geodesic starting at y with initial unit tangent vector v. ut
Definition 6.12. Given a 2 R, y 2H3, unit vector v 2 y?:

If jaj> 1, then S.ayCv/ is the oriented sphere of radius r and center m defined
in (6.37), whose normal vector at y is v.

If jaj D 1, then S.ayCv/ is a horosphere whose orientation at y is v.
If 0 < jaj < 1, then S.ayC v/ is an ultrasphere whose orientation agrees with v

at y.
If a D 0, then S.ayC v/ is a plane with constant unit normal vector field

e3.x/D v.

These surfaces are illustrated in the Poincaré Ball in Figure 6.4 below. The
surfaces S.ayCv/ constitute all the totally umbilic surfaces in H3.

Theorem 6.13 (Totally umbilic case). If M is a connected surface and if
x WM!H3 is a totally umbilic immersion, oriented by the normal vector field
n along x, then x.M/ � S.ayC v/, where a 2 R is the principal curvature relative
to n, yD x.m/ 2H3 for an arbitrarily chosen point m 2M, and vD n.m/ 2 y?.

Proof. Let e be a first order frame field along the totally umbilic x on a connected
open set U � M for which e3 is the given orientation on U. From the Codazzi
equations, the derivatives a1 D a2 D 0, which means that the principal curvature a
relative to e3 is constant on U. Then de3 D�adx, so e3CaxD p 2 R3;1 is constant
on U. Fix m 2 U, and let y D x.m/ and v D e3.m/. Then e3C ax D ayC v on U.
Since hx;e3i D 0 and hx;xi D�1, we have hx;ayCvi D �a on U, which shows that
x.U/� S.ay/Cv. The result now follows from the connectedness of M. ut

6.6 Poincaré Ball model

We shall use the Poincaré Ball model of hyperbolic space as a means to illustrate
the geometry of hyperbolic space. The strength of the hyperboloid model lies in the
simplicity of the action of its group of isometries as the standard linear action of
OC.3;1/ on R3;1. As a hypersurface in a four dimensional space, however, it is not
convenient for illustrations. The group of isometries of the ball model, on the other
hand, is by linear fractional transformations of B3 � R3 by OC.3;1/.
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Definition 6.14. The Poincaré Ball model of hyperbolic space is the open subman-
ifold

B3 D fy 2 R3 W jyj < 1g;

with the Riemannian metric

IB D 4dy � dy
.1�jyj2/2 :

To see that .B3; IB/ is isometric to H3, we use a map analogous to stereographic
projection from ��4. We decompose a point x 2 R3;1 as xDP4

1 xa�a D x0C x4�4,
where x0 DP3

1 xi�i 2 �?
4 ŠR3.

Definition 6.15. Hyperbolic stereographic projection is the map

s WH3! B3 � R3; s.x/D yD 1

1C x4
x0; (6.38)

whose inverse map is

xD s�1.y/D 1

1�jyj2


2yC .1Cjyj2/�4

�
:

Here is a geometric description of s. Given a point x 2H3, the affine line joining
it to ��4 in R3;1 meets the subspace �?

4 � R3;1 at the point s.x/ 2 B3 � R3 D �?
4 .

See Figure 6.3.
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Fig. 6.3 H3 3 x 7! s.x/ 2 B3 in the plane spanned by x and �4.
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The formulas for s and s�1 show it is a diffeomorphism. Differentiating (6.38),
we get

dsx D dyD dx0

1C x4
� x0

.1C x4/2
dx4;

from which we get

s�IB D 4dy � dy
.1�jyj2/2 D hdx; dxi:

This shows that the map (6.38) is an isometry onto .B3; IB/ and conformal as a map
s WH3! R3.

Let us see what the totally umbilic immersed surfaces look like in .B3; IB/. In H3

these were given, up to SOC.3;1/ congruence, by S.p/, where pD a�4C�3, for any
constant a 
 0. All of these S.p/ pass through �4 2 H3 with unit normal vector �3
there, so their images by s will pass through s.�4/, which is the origin 0 of R3, with
unit normal vector ds�4�3 D �3 there. Then

s.S.p//D fy 2 B3 W hs�1.y/;pi D �ag
D fy 2 B3 W y3 D ajyj2g:

(6.39)

If a> 0, then this is

fy 2 B3 W .y1/2C .y2/2C .y3� 1

2a
/2 D 1

4a2
g;

which is the intersection of B3 with SEuc
1
2a
. 1
2a �3/, the Euclidean sphere in R3 of radius

1
2a and center at the point 1

2a �3.
When a > 1, SEuc

1
2a
. 1
2a �3/ lies entirely within B3 and is the image of the sphere

Sr.m/ � H3 of radius r satisfying coshr D ap
1Ca2

and center m D coshr �4 C
sinhr �3 2 H3 given by (6.37). As with the case of stereographic projection,
s.Sr.m//D SEuc

1
2a
. 1
2a �3/, but it does not send the center m to the center 1

2a �3, since

s.m/D sinhr

1C coshr
�3 D 1

aCpa2�1�3 ¤ 1

2a
�3:

When a D 1, SEuc
1
2a
. 1
2a �3/ passes through �3, but all of its other points lie within

B3. Its intersection with B3 is the image of the horosphere S.�4C�3/�H3.
As a decreases, with 1 > a > 0, progressively more of SEuc

1
2a
. 1
2a �3/ lies outside of

B3. Its intersection with B3 is the image of the ultrasphere S.a�4C�3/�H3.
When aD 0, then the image is the totally geodesic plane
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Fig. 6.4 s of S.2�4 C �3/, S.�4 C �3/, S. 1
2
�4 C �3), and S.�3/, with �3.

fy 2 B3 W y3 D 0g:

In this case pD �3 is a unit normal vector field along S.p/, and its image �3 is a unit
normal vector field along s.S.p//.

These various cases are illustrated in Figure 6.4. To be more precise, these figures
show the intersection of s.S.ayCv//with the plane through the origin tangent to �3
there.

Remark 6.16. It is clear that s.S.p/ is always connected, and thus S.p/ is always
connected.

For more details about totally umbilic surfaces in Hn, for any n 
 3, see
Spivak [154, Vol. IV, pp. 10–26 and Theorem 29, pp. 114–117].

The boundary of B3 in R3 is the standard unit sphere,

@B3 D S2 � R3:

We shall define an identification of each unit tangent sphere of B3 with @B3, and
then define a conformal diffeomorphism between S21 and @B3 that will show that
@B3 is the sphere at infinity of the Poincaré ball model.

If y 2 B3 and S2y � R3 is the unit sphere in the tangent space at y, let

bB W S2y! @B3; bB.u/D lim
t!1�u.t/; (6.40)

where �u is the geodesic in B3 starting at y in the direction u.

Proposition 6.17. Decompose nDP4
1 na�a 2 NC into nD n0Cn4�4, where n0 DP3

1 ni�i. The map

s1 W S21! @B3 D S2; vD s1Œn�D 1

n4
n0; (6.41)

is a conformal diffeomorphism, with inverse s�11 .v/D ŒvC�4�. The diagram
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S2x
b! S21

dsx # # s1
S2s.x/

bB! @B3

commutes. In particular, bB is a smooth diffeomorphism, since the other three maps
are. The map

Os WH3[S21! B3[@B3 D B3 D closed unit ball in R3,

defined by OsjH3 D s and OsjS2
1

D s1 is a bijection. Let H3[ S21 have the unique
topology that makes Os a homeomorphism. If x 2H3 and v 2 S2x, then

lim
t!1cosh t xC sinh t vD ŒxCv� 2 S21: (6.42)

Proof. It is evident from their formulas that s1 and its inverse are smooth. By
Lemma 6.5, the conformal structure on S21 comes from sections of the principal
bundle (6.21). A point in S21 has a neighborhood U on which there is a section of
the form

e.Œn0Cn4�4�/D .e1;e2; n0

n4
;�4/:

For this frame field, !i D 0, since e4 is constant, so

' i D 1

2
.!iC!i

3/D
1

2
!i
3;

for iD 1;2, and
P2

1 '
i' i is a metric in the conformal structure of S21. Now

e1;e2;e3 D n0

n4
2 �?

4 D R3;

so

A W U! SO.3/; A.Œn0Cn4�4�/D .e1;e2; n0

n4
/

is a frame field along s1 on U. Thus, s1 pulls back the standard metric on S2 to

de3 � de3 D
2X
1

!i
3!

i
3 D 4

2X
1

' i' i;

which shows that s1 is conformal. The geodesic � in H3 with initial value �.0/D
xD x0Cx4�4 and initial unit velocity vector P�.0/D vD v0Cv4�4 2 S2x� TxH3D x?
is the curve

�.t/D xcosh tCvsinh t:
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It is a geodesic because R�.t/ D �.t/ 2 .T�.t/H3/?, for all t. The isometry (6.38)
sends this geodesic to the geodesic

sı�.t/D 1

1C x4 cosh tCv4 sinh t
.xcosh tCv0 sinh t/; (6.43)

in B3 that starts at s.x/D 1
1Cx4

x0, with initial velocity

dsxvD .sı�/P.0/D 1

.1C x4/2
.�v4x0C .1C x4/v0/:

Hence, by (6.40),

bB ı dsx.v/D lim
t!1s.�.t//D x0Cv0

x4Cv4 D s1.ŒxCv�/D s1 ıb.v/

shows the diagram commutes. The diagram proves (6.42) by

lim
t!1 Os.�.t//D lim

t!1s.�.t//D s1.ŒxCv�/D Os.ŒxCv�/:

ut
Recall that the arclength parameter of a geodesic �.t/ in any complete Rieman-

nian manifold is determined up to transformations s D ˙tC c, for any constant
c 2 R. An orientation of the geodesic is a choice of the sign.

Proposition 6.18. Geodesics � and � in B3; IB are asymptotically parallel if and
only if for some choice of orientation of each

lim
t!1�.t/D lim

t!1�.t/ 2 @B3:

Thus, geodesics � and � in H3 are asymptotically parallel if and only if for some
choice of orientation of each

Œ�.0/C P�.0/�D Œ�.0/C P�.0/� 2 S21:

Proof. See Problem 6.47. ut

6.7 Tangent and curvature spheres

In this section we use the term oriented sphere in H3 to mean an oriented sphere,
horosphere, or ultrasphere.
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Definition 6.19. An oriented tangent sphere to an immersion x W M2 ! H3 at a
point m 2M, with unit normal vector v 2 x.m/?, is an oriented sphere through x.m/
with unit normal v at x.m/.

The set of all oriented tangent spheres to x WM2!H3 at m 2M with unit normal
v at x.m/ is

fS.ax.m/Cv/ W a 2 Rg;

as defined in (6.35) of Lemma 6.9. When a2 > 1, so the oriented tangent sphere is a
genuine hyperbolic sphere, its center must lie on the normal line

fcosh t x.m/C sinh t v W t 2Rg;

as observed at the end of the proof of Lemma 6.11.

Definition 6.20. An oriented curvature sphere of an immersion x W M2 ! H3 at
m2M relative to a unit normal vector v2 x.m/? is an oriented tangent sphere whose
principal curvature is equal to a principal curvature of x WM! S3 at m relative to
the unit normal v at x.m/.

Remark 6.21. If m 2 M is nonumbilic for x, then there are two distinct oriented
curvature spheres at m relative to v. If m is umbilic, then there is only one, but we
say it has multiplicity two. If a is a principal curvature of x at m relative to v, then
the corresponding oriented curvature sphere at m is S.ax.m/Cv/, by Lemma 6.9.

As a conformal map, hyperbolic stereographic projection s W H3! B3 � R3 of
Definition 6.15, sends curvature spheres to curvature spheres.

Proposition 6.22. If S0 is an oriented curvature sphere of the immersion
x WM2!H3 at m 2 M, then s.S0/ is an oriented curvature sphere of the
immersion into Euclidean space s ı x W M ! R3 at m. The converse is true for
any immersion y WM2! R3 for which y.M/� B3.

Proof. If S WU�M!H3 is a tangent sphere map along x such that S.m/D S0, then
s ı S W U! R3 is a tangent sphere map along s ı x in the sense that each image is
an open subset of a Euclidean sphere, which is tangent to sıx. In addition, the rank
of d.sı S/m is the same as the rank of dSm, which is less than two. The proof of the
converse is similar. ut
Corollary 6.23. The conformal map

S �1 ı s W H3! S3;

where S W S3 n f��0g ! R3 is stereographic projection from ��0 2 R4, sends
spheres, horospheres, ultraspheres, and planes to spheres. It sends an oriented
curvature sphere of an immersion x W M! H3 at m 2 M to an oriented curvature
sphere of S �1 ı sı x WM! S3 at m.
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6.8 Dupin and isoparametric immersions

Definition 6.24. A principal curvature a of an immersion x WM2!H3 satisfies the
Dupin condition if it is constant on each of its connected lines of curvature. If both
principal curvatures satisfy the Dupin condition, then x is called a Dupin immersion.
It is proper Dupin if, in addition, the number of distinct principal curvatures is
constant on M. If both principal curvatures are constant on M, then x is called an
isoparametric immersion.

Any isoparametric immersion is a fortiori a proper Dupin immersion.
If M is a connected surface and if x W M ! H3 is an immersion with constant

principal curvatures a and c, then either aD c and x is totally umbilic, or acD 1 and
K D 0. If 0 < a < 1 and if b D p1�a2, then up to congruence by SOC.3;1/ the
isoparametric immersion with principal curvatures a and 1=a is x WR2!H3, where

x.s; t/D a

b
.�1 cos

b

a
tC�2 sin

b

a
t/C�3

sinhbs

b
C�4

coshbs

b
: (6.44)

See Problem 6.49 for details.
Figures 6.5 and 6.6 show s ı x in B3, for the cases a D 1=2 and a D 9=10.

Figure 6.7 shows the congruent copy of the a D 1=2 case obtained by applying

to it the hyperbolic isometry AD

0
BB@

coshr 0 0 sinhr
0 1 0 0

0 0 1 0

sinhr 0 0 coshr

1
CCA 2 SOC.3;1/.

Remark 6.25. As a consequence of Proposition 6.22, any Dupin immersion into
hyperbolic space x WM2!B3 is, without change, a Dupin immersion into Euclidean
space. Conversely, any Dupin immersion into Euclidean space x W M2 ! R3

Fig. 6.5 Isoparametric
immersion in B3 with
a D 1=2.
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Fig. 6.6 Isoparametric
immersion in B3 with
a D 9=10.

Fig. 6.7 Hyperbolic
congruent copy of a D 1=2

case in B3

whose image is in the unit ball B3, is, without change, a Dupin immersion into
hyperbolic space. Thus, Figures 6.5, 6.6, and 6.7 illustrate examples of proper Dupin
immersions in Euclidean space. See Problem 6.54.
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6.9 Curves

Exercise 29 (Space curves). Let f W J ! H3 be a regular smooth curve, where J
is an interval in R. Use the method of moving frames to show that there exists
a first order frame field e D .T;e2;e3; f/ W J ! SOC.3;1/, where T is the unit
tangent vector. Find the conditions under which there exists a unique frame field
eD .T;N;B; f/ along f, called the Frenet frame, such that

dfD T!1; dTD .�NC f/!1; dND .��TC �B/!1; dBD��N!1;

where !1 D !14 and � > 0 and � are smooth functions on J called the curvature and
torsion, respectively, of f. The form !1 D ds, for some function s on J, which is the
arclength parameter. What are the curves that fail to have a unique Frenet frame?

Example 6.26 (Circles). One would expect that a regular smooth curve f W J! H3

with zero torsion and positive constant curvature � is a circle. This is true, however,
only when � > 1. If � D 1, it is a horocircle with one point at infinity. When 0 <
� < 1, it is an ultra-circle, which goes off to infinity before it can close up. In every
case such a curve is the intersection of a totally umbilic surface S.�yC v/ with
the plane through y orthogonal to the unit vector v 2 TyH3. The totally geodesic
surfaces shown schematically in Figure 6.4 are actually the images by s WH3! B3

of the circle, horocircle, ultra-circle, and line, respectively, obtained by intersecting
these surfaces with any plane through �4 tangent to �3 there.

Example 6.27 (Helices). A helix in H3 is the curve obtained by starting at a point
p a distance a> 0 from a line � and rotating it about � at a constant rate as it rises
at a constant rate b times the rate of rotation. Here b 2 R is called the pitch, and the
case bD 0 is a circle. Show that if �.s/D coshs �4Csinhs �3 and if the initial point
pD cosha �4C sinha �1, then the helix, parametrized by arc-length and with pitch
b, is

f.s/D .cosha/�.
b

L
s/C .sinha/.cos

s

L
�1C sin

s

L
�2/;

where L D
p

b2 cosh2 aC sinh2 a. See Figure 6.8 for the case a D 1 and b D 1
8
, in

which case � � 1:2986 and � � 0:0881.

6.10 Surfaces of revolution

As in Euclidean space, we can take a line l in a plane in H3, and then rotate about
l any smooth profile curve lying in an open half-plane of � to obtain a surface of
revolution. To study such surfaces in more detail, we choose the plane S.�2/ through
�4 tangent to �1 and �3 there, and we take l to be the line through �4 tangent to �3
there. A general profile curve is given by
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Fig. 6.8 Helix in the
Poincaré ball with a D 1 and
b D 1

8
.
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� W J!H3; � .s/D f .s/�1Cg.s/�3Cw.s/�4; (6.45)

where J � R is an interval, f and g are smooth functions on J with f positive on J,
and w is the positive solution of

w2 D 1C f 2Cg2

on J. The profile curve is parametrized by arclength if and only if

1D hP�; P�i D Pf 2C Pg2� Pw2; (6.46)

for all s 2 J. Rotation by t 2 R about l in H3 is

0
BB@

cos t �sin t 0 0
sin t cos t 0 0
0 0 1 0

0 0 0 1

1
CCA ;

so our surface of revolution x W J�R!H3, is give by

x.s; t/D f .s/.�1 cos tC�2 sin t/Cg.s/�3Cw.s/�4: (6.47)

The partial derivatives

xs D Pf .�1 cos tC�2 sin t/C Pg�3C Pw�4; xt D f .��1 sin tC�2 cos t/

are orthogonal tangent vectors at each point of x. We assume that s is arclength
parameter for � . Then

e1 D xs; e2 D��1 sin tC�2 cos t (6.48)
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is an orthonormal tangent frame field along x. The unique unit normal vector field
e3 along x for which the frame field .e1;e2;e3;x/ takes values in SOC.3;1/ at every
point of J�R is

e3 D �.�1 cos tC�2 sin tC�3
wPf � Pwf

g Pw�wPg C�4
gPf � f Pg

g Pw�wPg /; (6.49)

where

1

�2
D 1C .wPf � f Pw/2� .gPf � f Pg/2

.g Pw�wPg/2 D 1C Pf 2� f 2

.g Pw�wPg/2 :

6.11 Tubes and parallel transformations

Exercise 30 (Tubes). Let f W J! H3 be a smooth curve with arclength parameter
s and smooth Frenet frame field e D .T;N;B; f/. Fix r > 0 and define the tube of
radius r about f to be the surface x W J�R!H3 defined by

x.s; t/D coshr f.s/C sinhr .cos t N.s/C sin t B.s//: (6.50)

Use Subsection 4.8.2 on tubes in Euclidean space as a guide to:

1. Prove that if tanhr < 1=� on J, then x is an immersion.
2. Find a second order frame field .x;e1;e2;e3/ along x.
3. Prove that, for some choice of sign of e3, the principal curvatures of x are

aD � cos t

coshr�� cos t sinhr
> 0; cD� 1

sinhr
< 0:

4. Find the oriented curvature spheres at x.s; t/ relative to e3.s; t/.

Definition 6.28. Let x WM!H3 be a smoothly immersed surface with unit normal
vector field e3. For any constant r 2 R, the parallel transformation of x by r in
direction e3 is the map

Qx WM!H3; QxD coshr xC sinhr e3: (6.51)

If Qx is singular at a point m 2M, meaning that the rank of d Qx at m is less than two,
then Qx.m/ is called a focal point of x.

Example 6.29 (Parallel transformations). If

eD .e1;e2;e3;x/ W U �M! SOC.3;1/

is a first order frame field along the immersion x WM2!H3, then QeD .e1;e2; Qe3; Qx/,
where Qe3 D sinhr xC coshr e3, is a first order frame field along the parallel
transformation Qx of x by r 2 R in direction e3. The principal curvatures Qa and Qc
of Qx relative to its unit normal vector field Qe3 are
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QaD acoshr� sinhr

coshr�asinhr
; QcD ccoshr� sinhr

coshr� csinhr
;

where a and c are the principal curvatures of x relative to e3.

Exercise 31 (Focal loci). Prove that the parallel transformation Qx of x W M! H3

by r in direction e3 is singular at m 2M if and only if cothr is a principal curvature
of x at m relative to e3.m/.

Definition 6.30. Let x WM!H3 be an immersion with unit normal e3. If a WM! R
is a principal curvature of x relative to e3, then a can be taken to be continuous on
M, and smooth off the umbilic set. Let rD coth�1.a/ WM!R, with 0 < r< � . The
image of

f WM!H3; f .m/D coshr xC sinhr e3

is called a focal locus of x.

The parallel transform of a plane is an ultra-sphere, and any ultra-sphere is
obtained in this way.

Proposition 6.31 (Parallel transforms of planes). If y 2 H3, if 0¤ r 2 R, and if
v 2 TyH3 is a unit vector, then the parallel transform of the plane S.v/ by r in the
direction v is the ultra-sphere S.a.pyCqv/CqyCpv/, where

pD coshr; qD sinhr; aD�q

p
D� tanhr:

Proof. It is sufficient to prove this for the case y D �4 and v D �3, by Prob-
lem 6.44. Then s.S.�3// is the Poincaré plane B2 D B3\ �?

3 , which is conformally
parametrized by the Euclidean coordinates fs�1C t�2 W s2C t2 < 1g. We can then use
s�1 to obtain a conformal parametrization

x W B2! S.�3/; x.s; t/D 1

1� s2� t2
..1C s2C t2/�4C2s�1C2t�2/:

Then xs and xt are orthogonal and we obtain a first order frame field e W B2 !
SOC.3;1/ along x from

e1 D 1� s2� t2

2
xs D sxC s�4C�1;

e2 D 1� s2� t2

2
xt D txC t�4C�2;

e3 D �3:

The parallel transform of x by r in direction e3 is then QxD coshr xC sinhr �3, with
unit normal vector field Qe3 D sinhr xC coshr �3. Then

d QxD coshr dx; dQe3 D sinhr dxD sinhr

coshr
d Qx;
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Fig. 6.9 Parallel transform Qx
of x D S.�3/ in B3\ �?

2 .

ε0x
r

x̃

ε1

ε3

pε0 + qε3

shows that Qx is totally umbilic with principal curvature a D � tanhr. It is an
elementary exercise to show that

Qx.B2/D S.a.p�4Cq�3/Cq�4Cp�3/;

where p D coshr and q D sinhr. Figure 6.9 shows the planar slice B3\ �?
2 of the

projection of x and Qx into B3.
ut

6.12 Hyperbolic Gauss map

Definition 6.32. The hyperbolic Gauss map of a smooth immersion x WM2!H3�
R3;1 with unit normal vector field n WM!R3;1, so n.m/2 x.m/? and has unit length
at each m 2M, is the smooth map

g WM! S21 D N=R�; g.m/D Œx.m/Cn.m/�: (6.52)

If e W U �M! OC.3;1/ is a first order frame field along x such that e3 D n on U,
then g D Œe4C e3�. We say that the Gauss map g is conformal if g pulls back any
metric from the conformal structure on S21 to a positive multiple of the metric on M
induced by x.

We have the following analog to Theorem 4.29 of Euclidean geometry.

Theorem 6.33. Let x WM!H3 be a connected immersed surface with unit normal
vector field e3 and mean curvature H determined by e3. Then its Gauss map g WM!
S21 determined by e3 is conformal if and only if H is identically equal to 1, or x is
totally umbilic.

Proof. Let p 2M and let V � S21 be an open neighborhood of g.p/ on which there
is a section n W V ! N of N! N=R�. Let U D g�1V �M, an open neighborhood
of p. Then hdn;dni is a Riemannian metric on V in the conformal structure on S21
(see Remark 6.6), and

g�hdn;dni D hd.nı g/;d.nı g/i:
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Shrinking U, if necessary, there exists a first order frame field

eD .e1;e2;e3;x/ WU! SOC.3;1/

along x on a neighborhood of p with the given unit normal vector field e3. Then
gD Œe4Ce3� implies that nıgD t.e4Ce3/ for some smooth function t WU!R�, so

g�hdn;dni D t2hd.e4C e3/;d.e4C e3/i;
since he4C e3;e4C e3i D 0, so also hd.e4C e3/;e4C e3i D 0. By (6.29),

d.e4C e3/D ..1�h11/e1�h12e2/!1C .�h12e1C .1�h22/e2/!2;

so 1
t2

g�hdn;dni D


.1�h11/

2Ch221
�
!1!1C 
h212C .1�h22/

2
�
!2!2�2h12.2�h11�h22/!

1!2:

Hence, g is conformal on U if and only if

.1�h11/
2Ch221 D h212C .1�h22/

2 and h12.2�h11�h22/D 0: (6.53)

Simplifying, and substituting in the mean curvature H D .h11C h22/=2, we reduce
(6.53) to

.h11�h22/.H�1/D 0 and h12.H�1/D 0: (6.54)

Hence, g is conformal at a point if and only if either H D 1 at the point or x is
umbilic at the point. If H is identically 1 on M, then g is conformal. If x is totally
umbilic, then g is conformal.

Conversely, if g is conformal on M, suppose that H is not identically 1 on M. Let

W D fq 2M W H.q/¤ 1g;
a non-empty open subset of M. Let W0 be a connected component of W. Then
g is conformal on W0 and H is never 1 on W0, so x must be totally umbilic on
W0. Therefore, H is constant, not 1, on W0 by Theorem 6.13. Then the continuous
function H must be the same constant on the closure W0. But HD 1 at any boundary
point of W0, which means that W0 DM and x is totally umbilic on M. ut

Problems

6.34. Prove that a matrix A 2O.3;1/ if and only if its columns A1;A2;A3;A4 form
an orthonormal basis of R3;1.

6.35. Prove that if x;y 2H3, then �hx;yi 
 1.

6.36. Prove that m is ad.O.3//-invariant.
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6.37. A unit speed curve �.s/ in H3 is a geodesic if D P� P� D 0. Prove that the
geodesic �.s/ in H3 with initial position �.0/ D m 2 H3 and initial velocity the
unit vector P�.0/D v 2 TmH3 is

�.s/D coshs mC sinhs v:

6.38. Prove that the intrinsic distance between points p;q 2H3 is

d.p;q/D cosh�1.�hp;qi/ 2 .0;1/:

6.39. Prove that Sr.m/ is a smoothly embedded surface in H3 and that e3 is a
smooth unit normal vector field on it.

6.40. Adapt the suggestions given in Problem 5.33 to prove the existence of locally
defined smooth unit normal vectors along a surface immersion x. Prove that if m
is a point in M, then there exists a smooth first order frame field on some open
neighborhood of m.

6.41. Prove that the Gaussian curvature of S.ayCv/ is K D a2�1.

6.42. A geodesic in H3 is called a line. Prove that given a line l in H3 and a point
y 2 H3 not on the line l, then there exist at least two lines through y, in the plane
determined by l and y, that never meet l.

6.43. A plane in H3 is a complete, totally geodesic, surface. Prove that for any point
y2H3, and any unit vector v 2 TyH3, the totally umbilic surface S.v/ is a plane with
constant unit normal vector v, as claimed in Definition 6.12. Notice that Figure 6.1
actually shows only the plane through �4 with unit normal˙�3 there.

6.44. Given a 2 R, y 2H3, and unit vector v 2 TyH3. Prove the following:

1. S.ayCv/ is a complete surface in H3.
2. If A 2 SOC.3;1/, then AS.ayCv/D S.aAyCAv/.
3. There exists an isometry A 2 SOC.3;1/ such that S.ayCv/D AS.a�4C�3/.
4. Conclude that SOC.3;1/ acts transitively on the set of oriented planes in H3.

6.45. Let a 2 R, and let pD a�4C�3 2 R3;1. Prove that S.p/DH3\Q.p/, where

Q.p/D fy 2R3;1 W .a2�1/.y4/2�2a2y4C .y1/2C .y2/2 D�.1Ca2/g;

which as a subset of R4 is an ellipsoid if jaj > 1, a hyperboloid if jaj < 1, and a
paraboloid if jaj D 1.

6.46. Prove that the geodesics in B3 trace out circles or lines that are perpendicular
to @B3. In particular, prove that s.�.t// in (6.43) is a circle or line orthogonal to @B3.

6.47. Prove Proposition 6.18. By Problem 6.46, it is sufficient to prove that through
a point x0 2 B3 and a point v0 2 @B3, there passes a unique circle, or line, orthogonal
to @B3 at v0.
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6.48. Prove that the oriented curvature spheres of x WM! H3 at m 2M relative to
the unit normal�v at m are the same spheres as those relative to v, but with opposite
orientations.

6.49 (Isoparametric immersions). Let M be a connected surface and let x WM!
H3 be an immersion with constant principal curvatures a and c. Prove that either
aD c and x is totally umbilic, or acD 1 and K D 0. Fix 0 < a< 1, let bDp1�a2,
and integrate the structure equations to show that up to congruence by SOC.3;1/,
the isoparametric immersion with principal curvatures a and 1=a is x W R2 ! H3

given in (6.44).

6.50. Prove that a regular smooth curve f W J!H3 that has a Frenet frame field lies
in a plane if and only if its torsion � is identically zero. Prove that a regular smooth
curve is a line if and only if it lies in a plane and its curvature is identically zero.

6.51. Given a constant � 
 0, solve the Frenet-Serret structure equations

PfD T; PTD fC�N; PND��T; PBD 0
with the initial conditions .T;N;B; f/.0/ D .�1;�2;�3;�4/. Prove that the solution
curve f satisfies

f.R/� S.��4C�2/\ �?
3 :

6.52. Find the Frenet frame field along the curve f of Example 6.27 and prove that
it has constant curvature

� D .b2C1/cosha sinha

L2

and constant torsion

� D b

L2
;

thus proving that f is a helix. Prove that any helix with constant curvature � and
constant torsion � is congruent to f for the appropriate values of a and b.

6.53. Fix constant 0 < a < 1 and let b D p1�a2. Prove that the isoparametric
surface x.s; t/ obtained in Problem 6.49 with principal curvatures a and 1=a is the
surface of revolution obtained by rotating the profile curve

� .s/D �1
a

b
C�3

sinh.bs/

b
C�4

cosh.bs/

b

in the plane S.�2/ about the line through �4 tangent to �3 there. Prove that this profile
curve has constant curvature � D a and zero torsion. Prove that it is an ultra-circle
with the same points at infinity as the axis of rotation.
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6.54. Use Proposition 6.22 to prove that if x W M2 ! H3 is a Dupin immersion,
then s ı x W M ! R3 is a Dupin immersion into Euclidean space. In particular, if
x W M! H3 is the isoparametric immersion (6.44), then s ı x W M! R3 is proper
Dupin. Show that the coordinate curves are the lines of curvature with Euclidean
principal curvatures QaD a and QcD 1

a .1Cbcosh.bs//.

6.55. Use the formulas in Example 6.29 for the principal curvatures of the parallel
transformation Qx of the immersion x WM2!H3 to prove a Hyperbolic Space version
of Bonnet’s Theorem 4.50: Suppose the mean curvature H of x is constant with
jHj> 1. If rD 1

2
coth�1H, then the Gaussian curvature QK of Qx is constant, with

QK D 2
p

H2�1
jHj�pH2�1 :

If rD coth�1H, then the mean curvature QH of Qx is constant with QH D�H.

6.56 (Bonnet’s Theorems). State and prove Bonnet’s Uniqueness and Existence
Theorems. The statement and proofs are nearly identical to those of Bonnet’s
Theorems 4.18 and 4.19.

6.57. Prove that the Gauss map of the connected immersion x WM!H3 is constant
if and only if x WM!H3 is an open subset of a horosphere.

6.58. A horosphere M in B3 is a Euclidean 2-sphere contained in B3 except for the
point p where it is tangent to @B3. (See the case a D 1 in (6.39)). Prove that any
circle or line through p perpendicular to @B3 is also perpendicular to M at p and at
the second point of its intersection with M. Taking the inward pointing unit normal
vector field along M, prove that its Gauss map sends every point of M to p; that
is, its Gauss map is constant. Note: a horosphere in H3 is like a Euclidean plane in
that its Gaussian curvature K D 0 and its Gauss map is constant, just like a plane in
Euclidean space. It is not, however, totally geodesic, a property of Euclidean planes
shared by Hyperbolic planes.



Chapter 7
Complex Structure

This chapter reviews complex structures on a manifold, then gives an elementary
exposition of the complex structure induced on a surface by a Riemannian metric.
In this way a complex structure is induced on any surface immersed into one of
the space forms. Surfaces immersed into Möbius space inherit a complex structure.
In all cases we use this structure to define a reduction of a moving frame to a
unique frame associated to a given complex coordinate. Umbilic points do not
hinder the existence of these frames, in contrast to the obstruction they can pose
for the existence of second order frame fields. The Hopf invariant and the Hopf
quadratic differential play a prominent role in the space forms as well as in Möbius
geometry. Using the structure equations of the Hopf invariant h, the conformal factor
eu, and the mean curvature H of such frames, we give an elementary description of
the Lawson correspondence between minimal surfaces in Euclidean geometry and
constant mean curvature equal to one (CMC 1) surfaces in hyperbolic geometry; and
between minimal surfaces in spherical geometry and CMC surfaces in Euclidean
geometry.

For supplementary reading see Chern’s Lecture Notes [46], Chern’s book [48],
or the second volume of Kobayashi-Nomizu [101].

7.1 Induced complex structure

We begin with the linear algebraic aspects of complex structures.

Definition 7.1. Let V be a vector space over R of dimension 2n. A complex
structure on V is a linear map J W V! V such that J2 D�id.

Such a structure allows us to define a scalar multiplication by C on V by

.aC ib/vD avCbJv;
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190 7 Complex Structure

for any a;b2R, which turns V into a vector space over C with complex dimension n.
Check that J W V! V is then a complex linear map. A dual description of a complex
structure on V is given by an R-linear isomorphism

' W V! Cn;

which then defines J W V ! V by Jv D '�1i'.v/, where i here means scalar
multiplication on Cn by i D p�1. The R-linear isomorphism ' is not uniquely
determined by J. If A 2GL.nIC/, then Aı' W V! Cn defines the same J, since

.A'/�1i.A'/D '�1A�1iA' D '�1i';

because A commutes with multiplication by i on Cn. Given a complex structure J
on V , a dual map ' W V! Cn can be found as follows. Let v1; : : : ;vn be a basis of V
over C, and then define '.vj/D �j, for jD 1; : : : ;n.

Definition 7.2. An almost complex structure on a smooth manifold M2n of real
dimension 2n is a smooth, type .1;1/ tensor field J on M such that at each point
m 2 M, the linear map Jm W TmM! TmM is a complex structure on TmM; that is,
J2m D�id.

The local dual description of an almost complex structure on M is given on a
neighborhood U of any given point of M by a set of smooth, complex valued 1-forms
'1; : : : ;'n on U such that, at each point m 2U, the map

'm D .'1m; : : : ;'n
m/ W TmM! Cn

is an R-linear isomorphism. This is equivalent to the condition that the set of all real
and imaginary parts of '1; : : : ;'n constitute a coframe field on U. Then ' defines a
a smooth .1;1/ tensor field J on U by J D '�1i' at each point of U. Any complex
linear combination Q' j D Aj

k'
k, where AD .Aj

k/ W U! GL.nIC/ is smooth, defines
the same tensor field J.

For the global dual construction on M, we need to cover M with such pairs .U;'/,
such that whenever U \ QU ¤ ;, then Q'1; : : : ; Q'n must be related to '1; : : : ;'n on
U\ QU by

Q' j D
nX

kD1
Aj

k'
k;

where AD .Aj
k/ W U\ QU!GL.nIC/ is smooth.

Definition 7.3. A complex structure on a topological 2n-manifold M is an atlas of
charts f.Ua;za/ga2A such that

1. za W Ua! Cn is a homeomorphism onto an open subset of Cn.
2. If Ua\Ub ¤ ;, then

zb ı z�1
a W za.Ua\Ub/! zb.Ua\Ub/

is holomorphic.



7.1 Induced complex structure 191

M with such an atlas is called a complex manifold of complex dimension n.
A complex manifold of complex dimension 1 is called a Riemann surface.

Technically, we should add the condition that the atlas is maximal in the sense
that if any chart .U;z/ satisfies the first condition and is compatible with all charts
in the atlas in the sense of the second condition, then .U;z/ also belongs to the
atlas. We do not stress the maximality, because it is easily shown that any atlas that
satisfies the two stated conditions, has a unique extension to a maximal atlas. Notice
that an atlas that defines a complex n-dimensional structure on M is also an atlas
that defines a real analytic structure of real dimension 2n.

A complex n-manifold induces an almost complex structure on itself. It is
defined on each chart .Ua;za/ by the smooth complex valued 1-forms dz1a; : : : ;dzn

1.
The required compatibility condition on Ua \ Ub ¤ ; is satisfied because of
condition (2), which implies that

dzj
b D

nX
kD1

@zj
b

@zk
a

dzk
a;

where the map  
@zj

b

@zk
a

!
W Ua\Ub!GL.nIC/

is holomorphic.
The converse, however, is more complicated. If the smooth manifold M2n has an

almost complex structure f.Ua;'aD .'1a ; : : : ;'n
a //ga2A that is induced by a complex

structure on M with atlas f.Vb;zb/gb2B, then on any nonempty intersection Ua\Vb,

' j
a D

nX
kD1

Aj
kdzk

b;

where AD .Aj
k/ W Ua\Vb!GL.nIC/ is smooth. Thus

d' j
a D

nX
iD1

 
j
i ^' i

a; (7.1)

for some smooth, complex valued 1-forms  j
i , which in this case are

 
j
i D

nX
kD1
.A�1/ki dAj

k;

for j; i D 1; : : : ;n. The set of equations (7.1) is called the integrability condition on
the almost complex structure on M2n. In general, it is not satisfied when n > 1. It is
a celebrated result of Newlander and Nirenberg [128] that if it is satisfied, then there
is a complex structure on M that induces the given almost complex structure.
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An almost complex structure on a surface M automatically satisfies the integra-
bility condition. It was first proved by Korn [102] and Lichtenstein [113] that an
almost complex structure on a surface is always induced by a complex structure on
the surface. In Theorem 7.4 below we will state their result. First, let us see how a
Riemannian metric on an oriented surface M induces an almost complex structure
on M.

Let .M; I/ be a connected, oriented Riemannian surface. An orthonormal coframe
field �1;�2 on U � M is oriented, if �1 ^ �2 > 0 at every point of U. For such a
coframe field, consider the complex valued 1-form

' D �1C i�2; iDp�1;

so that on U we have

I D ' N';

where N'D �1� i�2 is the complex conjugate of '. For each point m2U, this form '

defines an R-linear isomorphism'm WTmM!C, and thus defines an almost complex
structure on U. If Q�1; Q�2 is another oriented, orthonormal coframe field in U, then

Q�1 D A11�
1CA12�

2; Q�2 D A21�
1CA22�

2;

for some smooth AD .Aj
k/ W U! SO.2/, so

Q' D Q�1C i Q�2 D .A11C iA21/�
1C .A12C iA22/�

2 D .A11C iA21/'; (7.2)

on U, (see Problem 7.41). Hence, Q' and ' define the same almost complex structure
on U, since A11C iA21 W U! S1 � C is smooth.

Theorem 7.4 (Korn [102]-Lichtenstein [113]). If .M; I/ is a smooth oriented
Riemannian surface, then it possesses a complex structure that induces the same
almost complex structure as I. For any complex coordinate chart .U;z/ in the atlas
of this complex structure, we have

I D e2udzdNz;

where u W U ! R is a smooth function. In particular, if z D xC iy, then �1 D
eudx; �2 D eudy is an oriented orthonormal coframe field in U.

For a proof in the smooth category and additional references see Chern [42] or
Bers [5].

Proof. Here is a proof, given by Gauss [72], which is valid when M and I are real
analytic. Let m 2M and let .U; .u;v// be a chart from the oriented real analytic atlas
of M such that m 2 U. We may assume u.p/D 0D v.p/ and that .u;v/.U/D D, an
open disk about the origin in R2. Applying the Gram-Schmidt orthonormalization
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process to the coframe field du;dv on U, we may construct an oriented real analytic
orthonormal coframe field �1;�2 on U. Then

' D �1C i�2 D P.u;v/duCQ.u;v/dv;

where P and Q are complex valued functions, defined and real analytic on D� R2.
Thus,

P.u;v/D
1X
0

ajkujvk; Q.u;v/D
1X
0

bjkujvk;

where these power series have complex coefficients and are convergent on some
open neighborhood of the origin of R2. If we extend u;v to complex variables

zD uC iQu; wD vC i Qv;
then these power series with u and v replaced by z and w, respectively, converge on
some open neighborhood O of the origin in C2. These complex power series then
extend P.u;v/ and Q.u;v/ to holomorphic functions P.z;w/ and Q.z;w/ on O.

Consider the holomorphic 1-dimensional distribution defined on O by the
equation

 D P.z;w/dzCQ.z;w/dwD 0:
It satisfies the Frobenius condition, because d ^ D 0 on O for dimensional
reasons. According to the Frobenius Theorem, (whose statement and proof is
exactly the same in the holomorphic category as in the smooth real category), there
exists a holomorphic chart .z1;z2/ W QO ! C2 on some open neighborhood QO of
the origin of C2 such that the integral submanifolds in QO are given by z1 D c, for
any constant in the range of z1. This implies that  D f .z1;z2/dz1 on QO, for some
holomorphic function f W QO! C.

Consider the smooth map

z1 ı .u;v/D x1C iy1 W QU! C;

defined on an appropriate neighborhood QU of m in M. Then

' D f .z1.u;v/;z2.u;v//d.z1.u;v//

has rank equal to 2 at every point of QU, so z1 is a smooth diffeomorphism from a
neighborhood U1 of m onto an open subset of C, and f is never zero.

We have now shown how to construct a cover of M by open sets fUaga2A such
that on Ua there is an oriented orthonormal coframe field �1a ;�

2
a with

'a D �1a C i�2a D fadza; (7.3)
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where fa W Ua ! C n f0g is smooth and za D xa C iya W Ua ! C is a smooth
diffeomorphism onto an open subset of C. If Ua\Ub ¤ ;, then on this intersection
we have, by (7.2), that 'b D Aba'a for some smooth function Aba W Ua\Ub! S1 �
C. Thus,

dzb D 1

fb
'b D Aba

fb
'a D Aba

fa
fb

dza D gdza (7.4)

where g WUa\Ub!Cnf0g is smooth. This shows that zb is a holomorphic function
of za, by which we mean that zb ı z�1

a W za.Ua\Ub/!C is holomorphic. To see this,
observe that in terms of the real and imaginary parts of za and zb, (7.4) becomes

g.dxaC idya/D dxbC idyb D .@xb

@xa
C i
@yb

@xa
/dxaC .@xb

@ya
C i
@yb

@ya
/dya

Comparing the coefficients of dxa and dya, we conclude that xb;yb satisfy the
Cauchy-Riemann equations

@xb

@xa
D @yb

@ya
;

@yb

@xa
D�@xb

@ya
:

Thus, f.Ua;za/ga2A is an atlas of a complex structure on M satisfying (7.3) for each
a 2A , which shows that it induces the same almost complex structure as I. ut
Definition 7.5. Local isothermal coordinates on a Riemannian surface M; I, is any
local coordinate patch U; .x;y/ on M for which I D e2u.dx2C dy2/ on U, for some
smooth function u WU! R.

The Korn-Lichtenstein Theorem 7.4 says that any point of an oriented Rieman-
nian surface .M; I/ is contained in some isothermal coordinate patch.

The Frobenius Theorem is an existence result. There is no algorithm for finding
the integrating factor fa in general, although it can be found in special circumstances,
as shown in some examples below.

Definition 7.6. On a smooth manifold M, a Riemannian metric QI is conformally
related to a Riemannian metric I if QI D e2uI, for some smooth function u WM! R.
This is an equivalence relation on the set of all Riemannian metrics on M. An
equivalence class is called a conformal structure on M.

Lemma 7.7. Riemannian metrics I and QI on an oriented surface M induce the same
complex structure on M if and only if they are conformally related.

Proof. By the proof of the preceding theorem, the metrics I and QI induce the
same complex structure on M if and only if they induce the same almost complex
structures. Suppose this is the case. Then for any point m 2 M, there exists a
neighborhood U of m on which there exist oriented orthonormal coframe fields
�1;�2 for I and Q�1; Q�2 for QI, such that

Q' D Q�1C i Q�2 D f .�1C i�2/D f'
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for some smooth function f W U! Cn f0g. Therefore,

QI D Q' NQ' D jf j2' N' D jf j2I;

on U. Since m 2M is arbitrary, if follows that I and QI are conformally related on M.
Conversely, suppose QI D e2uI on M, where u WM! R is some smooth function.

Given a point m 2 M, let U be a neighborhood of m on which there exist oriented
orthonormal coframe fields �1;�2 for I and Q�1; Q�2 for QI. Then

Q� j D
2X

kD1
Aj

k�
k;

where AD .Aj
k/ W U!GL.2;R/ is smooth and detA> 0 at every point of U, and

Q' D Q�1C i Q�2 D a'Cb N';

where

aD 1

2
.A11CA22C i.A21�A12//; bD 1

2
.A11�A22C i.A21CA12//:

Then

QI D Q' NQ' D .jaj2Cjbj2/' N'CaNb''C Nab N' N' D e2u' N'

implies that aNbD 0 at each point of U. But, if aD 0 at a point, then

detAD det

�
A11 A12
A12 �A11

�
	 0

at the point, which cannot happen. Therefore, bD 0 at every point of U, so Q' D a'
on U. It follows that I and QI induce the same almost complex structure on M. ut

One consequence of this lemma is that if Riemannian metrics I and QI on a
Riemann surface M both induce the given complex structure on M, then they
are conformally related. The next lemma shows that any Riemann surface has a
Riemannian metric that induces its complex structure.

Lemma 7.8. If M is a Riemann surface, then there exists a Riemannian metric I on
M that induces the complex structure of M.

Proof. Cover M by complex coordinate charts f.Ua;za/ga2A . Let ffaga2A be a
smooth partition of unity subordinate to the open cover fUag. Let

I D
X
a2A

fajdzaj2;
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which is locally a finite sum of Riemannian metrics, so is a Riemannian metric. To
see that I induces the complex structure of M, let m2M and let U be a neighborhood
of m that meets the support of only a finite subset of the fa, say of f1; : : : ; fk. On U,

I D f1jdz1j2C�� �C fkjdzkj2 D .f1C f2

ˇ̌̌
ˇdz2
dz1

ˇ̌̌
ˇ
2

C�� �C fk

ˇ̌̌
ˇdzk

dz1

ˇ̌̌
ˇ
2

/jdz1j2;

which shows that I is conformally equivalent to jdz1j2 on a neighborhood of m.
Hence, I induces the same almost complex structure as is induced by the given
complex structure on M. ut

A Riemannian metric I on an oriented surface M defines a complex structure on
M, so M is a one-dimensional complex manifold, that is, a Riemann surface. We
call this the complex structure induced by I and the given orientation.

The opposite orientation of M would give rise to the almost complex structure
�2C i�1 D i.�1� i�2/D i N', which is called the almost complex structure conjugate
to '. Its corresponding complex structure would have local complex coordinate Nz,
and thus defines the conjugate complex structure on M.

We emphasize the following important fact. If .V;w/ is any complex coordinate
chart in M for the complex structure defined by I, then I D e2v dwd Nw, where
v W V! R is smooth. To see this, let �1;�2 be an oriented orthonormal coframe field
in V and let ' D �1C i�2. As seen above, there is a local complex coordinate .U;z/
such that ' D fdz, for some smooth function f W U ! C n f0g. Then w must be a
holomorphic function of z and dwD wzdz, where wz D dw

dz is never zero, so

I D ' N' D jf j2dzdNzD jf j
2

jwzj2 dwd Nw

as claimed, with e2v D jf j2=jwzj2. In particular, the real and imaginary parts of w are
isothermal coordinates for I.

Lemma 7.9 (Adapted coframes). Let M be a Riemann surface with a conformal
metric I. If .U;z/ is a complex coordinate chart in M, then there exists a unique,
oriented, orthonormal coframe field �1;�2 on U such that

�1C i�2 D eudz; (7.5)

where u W U! R is smooth.

Proof. If zD xC iy, and if I D e2udzdNz, for smooth function u W U! R, then (7.5)
implies that

�1 D eudx; �2 D eudy

are the unique 1-forms with the desired property. ut
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7.2 Decomposition of forms into bidegrees

On a Riemann surface M consider a complex coordinate chart U;zD xC iy, where
the real functions x;y are then isothermal coordinates on U. Any smooth complex
valued 1-form ˛ in M is given on U by ˛ D pdxCqdy, for some smooth, complex
valued functions p and q on U. Substitution of

dxD 1

2
.dzCdNz/; dyD 1

2i
.dz�dNz/

into the expression for ˛ shows that on U the form ˛ is a linear combination of dz
and dNz, namely,

˛ D adzCbdNz; (7.6)

for some smooth, complex valued functions aD 1
2
.p� iq/ and bD 1

2
.pC iq/ on U.

Definition 7.10. A complex valued 1-form ˛ has bidegree .1;0/ if it is a multiple
of dz on U. It has bidegree .0;1/ if it is a multiple of dNz.

These bidegrees are well-defined, since if QU;w is another complex coordinate chart,
then on U \ QU we have dw D w0dz, where w0 D dw

dz , and d Nw D w0dNz. Then (7.6)
shows that any complex valued 1 form ˛ decomposes into a sum of a bidegree .1;0/
form and a bidegree .0;1/ form. We call the summands the bidegree .1;0/ and .0;1/
parts, respectively, of ˛, and we call this sum the decomposition by bidegree of ˛.

Notice that if �1;�2 is an oriented orthonormal coframe field for a conformal
metric I on M, then 'D �1C i�2D gdz, for some nowhere zero complex function g.
Therefore, ' has bidegree .1;0/ and any complex valued 1-form can be written as a
linear combination of ' and N', and the part containing ' is the bidegree .1;0/ part
of the form, while the part containing N' is the bidegree .0;1/ part.

For a complex valued function f we denote the decomposition by bidegree of its
differential by

df D @f C N@f :

In terms of the local complex coordinate z, the differential operators @ and N@ are
given by

@f D fzdz; N@f D fNzdNz; (7.7)

where zD xC iy. Then dzD dxC idy and dNzD dx� idy give us

df D fzdzC fNzdNzD .fzC fNz/dxC i.fz� fNz/dy

D fxdxC fydy:
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Therefore,

fx D fzC fNz; fy D i.fz� fNz/;

which can be solved for fz and fNz to give

fz D 1

2
.fx� ify/; fNz D 1

2
.fxC ify/:

This motivates us to define operators

@

@z
D 1

2
.
@

@x
� i

@

@y
/;

@

@Nz D
1

2
.
@

@x
C i

@

@y
/; (7.8)

so that

fz D @f

@z
; fNz D @f

@Nz :

For the complex valued 1-form ˛D adzCbdNz, where a and b are complex valued
smooth functions, we define

@˛ D bzdz^dNz; N@˛ D aNzdNz^dz;

so that d˛ D @˛C N@˛. Thus,

dD @C N@
on functions and 1-forms and d2 D 0 implies that

@2 D 0D N@2; @N@C N@@D 0:

Then, for the complex valued function f ,

d N@f D @N@f D 1

4
.fxxC fyy/dz^dNz:

A complex valued 1-form ˛ D f .z/dz of bidegree (1,0) is called holomorphic or an
abelian differential if

N@˛ D 0:
Observe that this condition is equivalent to the coefficient function f .z/ being
holomorphic. A function f is harmonic if

@N@f D 0;
which we can see above is equivalent to the usual notion of f being a harmonic
function of x and y, namely, that fxxC fyy D 0.
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Let N be a Riemann surface with a complex structure defined by the form 'N

and the local complex coordinate w, so that 'N D gdw, for some smooth function g.
A mapping

f WM! N

is holomorphic if it is given by a holomorphic function wD w.z/, where z is a local
complex coordinate in M. Equivalently, f is holomorphic if f �'N is a multiple of 'M .

Riemann surfaces M and N are isomorphic or conformally equivalent if there
exists a holomorphic diffeomorphism f W M! N whose inverse map is also holo-
morphic. Such a map is called biholomorphic. The name conformally equivalent
comes from the fact that if IM is a metric on M giving its complex structure and IN is
a metric on N giving its complex structure, then a map f WM! N is biholomorphic
if and only if it is diffeomorphic and f �IN D kIM , for some positive smooth function
k on M.

7.2.1 Curvature in terms of the complex coordinate

If zD xC iy is a local complex coordinate for M; I, then I D e2u.dx2Cdy2/ for some
real valued, smooth function u. The function eu is called the conformal factor of I
relative to z. It follows that

�1 D eudx; �2 D eudy

is an orthonormal coframe field in M. Taking the exterior derivative of these
equations, one finds that the corresponding Levi-Civita connection form is

!12 D uydx�uxdy; (7.9)

from which it follows that the Gaussian curvature is given by

K D�e�2u�u; (7.10)

where

�D @2

@x2
C @2

@y2
D 4 @2

@z@Nz
is the Euclidean Laplacian.
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7.3 Riemann surface examples

Example 7.11 (Complex plane). On R2 with Euclidean metric I D dx2C dy2 an
oriented orthonormal coframe field is given by �1 D dx, �2 D dy. Then

' D dxC idyD d.xC iy/

so that zD xC iy is the complex structure on R2 induced by the Euclidean metric.
Its conformal factor is 1 with respect to z. The resulting Riemann surface is the
complex plane C.

Example 7.12 (Poincaré disk). The open unit disk

DD fz 2C W jzj< 1g

is an open complex submanifold of C. Given the conformal Riemannian metric

I D 4.dzdNz/
.1�jzj2/2 ;

it is called the Poincaré disk. If we write zD xC iy, then �1 D eudx, �2 D eudy is the
oriented orthonormal coframe field on D adapted to z, where uD log 2

1�jzj2 WD!R.

By (7.9), the Levi-Civita connection form relative to �1;�2 is

!12 D 2
ydx� xdy

1�jzj2 ;

and by (7.10) the Gaussian curvature of I is K D�1. The Lie group

SU.1;1/D fA 2GL.2;C/ W tNAI1;1AD I1;1; detAD 1g

D
�

AD
�

a Nb
b Na
�
W a;b 2 C; jaj2�jbj2 D 1

	

acts as holomorphic transformations on D by

wD AzD azC Nb
bzC Na ;

since, if jzj < 1, then jwj < 1. Here I1;1 D
�
1 0

0 �1
�

. Moreover,

dwD dz

.bzC Na/2 ;
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so

4dwd Nw
.1�jwj2/2 D

4dzdNz
.1�jzj2/2

shows that A is an isometry. The action of A�1 is the inverse transformation. This
action of SU.1;1/ on D is transitive, since if z 2 D, then A0 D z, when A has the
entries

aD 1p
1�jzj2 ; bD aNz:

Its isotropy subgroup at 0 2 D is

��
a 0
0 Na
�
W jaj D 1

	
Š S1 Š SO.2/:

Example 7.13 (Hyperbolic plane: upper half-plane model). The open subset

H2 D fzD xC iy 2 C W y> 0g

is an open complex submanifold of C. Given the conformal Riemannian metric

I D dzdNz
y2

;

H2 is the upper half-plane model of the hyperbolic plane. The conformal factor is
eu D 1=y, so by (7.10), the Gaussian curvature is K D�1. The special linear group

SL.2;R/D
�

AD
�

a c
b d

�
W a;b;c;d 2 R; ad�bcD 1

	

acts as holomorphic transformations on H2 by

wD AzD azC c

bzCd
;

since, if yD=z> 0, then

=wD y

jbzCdj2 > 0:

Moreover, from

dwD dz

.bzCd/2
;
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we compute

dwd Nw
y2

jbzCdj4
D dzdNz

y2

to see that A acts as an isometry. The action is transitive, for if zD xC iy 2H2, then
AiD z, if

aDpy; bD 0; cD x
p

y; dD 1py:

The isotropy subgroup at i is

��
a �b
b a

�
W a2Cb2 D 1

	
Š SO.2/:

Example 7.14 (Riemann sphere). Stereographic projections from the north and
south poles onto the equatorial plane define complex coordinate charts on S2 that
make it into a Riemann surface called the Riemann sphere. For this it is convenient
to identify the �1�2-plane with C, by x�1 C y�2 D xC iy. On the unit sphere
S2 D fx 2 R3 W jxj D 1g let I be the induced metric. That is, at a point x 2 S2, the
tangent space is

TxS2 D fy 2 R3 W y � xD 0g

and I at x is the Euclidean dot product on this subspace of R3. Thus, at the point xD
x�1Cy�2C z�3 2 S2, so x2Cy2C z2 D 1, we have I D dx2Cdy2Cdz2. This metric
induces the following complex structure on S2. If U D S2 n f�3g, then stereographic
projection from �3 is

s W U! C; s.x;y;z/D xC iy

1� z
;

with inverse transformation

s�1.uC iv/D 1

1Cu2Cv2 .2u�1C2v�2C .u2Cv2�1/�3/:

From the calculation

dsD .1� z/.dxC idy/C .xC iy/dz

.1� z/2
;

we get

dx2Cdy2Cdz2 D I D 4dsdNs
.1Cjsj2/2 ; (7.11)
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which shows that I is conformal on the chart .U;s/. For a chart covering the south
pole, let V D S2 n f��3g, and let

t W V! C; t.x;y;z/D x� iy

1C z
:

On s.U\V/D Cn f0g we have

tı s�1.uC iv/D t.
2u

u2Cv2C1 ;
2v

u2Cv2C1;
u2Cv2�1
u2Cv2C1/D

1

uC iv
;

which is holomorphic, and thus these two charts define a complex structure on S2. It
is a useful exercise to verify that sı t�1 is also holomorphic, and that I is conformal
in the chart .V; t/ also.

Example 7.15 (Complex projective space). CPn is the set of all one-dimensional
complex subspaces of CnC1. Such a subspace is denoted Œx�, where x is any nonzero
vector in it. Then Œy�D Œx� if and only if yD cx, for some nonzero complex number c.
Let

� W CnC1 n f0g! CPn; �.x/D Œx�;

be the projection mapping any nonzero vector to the one-dimensional subspace
containing it. A complex structure is defined on CPn by the collection of coordinate
charts

f.Uk;�k/ W kD 0; : : : ;ng;

where

Uk D fŒz0; : : : ;zn� W zk ¤ 0g

and

�k W Uk! Cn; Œz0; : : : ;zn� 7! �k D . z0

zk
; : : : ; Ok; : : : ; zn

zk
/;

where Ok means omit that entry. It is an elementary exercise to show that these charts
define a complex structure on CPn for which � WCnC1 nf0g!CPn is holomorphic.
There is a special Riemannian metric on CPn, called the Fubini-Study metric (see
Fubini [70] and Study [156]), defined in the chart .Uk;�k/ by

I D 4.1Cj�kj2/.Pj¤k d� j
kd N� j

k/� .
P

j¤k
N� j
kd� j

k/.
P

j¤k �
j
kd N� j

k/

.1Cj�kj2/2 :
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See Kobayashi-Nomizu [101] for details. In this book we will make frequent use
of CP1 and occasional use of CP2. For the present example we shall restrict our
attention to CP1. Now there are two complex coordinate charts, which we write

.U0;z/; z W U0! C; Œz0;z1� 7! zD z1=z0;

and

.U1;w/; w W U1! C; Œz0;z1� 7! wD z0=z1:

On U0\U1 we have wD 1=z. On .U0;z/ the Fubini-Study metric is

I D 4.1Cjzj
2/.dzdNz/� .Nzdz/.zdNz/
.1Cjzj2/2 D 4dzdNz

.1Cjzj2/2 ; (7.12)

and it has an analogous expression on .U1;w/. Thus, I is a conformal metric on the
Riemann surface CP1. The conformal factor is eu D 2=.1Cjzj2/, so its Gaussian
curvature by (7.10) is K D 1. By continuity of K, its value at the point Œ0;1� must
also be 1. The special unitary group

SU.2/D
�

AD
�

a �Nb
b Na

�
W a;b 2C; jaj2Cjbj2 D 1

	

acts on CP1 as holomorphic and isometric transformations. The action comes from
the linear action of SU.2/ on C2,

A

�
z0

z1

�
D
�

az0� Nbz1

bz0C Naz1

�
:

Its local expression in the chart .U0;z/ is then

QzD AzD az� Nb
bzC Na ;

which is holomorphic. By elementary calculations,

dQzD dz

.bzC Na/2 ;

and then

4
dQzdNQz

.1CjQzj2/2 D 4
dzdNz

.1Cjzj2/2
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shows that A acts as an isometry. The action is transitive on CP1, for if zD z0�1C
z1�2 represents a point in CP1, then jzj> 0, so we can let

aD z0=jzj; bD z1=jzj; AD
�

a �Nb
b Na

�
2 SU.2/;

and then

AŒ�1�D Œa�1Cb�2�D Œz�:

The isotropy subgroup at Œ�1� is

��
a 0
0 Na
�
W jaj D 1

	
Š S1 Š SO.2/:

Example 7.16. [S2 Š CP1] The factorization of x2C y2C z2 D 1 into

.xC iy/.x� iy/D .1� z/.1C z/

implies

xC iy

1� z
D 1C z

x� iy

for any point xD x�1C y�2C z�3 2 S2. This allows us to define the map

F W S2! CP1; F.x/D
�

xC iy
1� z

�
D
�
1C z
x� iy

�
; (7.13)

whose inverse is

F�1
�

p
q

�
D 1

jpj2Cjqj2 .2<.pNq/�1C2=.pNq/�2C .jpj
2�jqj2/�3/:

This map is holomorphic, as can be seen from calculations like the following. Let
.U;s/ and .U0;z/ be the complex charts on S2 and CP1 defined in Examples 7.14
and 7.15, respectively. Then

zıF ı s�1 D id W C! C:

It is an isometry, because the Fubini-Study metric has the same expression (7.12) in
the chart .U0;z/ as the standard metric on S2 has in (7.11) in the chart .S2 nf�3g;s/.
In Example 7.17 we shall examine how F relates the action of SO.3/ on S2 to the
action of SU.2/ on CP1.
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Example 7.17 (Double cover ˙ W SU.2/! SO.3/). Recall the isometric, biholo-
morphic map F W S2 ! CP1 defined in Example 7.16. For any A 2 SU.2/, the
composition of isometries

˙.A/D F�1 ıAıF W S2! S2

is an isometry. If A;B2 SU.2/, then˙.AB/D˙.A/ı˙.B/, and˙.I2/ is clearly the
identity map on S2. Thus, ˙ is a group homomorphism and it is two-to-one since
˙.A/D I3, the identity map of S2, if and only if AD F ı I3 ıF�1 is the identity map
on CP1, which requires that AD˙I2. Any A 2 SU.2/ has the form

AD
�

m n
�Nn Nm

�
;

for any m;n2C such that jmj2Cjnj2D 1. By an elementary, but lengthy, calculation
we get

˙.A/D
0
@<.m

2�n2/ �=.m2Cn2/ �2<.mn/
=.m2�n2/ <.m2Cn2/ �2=.mn/
2<.mNn/ �2=.mNn/ jmj2�jnj2

1
A 2 SO.3/:

So, ˙ W SU.2/! SO.3/ is smooth, and thus is a Lie group homomorphism. Any
X 2 su.2/ has the form

X D
�

it rC is
�rC is �it

�
;

for any r;s; t 2 R. Assuming A.t/ is a curve in SU.2/ with A.0/D I2 and PA.0/D X,
it is elementary to calculate the induced Lie algebra homomorphism

˙� W su.2/! o.3/; ˙�X D
0
@ 0 �2t �2r
2t 0 �2s
2r 2s 0

1
A :

Hence,˙� is a Lie algebra isomorphism. Since SU.2/ and SO.3/ are both compact
and connected,˙ is a two-to-one Lie group covering homomorphism.

Example 7.18 (Surface of revolution metrics). Let J;K be intervals in R. On a
domain U D J�K � R2 consider a metric of the form

I D w.u/2du2C f .u/2dv2 (7.14)

where f .u/ and w.u/ are smooth, positive functions on J. The induced metric
on a surface of revolution has this form, as shown in (4.53) of Example 4.40.
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Then �1 D w.u/du, �2 D f .u/dv is an oriented orthonormal coframe field in U and
' D w.u/duC if .u/dv. In general, if MduCNdv is a differential form such that
.Mv �Nu/=N depends only on u, then there is an integrating factor depending only
on u and its logarithm is given by the integral of this expression. In our case, this
expression is �f 0.u/=f .u/, which depends only on u, and thus an integrating factor
is given by c=f .u/, for any constant c¤ 0. Taking cD 1, we see that 1

f .u/ ' is exact,

1

f .u/
' D w.u/

f .u/
duC idv D dz

where, up to addition of a complex constant,

zD
Z

w.u/

f .u/
duC iv: (7.15)

It is the complex coordinate on U induced by this metric, because I D ' N' D
f .u/2dzdNz.

Example 7.19 (Polar coordinates). On R2 with its standard coordinates x;y, polar
coordinates r;� are defined on the complement of the negative x-axis by xD r cos� ,
yD r sin� , where r > 0 and �� < � < � . The Euclidean metric is then

I D dx2Cdy2 D dr2C r2d�2;

which has the form of (7.14). The complex coordinate given in (7.15) is wD logrC
i� , which is logz, where zD xC iyD rei� .

Example 7.20 (Tori). The Euclidean plane R2 with its metric I D dx2C dy2 has
the complex structure of the complex plane C with z D xC iy. Fix two complex
numbers � and � which are linearly independent over R, which is the case if and
only if =.�=�/¤ 0, where =w denotes the imaginary part of the complex number w.
Consider the lattice in C generated by � and �

� .�;�/D fm�Cn� W m;n 2 Zg;

which is an abelian group with the operation of addition of complex numbers.
For example, the square lattice is � .1; i/ D Z� iZ. Then � acts on C properly
discontinuously by

� �C! C; .�;z/ 7! zC�:

The quotient manifold M D C=� is then a smooth surface, which is topologically
a torus. For details see, for example, Boothby [16, Section III.8]. The metric of C
descends to M by the projection map � W C! M, because the metric is invariant
under the action of � on C. The complex structure induced on M by this metric is
such that the projection � is a holomorphic map. A local complex coordinate chart
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.U;z/ in M is just such a chart in C such that U is contained within a fundamental
domain of the action of � . That is, for any point z 2U and any element � ¤ 1 2 � ,
then �C z …U.

Two different lattices can define tori which are conformally equivalent. This is
investigated in Problems 7.44 and 7.45.

Example 7.21 (Compact surfaces). An oriented compact surface is characterized
topologically by its genus, which is one for a torus, and is three, respectively,
four in the surfaces shown in Figure 7.1. The complex structure induced on these
figures depends on the induced metric, which depends on the actual immersion. The
induced complex structure is not a visual concept. A conformal transformation of
R3 preserves the induced complex structure.

Fig. 7.1 Connected sum of three rotational tori on left, a genus 4 surface on right.

A nonorientable compact surface has a two-to-one covering by an oriented
compact surface. It can be immersed into R3, but not embedded (see, for example,
E. Lima [115]). The sphere S2 is a double cover of the real projective plane RP2,
which is nonorientable. W. Boy [18] found an immersion of RP2 known as Boy’s
surface. See Hilbert and Cohn-Vossen [89, pp. 317–321] for a detailed explanation
of Boy’s surface. The left side of Figure 7.2 shows Boy’s surface. Figure 14.1 shows
a transparent version of Boy’s surface to reveal some of its self intersections.

The torus is a double cover of the Klein bottle, shown on the right side of
Figure 7.2 in a transparent version revealing its self intersections.

7.4 Adapted frames in space forms

Denote the three space forms by S
 , for 
 2 f0;C;�g, where

S0 D R3; SC D S3; S� DH3; (7.16)
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Fig. 7.2 Left: Boy’s immersion of RP2 into R3. Right: Klein bottle.

with its group of isometries denoted G
 , where

G0 D E.3/; GC DO.4/; G� DOC.3;1/:

Let x W M ! S� be a smooth immersion of an oriented surface M. The complex
structure on M is that induced by I, the Riemannian metric pulled back by x to M.
When 
 2 f0;Cg, then I D dx � dx, for the standard dot product on R3 and R4, and
when 
 D�, then I D hdx;dxi, for the standard Minkowski inner product on R3;1.

Definition 7.22. A first order frame field along x W M ! S� is adapted to the
complex coordinate chart .U;z/ in M, if it takes values in the connected component
of the identity of G
 and

!1C i!2 D eudz (7.17)

for some smooth real valued function u on U, where dxD !1e1C!2e2. We call eu

the conformal factor of x relative to z.

Lemma 7.23. Let .U;z/ be a complex coordinate chart in M for the complex
structure induced by the first fundamental form I of an immersion x WM! S�. There
exists a unique frame field .x;e/ WU! G
 adapted to .U;z/.

Proof. The adapted frame field is determined by the complex coordinate z by taking
derivatives as follows. Using the operators in (7.8), we have

dxD xzdzCxNzdNz: (7.18)

This complex coordinate z is induced by the Riemannian metric I if and only if
I D e2udzdNz, for some smooth u W U! R. But

I D dx � dxD xz � xzdzdzC2xz � xNzdzdNzCxNz � xNzdNzdNz
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in the Euclidean and spherical cases, and

I D hdx;dxi D hxz;xzidzdzC2hxz;xNzidzdNzChxNz;xNzidNzdNz
in the hyperbolic case. Thus, z is induced by I if and only if

xz � xz D 0D xNz � xNz; xz � xNz D 1

2
e2u; (7.19)

for the Euclidean and spherical geometries and

hxz;xzi D 0D hxNz;xNzi; hxz;xNzi D 1

2
e2u; (7.20)

for hyperbolic geometry. The last equation of each of these gives a formula for the
conformal factor eu relative to .U;z/. If we let

e1 D e�u.xzCxNz/; e2 D ie�u.xz�xNz/; (7.21)

then these equations can be solved for xz and xNz in terms of e1 and e2,

xz D 1

2
eu.e1� ie2/; xNz D xz D 1

2
eu.e1C ie2/ (7.22)

which substituted into (7.18) and compared to dxD !1e1C!2e2 give

!1 D eu

2
.dzCdNz/; !2 D�i

eu

2
.dz�dNz/:

From this we easily verify that equation (7.17) holds. In the Euclidean case,
.x;e1;e2;e3/, with e3 D e1� e2, is the frame field adapted to .U;z/. In the spherical
case, the orthonormal set of vectors x;e1;e2 can be completed uniquely to an
orthonormal basis of R4 whose determinant is one at each point of U. The result is
the frame field .x;e1;e2;e3/ W U! SO.4/ adapted to z. Similarly, in the hyperbolic
case, the orthonormal set of vectors e1;e2;x can be completed uniquely to an
orthonormal basis of R3;1 whose determinant is one at each point of U. The result is
the frame field .e1;e2;e3;x/ W U! SOC.3;1/ adapted to z.

Uniqueness follows from the fact that the conformal factor of a frame field
adapted to .U;z/ must be given by (7.19) or (7.20). Equations (7.17) and (7.18)
combine to show that e1 and e2 must be given by (7.21). Then e3 is uniquely
determined by the condition that the frame field must have determinant equal to
one. ut

For the immersion x WM! S� , the frame field adapted to a complex coordinate
chart .U;z/ is always of first order. If we differentiate !3 D 0, we find from the
structure equations that !3i D hij!

j, where hij D hji, i; jD 1;2, are smooth functions
on U. Then,

!31 � i!32 D h.!1C i!2/CH.!1� i!2/D heu dzCHeu dNz; (7.23)
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where H D .h11Ch22/=2 is the mean curvature and

hD 1

2
.h11�h22/� ih12 (7.24)

is the Hopf invariant of Definition 4.2, relative to this first order frame field.

Definition 7.24. For a local complex coordinate chart .U;z/ on M, the Hopf
invariant h of x relative to z is the Hopf invariant of x relative to the frame field
adapted to .U;z/.

For the adapted frame field,

de3 D�.H dzC NhdNz/xz� .hdzCH dNz/xNz: (7.25)

The second fundamental form has the decomposition into bidegrees

II D�dx � de3D II2;0C II1;1C II0;2; for 
 D 0;C;
II D�hdx;de3i D II2;0C II1;1C II0;2; for 
 D�;

(7.26)

independent of local complex coordinate. For the local complex coordinate z we
have from equations (7.18) and (7.25) the local expressions

II2;0 D 1

2
e2uhdzdzD II0;2; II1;1 D e2uH dzdNz: (7.27)

Differentiate (7.17) to obtain

!12 D i.uzdz�uNzdNz/: (7.28)

Using equations (7.23) and (7.28), we find

d.e1� ie2/D
.uz.e1� ie2/Cheue3/dzC .�
eux�uNz.e1� ie2/CHeue3/dNz

(7.29)

Lemma 7.25. Let .U;z/ be a complex coordinate chart on M for the complex
structure induced by the immersion x WM! S�. Then

(1) The Hopf invariant h relative to z is real valued on U if and only if the coordinate
curves are principal (that is, their tangents are principal directions).

(2) The Hopf invariant h is zero precisely at the umbilic points of x in U.
(3) The principal vectors of x are the solutions of

=.II2;0/D=.1
2

he2udzdz/D 0; (7.30)

where =.p/ denotes the imaginary part of the complex number p.
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Proof. The Hopf invariant h is zero exactly at the points where the matrix S D .hij/

of the second fundamental form is a multiple of the identity matrix, so these are the
umbilic points of x. Furthermore, h is real precisely when S is in diagonal form,
which means that the frame vectors are principal directions. Since

.!31 � i!32/.!
1
0 C i!20/D !31!10 C!32!20 C i.!31!

2
0 �!32!10/

it follows from Lemma 4.4 that the principal vectors of x are the solutions of

=..!31 � i!32/.!
1
0 C i!20//D 0:

If .x;e/ is the frame field adapted to the complex chart .U;z/, then by (7.23)
and (7.17)

=..!31 � i!32/.!
1
0C i!20//D=.he2udzdzCHe2udzdNz/;

from which (7.30) follows, because =.He2udzdNz//D 0. ut
Theorem 7.26 (Complex Structure Equations). Let .U;z/ be a complex coordi-
nate chart in M for the complex structure induced by the immersion x WM! S� . Let
h be the Hopf invariant relative to z, and let H be the mean curvature relative to the
adapted frame. Then the Gauss equation is

�4e�2uuzNz D K D 
1CH2�jhj2; (7.31)

where K is the Gaussian curvature of the induced metric I D e2udzdNz, and the
Codazzi equations become

hNzC2huNzD Hz: (7.32)

Proof. Differentiating (7.28) and using the structure equations of G
 , we have


!1^!2�!13^!32 D d!12 D�2iuzNzdz^dNz:

By (7.23) we have

!31^!32 D
i

2
e2u.H2�jhj2/dz^dNz

from which (7.31) follows. Since

d!12 D K!1^!2 D i

2
K.!1C i!2/^.!1� i!2/D i

2
e2uKdz^dNz

we see that K equals either side of (7.31). Differentiate (7.23) to obtain

� i!12^.!13 � i!23/D d.!13 � i!23/D eu.hNzChuNz�Hz�Huz/dz^dNz: (7.33)

Substitute (7.28) and (7.23) into (7.33) to obtain (7.32). ut
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Theorem 7.27 (Congruence). Let x; Qx W M ! S� be smooth immersions of a
connected oriented surface M, with first fundamental forms I; QI, unit normal vector
fields n; Qn inducing the orientation of M from the standard orientation of S� , and
mean curvature functions H; QH, respectively. If I D QI, H D QH, and II2;0 D eII2;0 at
every point of M, then there exists an isometry A in the connected component of the
identity of G
 such that QxD Ax.

Proof. By (7.27) and the hypotheses, we have I D QI and

II D II2;0CHIC II0;2 DeII2;0C QH QICeII0;2 DeII
at every point of M. The result now follows from Bonnet’s Congruence Theo-
rem 4.18. ut
Theorem 7.28 (Existence). Let M be a simply connected Riemann surface. Let I
be a Riemannian metric on M from its conformal class (if .U;z/ is a local complex
coordinate chart, then I D e2udzdNz, for some smooth u W U ! R). Let II2;0 be a
smooth quadratic differential on M (in .U;z/, II2;0 D 1

2
e2uhdzdz for some smooth h W

U!C). Let H WM!R be a smooth function. If for each local complex coordinate
chart .U;z/ in M the functions u, h, and H satisfy the equations (7.31) and (7.32),
then there exists a smooth immersion x WM! S�, with unit normal vector field e3,
whose first fundamental form dx � dxD I and whose second fundamental form

�de3 � dxD II2;0C II2;0CHI; for 
 D 0;C,

�hde3;dxi D II2;0C II2;0CHI; for 
 D�.

Proof. The Riemannian metric I and the symmetric bilinear form

II D II2;0CHIC II2;0

satisfy the hypotheses of Bonnet’s Existence Theorem 4.19, and thus the result
follows from that. ut

7.5 Constant H and Lawson correspondence

Theorem 7.29 (H. Hopf). Let x W M! S� be an immersion with mean curvature
H of an oriented surface M. Then the Hopf quadratic differential II2;0 of x is
holomorphic on M if and only if H is constant on M.

Proof. Let .U;z/ be a complex coordinate chart in M. Let eu be the conformal factor
and let h be the Hopf invariant relative to z. By (7.27) II2;0 D 1

2
e2uhdzdz on U so

that II2;0 is holomorphic means that the coefficient 1
2
e2uh is a holomorphic function

of z, that is, .e2uh/Nz D 0 on U. But

.e2uh/Nz D e2u.2huNzChNz/D e2uHz
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where the last equation comes from the Codazzi equation (7.32). Since H is a real
valued function, it is the case that Hz D 0 on U if and only if H is constant on U. As
M can be covered by such complex coordinate neighborhoods, the result follows.

ut
When H is constant, the structure equations (7.31) and (7.32) possess an

invariance under certain deformations, which gives rise to the existence of associate
immersions. This phenomenon persists for isothermic immersions and Willmore
immersions into Möbius space.

Definition 7.30. An associate of a constant mean curvature immersion x WM! S�

is a noncongruent immersion Ox WM! S� with the same induced metric and mean
curvature as x.

Corollary 7.31 (Associate immersions). Let M be a simply connected Riemann
surface with complex coordinate z W M! C. If x W M! S� is an immersion with
constant mean curvature and not totally umbilic, then there exists a 1-parameter
family of immersions x.t/ WM! S� for which x.0/ D x and x.t/ is an associate of x if
eit ¤ 1. Moreover, x.t/ is congruent to x.s/ if and only if eit D eis. Any associate of x
is x.t/ for some t 2 R.

Proof. Let I D e2udzdNz be the metric induced by x, let h be the Hopf invariant of x
relative to z, and let H be its constant mean curvature. The structure equations (7.31)
and (7.32) for x become

uzNzC 1
4

e2u.
1CH2�jhj2/D 0; .he2u/Nz D 0: (7.34)

Thus, he2u is a holomorphic function on M. If x is not totally umbilic, then this
function is nonzero, so has only isolated zeros on M. For any t 2 R, these structure
equations are also satisfied by u, eith, and H. By Theorem 7.28, there exists an
immersion x.t/ W M ! S� with induced metric I, Hopf invariant eith, and mean
curvature H. It is an associate of x if eit ¤ 1. Moreover, x.t/ is congruent to x.s/

if and only if eit D eis, by Theorem 7.27.
Suppose Ox W M ! S� is an associate of x, with Hopf invariant Oh relative to z.

Then jOhj D jhj on M, by the first structure equation, and thus Ohe2u and he2u are
nonzero holomorphic functions of the same modulus on M. If follows that Oh=h is a
holomorphic function of modulus one, off the isolated zero set of h, so it must be
constant. Hence, OhD eith for some constant t 2 R. ut
Remark 7.32 (Lawson correspondence). The structure equations (7.34) with 
 D 0
and H D 0 are identical to those with 
 D � and H D 1. Therefore, there is a local
one-to-one correspondence

Minimal surfaces in R3 $ CMC1 surfaces in H3:
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Likewise, these structure equations with 
D 0 and HD 1 are identical to those with

 DC and H D 0, so there is a local one-to-one correspondence

CMC1 surfaces in R3 $ Minimal surfaces in S3:

7.6 Calculating the invariants

For an immersion x W M ! S� , let .U;z/ be a complex coordinate chart in M.
We develop formulas for the conformal factor, the Hopf invariant, and the mean
curvature relative to z.

Equations (7.19) and (7.20) give us the conformal factor eu,

e2u D 2xz � xNz; for 
 D 0;C; e2u D 2hxz;xNzi; for 
 D�:
Differentiation of (7.22) with respect to z and Nz combined with (7.29) gives

xzz D 2uzxzC 1
2

e2uhe3; xzNz D�1
2

e2uxC 1

2
e2uHe3: (7.35)

In the Euclidean case this gives hD 2e�2uxzz � e3. Also from (7.22) we see that

e3 D e1� e2 D�2ie�2uxz�xNz; (7.36)

so a � .b� c/D det.b;c;a/ for any vectors a, b, and c in R3 implies

hD�4ie�4udet.xz;xNz;xzz/: (7.37)

In the same way,

H D�4ie�4udet.xz;xNz;xzNz/: (7.38)

From (7.27) and (7.37) the Hopf quadratic differential is

II2;0 D xzz � e3dzdzD�2ie�2udet.xz;xNz;xzz/dzdz:

In the cases 
 D˙, the vectors xz, e1� ie2, and so on are in C4 and

det.x;xz;xNz;xzz/D det.x;
1

2
eu.e1� ie2/;

1

2
eu.e1C ie2/;

1

2
e2uhe3/

D 
 i

4
e4uh

because deteD 1, so the Hopf invariant

hD�
4ie�4udet.x;xz;xNz;xzz/:
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In the same way, the mean curvature

H D�
4ie�4udet.x;xz;xNz;xzNz/:

We record here an important consequence of these simple calculations.

Definition 7.33. A vector v 2Cn is isotropic if v � vD tvvDPn
1 v

jvj D 0.

Theorem 7.34 (Enneper–Weierstrass characterization). Let .M2; I/ be an ori-
ented immersion and let M have the induced complex structure. Let @x denote the
C3-valued 1-form on M defined in terms of any local complex coordinate chart
.U;z/ by

@xD xzdz:

This form is isotropic by (7.19) (meaning that its value at any point is an isotropic
vector in C3). Then x is minimal if and only if @x is holomorphic.

Proof. The proof follows from the second equation in (7.35). ut
Remark 7.35. Given a Riemann surface M, a holomorphic map f WM!C3 defines a
map xD<R f dz which is an immersion at every point where f ¤ 0, but the complex
structure induced by this immersion will agree with the given complex structure
on M if and only if f is isotropic; that is, f � f D 0. These ideas, which constitute
the Weierstrass representation of a minimal immersion, are considered in detail in
Chapter 8.

Corollary 7.36. Let x W M ! R3 be a minimal immersion of an oriented surface
M. If v is any fixed vector in R3, then the function x � v W M! R is harmonic on
M with respect to the induced metric. Consequently, M cannot be compact (without
boundary).

Proof. Let zD xC iy be a local complex coordinate on M for the induced complex
structure. Since x is minimal and v is constant, the second equation in (7.35) gives

0D xNzz � vD 1

4
.
@2

@x2
C @2

@y2
/.x � v/;

which shows that x � v is harmonic. If M were compact, and v is chosen so that
x �v is nonconstant, then this function must assume a maximum at some point of M.
However, a nonconstant harmonic function cannot have an interior maximum, by the
Maximum Principle for harmonic functions (see Ahlfors [1, Theorem 3, p. 179]).

ut
Example 7.37 (Enneper’s Surface). Consider the map

x W R2! R3

.x;y/ 7! t.x� 1
3

x3C xy2;�yC 1
3

y3� x2y;x2� y2/
(7.39)
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After calculation of dx, one finds

dx � dxD .1C .x2C y2//2.dx2Cdy2/D e2udzdNz

where uD log.1Cjzj2/ and zD xC iy is a complex coordinate on R2 for the induced
complex structure. One calculates

xz D 1

2
t.1� z2; i.1C z2/;2z/

xzz D t.�z; iz;1/

xzNz D 0

Therefore, H D 0 by (7.38) and h D �2e�2u by (7.37) (which involves some
calculation). Thus, x is a minimal immersion and its Hopf quadratic differential is
II2;0 D�dzdz. This example will be discussed again in Example 8.13 in Chapter 8.

Example 7.38 (Circular Tori of Example 5.12). Consider the immersion xD x˛ W
R2 ! S3 defined in (5.26) of Example 5.12, where 0 < ˛ < �=2, r D cos˛, and
s D sin˛. The induced metric was found to be dx � dx D dx2C dy2, so z D xC iy
is a complex coordinate on R2 for the induced complex structure. Relative to z the
conformal factor is eu D 1. By (5.27),

!31 � i!32 D�
1

2rs
dzC r2� s2

2rs
dNz;

so by (7.23), the Hopf invariant relative to z is hD � 1
2rs and the mean curvature is

H D r2�s2

2rs .

7.6.1 Dependence on the complex coordinate

Suppose that w is another complex coordinate in U. Then wDw.z/ is a holomorphic
function of z and so also is w0 D dw

dz . Let eQu be the conformal factor and Qh the Hopf
invariant relative to w. Of course, the mean curvature H does not depend on the
choice of complex coordinate. Comparison of the expressions for the induced metric
in the two complex coordinates,

e2udzdNzD I D e2Qudwd NwD e2Qujw0j2dzdNz;

implies that

eu D eQujw0j: (7.40)
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In the same way,

1

2
e2uhdzdzD II2;0 D 1

2
e2Qu Qhdwdw

implies that

QhD w0
w0 h (7.41)

Therefore, jQhj D jhj, which means that jhj is a function defined and smooth on all of
M, independent of the choice of local complex coordinate.

Definition 7.39. A function f W M ! R on a Riemann surface M is harmonic if
fzNzD 0 for any complex coordinate chart .U;z/ in M. A map y WM!Rn is harmonic
if each component function is harmonic. If y takes values in the unit sphere, then it
is harmonic as a smooth map y WM! Sn�1, if the component of yzNz tangent to Sn at
y is zero at each point of M; that is, yzNz�y � yzNzyD 0 at each point of M.

Theorem 7.40. Let M be a connected, oriented surface. Let x W M ! R3 be an
immersion and let n be a smooth unit normal vector field along x. Then the Gauss
map n WM! S2 � R3 of x has the following properties.

1. The Gauss map is harmonic if and only if the mean curvature H of x is constant
on M. (Ruh-Vilms [146]).

2. The Gauss map is conformal and harmonic if and only if x is minimal or totally
umbilic. If x is minimal, the Gauss map is orientation reversing at the nonumbilic
points. If x is totally umbilic, then x.M/ is an open submanifold of a plane or
sphere.

Proof. Let .U;z/ be a complex coordinate chart in M and let .x;e/ be the frame
field adapted to .U;z/. Let eu be the conformal factor and let h be the invariant
with respect to z. Then nD˙e3. In the following we assume that nD e3. The case
nD�e3 requires only obvious changes. To prove (1), use (7.25) to conclude that

nz D e3z D�Hxz�hxNz (7.42)

and therefore, by (7.35)

nzNz D�HNzxz� .hNzC2uNzh/xNz� 1
2

e2u.H2Cjhj2/e3

D�HNzxz�HzxNz� 1
2

e2u.H2Cjhj2/e3

where the last equality was obtained using the Codazzi equation (7.32). Therefore
n WM! S2 is harmonic if and only if HNzDHz D 0 on U, that is, H is constant on U,
for every chart .U;z/ in M. Since M can be covered by complex coordinate charts,
we see that (1) is proved.



Problems 219

To prove (2), use (7.42) to find

nz �nz D e3z � e3z D 2Hhxz � xNzD Hhe2u

from which we conclude, by applying (7.19) to n, that n is conformal if and only
if Hh D 0 on U. If n is conformal and harmonic, then H is constant, as was just
proved, and HhD 0 on U, so that either the constant H D 0 (x is minimal) or the
constant H ¤ 0 and hD 0 on U, for every chart .U;z/ (x is totally umbilic). If x is
minimal, then by (7.42)

nz�nNz D e3z� e3Nz D�jhj2xz�xNz

which shows that n is orientation reversing at the nonumbilic points of x. If x is
totally umbilic, then it is an open submanifold of a plane or sphere by Theorem 4.23.

ut

Problems

7.41. Prove if A 2 SO.2/, then i.A11C iA21/D A12C iA22.

7.42. Prove that for a complex valued function f D uC iv, where u and v are real
valued smooth functions of x;y, the following are equivalent. If f satisfies any, thus
all, of these conditions, then it is called a holomorphic function of zD xC iy.

1. u;v satisfy the Cauchy-Riemann equations ux D vy and uy D�vx.
2. @f

@Nz D 0.

3. N@f D 0.
4. df is a multiple of dz.
5. df is of bidegree .1;0/.

7.43. A smooth unit normal vector field on S2 induces an orientation on S2 from
the standard orientation of R3. Is the orientation on S2 coming from its Riemann
sphere complex structure in Example 7.14 the one induced by the inward normal or
the outward normal?

7.44. Let � .�;�/ and � .�1;�1/ be lattices in C as defined in Example 7.20. Prove
C=� .�;�/ and C=� .�1;�1/ are conformally equivalent if and only if there exist
integers ˛;ˇ;�;ı such that ˛ı�ˇ� D 1 and �1 D ˛�Cˇ� and �1 D ��C ı� .

7.45. Prove that up to conformal equivalence, any torus is given by C=� .�;�/
where � D 1 and =� > 0.

7.46. Prove that the criterion form (see Definition 4.14) of the frame field adapted
to the complex chart .U;z/ is ˛ D du, where eu is the conformal factor.
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7.47. Prove that a cylinder in R3 over a circle of radius 1/2 (see Problem 4.65) is
a Lawson correspondent of the Clifford torus in S3 (see Example 5.12 for the case
˛ D �=4).

7.48. For the surface of revolution in Example 4.40, let z be the complex coordinate
of the induced structure described in Example 7.18. Find the conformal factor eu and
the Hopf invariant h relative to z. Find the mean curvature H and the Hopf quadratic
differential II2;0.

7.49. Is there a version of Theorem 7.40 for the hyperbolic Gauss map g WM! S21
of an immersion x WM!H3?



Chapter 8
Minimal Immersions in Euclidean Space

This chapter gives a brief history of minimal immersions in Euclidean space.
We present the calculation of the first variation of the area functional and we
derive the Enneper–Weierstrass representation. Scherk’s surface is used to illustrate
the problems that arise in integrating the Weierstrass forms. This integration
problem is a simpler version of the monodromy problem encountered later in finding
examples of CMC 1 immersions in hyperbolic geometry. We present results on
complete minimal immersions with finite total curvature, which will be used in
Chapter 14 to characterize minimal immersions in Euclidean space that smoothly
extend to compact Willmore immersions into Möbius space. The final section on
minimal curves applies the method of moving frames to the nonintuitive setting of
holomorphic curves in C3 whose tangent vector is nonzero and isotropic at every
point.

8.1 The area functional

The theory of minimal surfaces goes back to Lagrange’s 1761 paper, which is
regarded as the origin of the Calculus of Variations. James and John Bernoulli
had used the ideas of the calculus of variations in their 1697 solutions of the
brachistochrone problem, which was discussed first by Galileo (1630) and had been
posed as a challenge in 1696 by John Bernoulli (the younger brother). Newton,
Leibniz and l’Hospital also solved the problem in response to the challenge.

Let M be an oriented surface and let x WM!R3 be an immersion. Let dA denote
the area form on M relative to the induced metric I D dx � dx. Then the area of the
immersed surface is

A.x/D
Z

M
dA:

© Springer International Publishing Switzerland 2016
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If M is not compact, then this integral is improper, even infinite. This area can be
thought of as a functional on the set of all immersions x of M. The immersion is
minimal if it is a critical point of this functional with respect to admissible variations
with compact support, see Definition 8.1.

8.2 A brief history of minimal surfaces

In his 1761 paper [104, Vol.I], Lagrange considered the case where M is a bounded
domain in R2 and the immersions are all graphs of the form

x.x;y/D .x;y;z.x;y//;
where z.x;y/ is a smooth function on M. In this case the area form is dAD .1Cz2xC
z2y/

1=2dx^dy. We shall use Euler’s notation, which for a function zD z.x;y/, sets

pD zx; qD zy; rD zxx; sD zxy; tD zyy:

We also set wDp1Cp2Cq2. In his 1761 paper Lagrange found that a graph zD
z.x;y/ is a critical point of the area functional if and only if it satisfies the Euler-
Lagrange equation

� p

w

�
x
C
� q

w

�
y
D 0: (8.1)

The only solution that he found was the plane zD axCbyCc, where a, b and c are
constants.

In 1776, Meusnier rewrote (8.1) in the form which is now called the minimal
surface equation, MSE,

.1Cq2/r�2pqsC .1Cp2/tD 0:
The expression on the left is the same as the numerator for the mean curvature of a
graph, as expressed in (4.6). Meusnier was the first to observe that the MSE holds if
and only if the mean curvature of the graph is zero.

The MSE is a second order, nonlinear, elliptic PDE. Perhaps the term elliptic
needs some explanation. A general second order PDE is

F.x;y;z;p;q;r;s; t/ D 0;
where at least one of the partial derivatives Fr, Fs and Ft is nonzero. The type of the
PDE is the type of the quadratic form

Fr�
2CFs�
CFt


2

whose type we can read from the sign of its discriminant D D FrFt � 1
4
F2s . The

type is:
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• Elliptic if D> 0. E.g., zxxC zyy D 0, Laplace equation.
• Hyperbolic if D < 0. E.g., zxx� zyy D 0, wave equation.
• Parabolic if DD 0. E.g., zxx� zy D 0, heat equation.

The discriminant of the MSE is w2 > 0.
In his paper [119], which wasn’t published until 1785, Meusnier observed that

any solution z of the two equations

rC tD 0D�q2rC2pqs�p2t

is a solution of the MSE. For these two equations he found the solution

zD bCaarctan
y

x
; a;b constants,

whose graph is the right helicoid. In the same paper he also found the solution

zD 1

b
cosh�1.

1

a

p
x2C y2/; a> 0 and b> 0 constants;

whose graph is a catenoid. Here M D fx2 C y2 
 1g � R2. These examples of
Meusnier’s were the only minimal surfaces known until 1831, seventy years after
the appearance of Lagrange’s paper.

In response to a prize offered by the Jablonowsky Society in Leipzig (Society
of Sciences of Leipzig) for new solutions to the MSE, Scherk submitted his
essay [147], in which he found five new examples and wrote a history of the subject.
He won the prize and the Society published his essay. In his paper [148] of 1834, he
looked for solutions of the MSE of the form

zD f .x/Cg.y/:

Such surfaces are called surfaces of translation. He found the solution

zD log.
cosx

cosy
/; (8.2)

whose graph is called Scherk’s surface. The domain consists of an infinite checker-
board in the x;y-plane of points where cosx and cosy have the same sign. It is the
union of open squares

Sm;n D f.x;y/ W jx�m�j< �

2
; jy�n�j< �

2
g; (8.3)

where m and n are integers such that mC n is even. Figure 8.1 shows the surface
over eight of these squares. It is an infinite array of bedsteads, with the hanging side
sheets asymptotically approaching vertical planes parallel to the y-axis along each
vertical boundary line, and the head and foot boards asymptotically approaching
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vertical planes parallel to the x-axis along each horizontal boundary line. As we
will see in Example 8.17 below, each bedstead shares an infinite bedpost with each
neighbor at each corner so the surface is actually connected. We cannot really see
this from our present description, because the whole surface is not a graph.

This must serve here as a tiny introduction to the history of this subject.
More will appear below as we study minimal surfaces. In particular, we will
see the essential role played by Weierstrass in solving the MSE. A very detailed
history to 1890 can be found in H.A. Schwarz’s [149][Miscellen, pages 168–198].
Modern comprehensive introductions to minimal surface theory can be found in R.

Fig. 8.1 Scherk’s surface as
graph over
S

�1;�1[ S1;�1[ S0;0[ S2;0[
S

�1;1[ S1;1[ S0;2[ S2;2.

Osserman’s [133], H.B. Lawson’s [107], and U. Dierkes, S. Hildebrandt, A. Küster,
and O. Wohlrab’s [61].

8.3 First variation of the area functional

Let e3 be a smooth unit normal along the immersion x W M! R3 compatible with
the orientation of M.

Definition 8.1. An admissible variation of x is any smooth map

X WM� .�
;
/! R3;

with compact support, such that for each t 2 .�
;
/, the map

xt WM! R3; xt.m/D X.m; t/;
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is an immersion. The support of X is the closure in M of the set of points of M where
xt.m/¤ x.m/, for some t.

It follows that the variation vector field of X,

d

dt

ˇ̌̌
ˇ
tD0

xt WM! R3;

has compact support in M.

Example 8.2. If g is a smooth function with compact support S � M, then there
exists 
 > 0 such that

X WM� .�
;
/! R3; X.m; t/D x.m/C tg.m/e3.m/

is an admissible variation of x. For example, if a and c are the principal curvatures
of x, then 
 DminoverSf 1jaj ;

1
jcjg> 0 works.

The first variation of the area of x due to the admissible variation X of x with
support S is

d

dt

ˇ̌̌
ˇ
tD0

Z
S

dAt D
Z

S

d

dt

ˇ̌̌
ˇ
tD0

dAt;

where dAt is the area element of the immersion xt WM! R3. We calculate this first
variation as follows.

Let .x;e/ D .x;e1;e2;e3/ be a smooth first order frame field along x defined on
an open set U �M. The variation vector field of X on U is then

d

dt

ˇ̌̌
ˇ
tD0

xt D
3X

iD1
giei; (8.4)

for some smooth functions g1;g2;g3 W U! R. Then

d

dt

ˇ̌
ˇ̌
tD0

dxt D d.
d

dt

ˇ̌
ˇ̌
tD0

xt/D d
3X
1

giei D
X

i

.dgiC
X

j

gj!i
j/ei:

For fixed t, we have on U

dxt D !1t e1C!2t e2C!3t e3; (8.5)

where !i
t is a smooth curve in T�

mM, for each m 2U. Hence

d

dt

ˇ̌
ˇ̌
tD0
!i

t D dgiC
3X

jD1
gj!i

j ;

for iD 1;2;3.
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Lemma 8.3. About any m0 2 U, there exists a neighborhood V � U and a positive
number ı 	 
 for which there exist smooth vector fields

Ea W V � .�ı;ı/! R3;

for aD 1;2;3, such that Et D .xt;E1;E2;E3/ W V! E.3/ is a first order frame field
along xt for each t 2 .�ı;ı/, with the property that

E1.m;0/D e1.m/; E2.m;0/D e2.m/; E3.m;0/D e3.m/;

for every m 2 V. Consequently,

@Ej

@t
.m;0/ � ej.m/D 1

2

@

@t

ˇ̌
ˇ̌
tD0
.Ej �Ej/D 0;

for every m 2 V for jD 1;2.

Proof. If u;v are oriented local coordinates on a neighborhood of m0 in M, then

E3 D
�
@xt

@u
� @xt

@v

�
=

ˇ̌
ˇ̌@xt

@u
� @xt

@v

ˇ̌
ˇ̌

is a unit normal vector field along xt, for each t. It is smooth in m and t, and when
tD 0 it is e3. Then

E1 D e1� .e1 �E3/E3
je1� .e1 �E3/E3j ; E2 D E3� e1

completes the desired frame field. ut
Let Et be a frame field constructed in the Lemma. For each t we have

dxt D˝1
t E1C˝2

t E2;

where˝1
t ;˝

2
t is the orthonormal coframe field for xt with respect to Et. Comparing

this to (8.5), we conclude that

˝
j
t D dxt �Ej D .e1 �Ej/!

1
t C .e2 �Ej/!

2
t C .e3 �Ej/!

3
t ;

for jD 1;2. Now the area element of xt is

dAt D˝1
t ^˝2

t D P!1t ^!2t C .Q!1t CR!2t /^!3t ;
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where P, Q, and R are the smooth functions of m and t

PD .e1 �E1/.e2 �E2/� .e2 �E1/.e1 �E2/
QD .e1 �E1/.e3 �E2/� .e3 �E1/.e1 �E2/
RD .e2 �E1/.e3 �E2/� .e3 �E1/.e2 �E2/:

For any point m 2 V ,

P.m;0/D 1; Q.m;0/D 0; R.m;0/D 0; @

@t

ˇ̌
ˇ̌
tD0

PD 0:

Then

d

dt

ˇ̌̌
ˇ
tD0
.˝1

t ^˝2
t /D

d

dt

ˇ̌̌
ˇ
tD0
.!1t ^!2t /D d.g1!2�g2!1/Cg3.!13 ^!2C!1^!23/;

since !30 D 0 and Q.m;0/D R.m;0/D 0.

Exercise 32. Prove:

1. !13 ^!2C!1^!23 D�2HdA, where H is the mean curvature of x.
2. The 1-form ˛ D g1!2�g2!1 is independent of the choice of oriented first order

frame field .x;e/ along x, so is globally defined on M.

From all this we conclude that the first variation of the area of x due to the
admissible variation X with variation vector (8.4) is

Z
M

d

dt

ˇ̌
ˇ̌
tD0

dAt D�2
Z

M
g3H dA; (8.6)

because
R

M d˛ D 0 by Stokes and the compact support of ˛.

Remark 8.4. The tangential part of the variation vector never enters into the first
variation of area. It is sufficient to consider only variations of the type defined in
Example 8.2.

Theorem 8.5 (Lagrange-Meusnier). An immersion x W M ! R3 of an oriented
surface M is minimal if and only if the mean curvature is identically zero.

Proof. We have defined minimal immersion to mean that the first variation of the
area is zero for all admissible variations of x. By (8.6), the first variation is zero for
all admissible variations, if H is identically zero. To prove the converse, we prove
that if the mean curvature is not identically zero then the first variation for some
admissible variation is not zero. Suppose H.m0/ ¤ 0 for some point m0 2 M. By
continuity, H is nonzero on some open neighborhood U of m0. Let g W M! R be
a smooth function with compact support in U such that g.m0/D 1 and g 
 0 in U.
Then
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Z
M

gHdA¤ 0

implies that the first variation of the area of x is nonzero for the admissible variation
X.m; t/D x.m/C tg.m/e3.m/. ut

8.4 Enneper–Weierstrass representation

Nearly a hundred years of research passed before minimal surfaces were finally
understood in terms of the induced complex structure on the surface. The Enneper–
Weierstrass representation of minimal surfaces comes from the .1;0/ part of dx,
denoted @x in Theorem 7.34. For Enneper see [65] and for Weierstrass see [169]
and [168]. For a more detailed historical background see Darboux [58, Livre II,
v.1]. For a modern exposition emphasizing global properties see D. Hoffman and H.
Karcher [90].

Theorem 8.6 (Enneper–Weierstrass construction). If ˛ is a nowhere zero C3-
valued isotropic holomorphic .1;0/-form on a connected Riemann surface M, then

xD 2<
Z
˛ W QM! R3 (8.7)

is a conformal minimal immersion of the universal cover QM of M. The map x
descends to M if and only if ˛ has no real periods on M.

Here < denotes the real part and conformal immersion means that for any local
complex coordinate z in QM, the metric I D dx � dx is a positive multiple of dzdNz.
The integral f D R ˛ denotes the holomorphic map f W QM! C3, determined up to
translation, such that df D ��˛, where � W QM!M is the covering projection. More
precisely, fixing any point p0 2M,

f .p/D
Z p

p0

˛

is the line integral over any path in M from p0 to p. This line integral is invariant
up to homotopy, since ˛ is closed, so if M is not simply connected, then f is well-
defined only on QM. The obstruction to f being well-defined on M is the set of periods
of f , which is

f
Z
�

˛ W � 2A g;

where A is a set of closed paths whose homotopy classes generate the fundamental
group of M. The map x W QM!R3 being the real part of f is well-defined on M if the
real parts of the periods are all zero. In short, we say that the real periods of ˛ are
zero.
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Proof. The exterior derivative of equation (8.7) is dxD ˛C N̨ , which is never zero.
Its induced metric is ID dx �dxD 2˛ � N̨ , since ˛ is isotropic, and thus x is conformal
because ˛ � N̨ is a metric in the conformal class of the complex structure of QM. In
fact, if z is a local complex coordinate in QM, then ˛ D a.z/dz for some holomorphic
C3-valued function a.z/, and ˛ � N̨ D jaj2dzdNz. Finally, x is a minimal immersion by
Theorem 7.34, since @xD ˛ is holomorphic. ut

8.4.1 Holomorphic isotropic 1-forms

The Enneper–Weierstrass theorems have reformulated the problem of solving the
minimal surface equation to that of finding nowhere zero, isotropic C3-valued
holomorphic 1-forms on a Riemann surface. This latter problem has a simple
and complete solution in terms of meromorphic functions and ordinary abelian
differentials on a Riemann surface.

Definition 8.7. A meromorphic function on a Riemann surface M is a holomorphic
map

F WM! CP1:

How does this definition relate to the classical definition of a meromorphic
function as a map g WM! C[f1g into the Riemann sphere such that each point
of M has a neighborhood U on which g D p=q, where p and q are holomorphic
functions on U? The relation comes from the fact that given a point m 2 M, there
exists a neighborhood U of m and a holomorphic map

t.p;q/ W U! C2 n f0g

such that FD tŒp;q� on U. See Problem 8.53 below. The holomorphic function t.p;q/
is determined only up to multiplication by a nowhere zero holomorphic function on
U, but the ratio

gD p=q W U! C[f1g

is completely determined by F. This ratio is the local representation of the mero-
morphic function F as a quotient of holomorphic functions. In this representation
of F, the poles of the meromorphic function are the zeros of q, namely, the points
of F�1fŒ�1�g, a discrete subset of M, except in the case when F is constantly equal
to Œ�1�. This last case is the only possibility for which q can be identically zero.

Moreover, it is important to see that p and q can be replaced by holomorphic
sections of any holomorphic line bundle over M. For example, if � and 	 are
holomorphic 1-forms on M, with no simultaneous zeros, then on any complex
coordinate chart .U;z/ of M, we have �D pdz and 	 D qdz, for some holomorphic
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functions p;q W U! C, and the holomorphic map tŒp;q� W U! CP1 is independent
of the choice of coordinate chart. In this way the expression F D tŒ�;	� WM! CP1

is a well-defined holomorphic map, that is, a meromorphic function on M.

Theorem 8.8. Let M be a connected Riemann surface. Any nowhere zero, isotropic,
C3-valued holomorphic 1-form on M is given by

˛ D
0
@ i
1

0

1
A
 or ˛ D

0
B@
1
2
.1�g2/

i
2
.1Cg2/

g

1
CA
; (8.8)

where g is a meromorphic function on M and 
 is a holomorphic 1-form on M, such
that a point p 2 M is a pole of g of order m if and only if p is a zero of 
 of order
2m. There are no other restrictions on g and 
.

Proof. If ˛ is defined by (8.8), then the poles and zeros of g and 
 must balance as
stated so that ˛ will be defined at the poles of g and so that ˛ will never be zero.

Conversely, let ˛ D t.˛1;˛2;˛3/ be any nowhere zero, C3-valued isotropic
holomorphic 1-form on M. Then each ˛j, for jD 1;2;3, is an ordinary holomorphic
1-form on M and ˛ isotropic implies

˛3˛3 D�.˛1˛1C˛2˛2/D�.˛1� i˛2/.˛1C i˛2/: (8.9)

Being holomorphic, the 1-form ˛1� i˛2 is either identically zero or has only isolated
zeros.

If ˛1� i˛2 is identically zero, then (8.9) implies that ˛3 D 0 and ˛ must be given
by the first formula in (8.8) with 
D ˛2.

If ˛1� i˛2 has only isolated zeros on M, then

F D tŒ˛3;˛1� i˛2�D tŒ˛1C i˛2;�˛3� WM! CP1 (8.10)

is a holomorphic map on all of M, since if ˛1 � i˛2 is zero at a point p 2 M,
then ˛3.p/ D 0, but then .˛1C i˛2/.p/ ¤ 0 since ˛.p/ ¤ 0. Equality of the two
expressions for F follows from (8.9). Then F determines the meromorphic function
gD ˛3

˛1�i˛2
on M and an elementary calculation verifies that ˛ is given by the second

expression in (8.8), with 
D ˛1� i˛2. Thus the poles of g balance the zeros of 
 as
required. ut

Remark 8.9. The second expression in (8.8) can be replaced by

˛ D

0
B@
1
2
. 1g �g/

i
2
. 1g Cg/

1

1
CA�

where �D g
 is a holomorphic 1-form on M, such that a point p 2M is a pole or
zero of g of order m if and only if p is a zero of � of order m.
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8.4.2 Parametrization of isotropic vectors

The set of nonzero isotropic vectors is

I D fz 2 C3 n f0g W z � zD 0g; (8.11)

where for z D P3
1 zj�j 2 C3 the dot product is z � z D P3

1.z
j/2. Consider the

holomorphic, two-to-one surjective Enneper–Weierstrass map

W W C2 n f0g!I � C3; W

�
z
w

�
D

0
B@
1
2
.w2� z2/

i
2
.w2C z2/

wz

1
CA ; (8.12)

which satisfies

W.tz/D t2W.z/;

for any non-zero z 2 C2 and t 2 C. If � W CnC1 n f0g ! CPn is the projection map,
for any natural number n, then �.I / is the complex quadric

Q1 D fŒz� 2CP2 W z � zD 0g:

This quadric has a biholomorphic parametrization

w W CP1!Q1 � CP2; w

�
z
w

�
D

2
64
1
2
.w2� z2/

i
2
.w2C z2/

wz

3
75 ; (8.13)

whose inverse mapping is

w�1
2
4u
v

w

3
5D

�
w

u� iv

�
D
�

uC iv
�w

�
; (8.14)

from the factorization of u2Cv2Cw2 D 0 given by .uC iv/.u� iv/D�w2 showing
equality of the last two terms in (8.14). The following diagram commutes:

C2 n f0g W! I � C3 n f0g
� # # �
CP1

w! Q1 � CP2

Theorem 8.10 (Enneper–Weierstrass). Let x WM! R3 be a minimal immersion
of a connected surface. Then @x is a nowhere zero holomorphic isotropic 1-form on
M given by one of the two formulas in (8.8). In the case ˛ is given by the second of
these formulas,
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˛ D @xD

0
B@
1
2
.1�g2/

i
2
.1Cg2/

g

1
CA
; (8.15)

the metric induced by x is

dx � dxD I D .1Cjgj2/2
 N
; (8.16)

which is in the conformal class of the Riemann surface, the Hopf quadratic
differential of x is

II2:0 D�
dg; (8.17)

and the Gaussian curvature of I is

K D �4
.1Cjgj2/4

ˇ̌
ˇ̌dg




ˇ̌
ˇ̌2 : (8.18)

The Gauss map of x is

e3 DS �1.g/D 1

1Cjgj2

0
B@

gC Ng
�i.g� Ng/
jgj2�1

1
CA ; (8.19)

where

S W S2 n f�3g ! C

is stereographic projection from the north pole �3 D t.0;0;1/,

S .u;v;w/D uC iv

1�w
; S �1.uC iv/D 1

u2Cv2C1
t.2u;2v;u2Cv2�1/:

In the case @x is given by the first formula in (8.8), then x.M/ is a plane with induced
metric, Gauss map, and Hopf differential, respectively, given by

dx � dxD 4
 N
; e3 D �3; II2;0 D 0: (8.20)

Proof. One calculates (8.16) from dx D ˛C N̨ . Let U;z be a complex coordinate
chart in M. Then 
D f .z/dz, for some holomorphic function f .z/ on U,

xz dzD ˛ D

0
B@
1
2
.1�g2/

i
2
.1Cg2/

g

1
CA f dz; (8.21)
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and therefore

e2u D 2xz � xNz D .1Cjgj2/2jf j2:

Then from (7.36) we find formula (8.19) for e3. Differentiate (8.21) to find

xzz D gzf

0
@�g

ig
1

1
AC fz

f
xz;

and use this in (7.37) to find the Hopf invariant

hD �2gz

.1Cjgj2/2Nf ; (8.22)

and substitute this into II2;0 D 1
2
he2udzdz to obtain (8.17). By (7.31), K D H�jhj2,

which combined with (8.22) gives (8.18).
If x is given by the first equation in (8.8), then xz D t.i;1;0/f so that e2u D 4jf j2,

from which we obtain the first equation in (8.20). From (7.36) we verify the second
equation in (8.20). Now xzz D t.i;1;0/fz, which substituted into (7.37) gives h D 0
and that verifies the third equation in (8.20). ut

8.4.3 Weierstrass data and associates

We summarize our results for minimal surfaces in R3. According to Theorem 7.34,
an immersion x W M! R3 is minimal if and only if the C3-valued 1-form ˛ D @x
is holomorphic and isotropic. Given any such holomorphic and isotropic 1-form on
a Riemann surface M, we know from Theorem 8.6 that xD 2<R ˛ W QM! R3 is
a conformal minimal immersion, where QM is the universal covering space of M.
Finally, Theorem 8.8 tells us that, with the exception of one trivial case, any
holomorphic isotropic 1-form ˛ on M is given by a meromorphic function g and
a holomorphic 1-form 
, with poles and zeros balanced in the appropriate way. This
data thus determines any nonplanar minimal immersion into R3.

Definition 8.11. A set of Weierstrass data on a Riemann surface M comprises a
meromorphic function g and a holomorphic isotropic 1-form 
 on M, such that a
point of M is a pole of g of order m if and only if it is a zero of 
 of order 2m.

The set of nonplanar minimal immersions of a simply connected Riemann
surface M is in one-to-one correspondence with the set of Weierstrass data on M.

Recall Definition 7.30 of the associates of a constant mean curvature immersion
x WM! R3. In terms of a complex coordinate z on M, Corollary 7.31 says that if x
has conformal factor eu, Hopf invariant h, and constant mean curvature H, then any
associate has the same conformal factor and mean curvature, but the Hopf invariant
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must be eith, for some real constant t for which eit ¤ 0. If H ¤ 0, the resulting
structure equations must be solved to find this associate. Solving these equations is
far simpler when H D 0, as then we can use the Weierstrass data.

Suppose the minimal immersion x W M! R3, where M is simply connected, is
given by the Weierstrass data .g;
/, which determines the holomorphic isotropic
1-form ˛ in (8.21). Let t be any real constant. We see from (8.22) that the Hopf
invariant eith of the associate x.t/ determined by t is the Hopf invariant of the
minimal immersion determined by the Weierstrass data .g;eit
/, which determines
the holomorphic isotropic 1-form ˛.t/D eit˛. Therefore, by the Enneper–Weierstrass
construction of Theorem 8.6,

x.t/ D 2<
Z
˛.t/ D .cos t/x� .sin t/xc; (8.23)

where

xc D 2=
Z
˛ WM! R3;

is called the conjugate surface to x. It is the associate for which tD��=2.

Definition 8.12 (Conformal associate). Let x W M! R3 be a conformal minimal
immersion of a Riemann surface M. The conformal associate of x defined by a
holomorphic function p on M is a minimal immersion Ox WM! R3 such that

@OxD p@x

where @ is the operator defined in (7.7).

8.5 Examples

The following examples illustrate features of the Weierstrass representation such as
how to integrate ˛, the existence of real periods, and associate surfaces.

Example 8.13 (Enneper’s surface). If M D C, g.z/D z and 
D dz, then

˛ D 1

2

0
@ 1� z2

i.1C z2/
2z

1
Adz

is the nowhere zero, isotropic, C3-valued holomorphic 1-form on M. Then the
minimal curve � WM! C3 is, up to translation,

�.z/D 2
Z z

0

˛ D
0
@ z� 1

3
z3

i.zC 1
3
z3/

z2

1
AD x.z/C ixc.z/:
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The real part of � , gives Enneper’s minimal immersion (7.39),

xD<

0
B@

z� 1
3
z3

i.zC 1
3
z3/

z2

1
CAD

0
@ xC xy2� x3=3
�y� x2yC y3=3

x2� y2

1
A ;

where zD xC iy. The imaginary part of � is the Enneper conjugate surface.

Fig. 8.2 Enneper’s surface.

The Enneper associates are given for each real constant t by

x.t/ D 2<
Z

eit˛ D<
0
@ eit.z� 1

3
z3/

eiti.zC 1
3
z3/

eitz2

1
AD xcos t�xc sin t: (8.24)

The case tD 0, is the Enneper surface itself, shown in Figure 8.2. The case tD��=2
is the conjugate surface xc.

The induced metric of Enneper’s surface and all of its associates is

I D e2udzdNz, where eu D 1Cjzj2.
The Hopf quadratic differential for any t is

II2;0t D�eitdzdzD 1

2
hte

2udzdz;

so the Hopf invariant ht of x.t/ relative to z is

ht D �2eit

.1Cjzj2/2 ;
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thus showing that jhtj is independent of t. If eit ¤ eis, then x.t/ is not congruent to x.s/

by a rigid motion, by Corollary 7.31. Nevertheless, the associates are all congruent
to x by a rigid motion after a reparametrization by an internal isometry of .M; I/, as
we now explain (see [61, pp 147–149]).

Lemma 8.14. For any real constant t,

Ax.2t/.z/D x ıF.z/;

for all z 2C, where F.z/D eitz and

AD
0
@cos t �sin t 0

sin t cos t 0
0 0 1

1
A 2 SO.3/: (8.25)

Proof. Let wD F.z/D eitz, so zD e�itw. Using (8.24), we get

x.2t/.z/D<
0
@ ei2t.e�itw� 1

3
e�i3tw3/

ei2ti.e�itwC 1
3
e�i3tw3/

ei2te�i2tw2

1
AD<

0
@ eitw� 1

3
e�itw3

ieitwC i
3
e�itw3

w2

1
A ;

so

Ax.2t/.z/D<
0
@ e�iteitw� 1

3
eite�itw3

ie�iteitwC i
3
eite�itw3

w2

1
AD x.w/D x ıF.z/:

Let us see where A and F came from. The map F WM!M given by wD F.z/D eitz
is holomorphic and an isometry, since

F�I D .1Cjwj2/2dwd NwD I:

If II D II2;0C II0;2 D �dzdz�dNzdNz is the second fundamental form of the minimal
immersion x W M ! R3, then the second fundamental form eII of x ı F has the
decomposition into bidegrees

eII D F�II D F�.II2;0C II0;2/

where

F�II2;0 D F�.�dzdz/D�dwdwD�ei2tdzdzD II2;02t ;

is the Hopf quadratic differential of x.2t/. Hence, xıF WM!R3 must be congruent
by rigid motion to x.2t/ W M! R3 by Corollary 7.31. Since both immersions send
0 2 M to the origin of R3, there is no translation part to the rigid motion, so there
is a rotation A 2 SO.3/ such that Ax.2t/.z/ D x ıF.z/, for every z 2 C. Comparing
dx.2t/ to d.x ıF/, we find that A must be given by (8.25). ut
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Example 8.15 (Catenoid). If M DCn f0g, g.z/D 1=z and 
D dz, then

˛ D

0
B@
1
2
.1� 1

z2
/

i
2
.1C 1

z2
/

1
z

1
CAdz (8.26)

is the nowhere zero, isotropic, C3-valued holomorphic 1-form on M. Then

xD 2<
Z
˛ D 2<

0
B@
1
2
.zC 1

z /
i
2
.z� 1

z /

logz

1
CAD

0
B@

xC x
x2Cy2

�y� y
x2Cy2

log.x2C y2/

1
CA ; (8.27)

which in terms of polar coordinates xD r cos� , yD r sin� , is

xD
0
@ .rC

1
r /cos�

�.rC 1
r /sin�

2 logr

1
A :

If we put sD logr, then rD es, rC1=rD 2coshs, and we have

xD 
2coshscos�;�2coshssin�;2s
�
; (8.28)

which can now be seen to be a surface of revolution about the x3-axis with profile
curve x1 D 2cosh x3

2
, the catenary. See Figure 8.3.

Another approach is to integrate the lift of ˛ to the universal covering

exp W C!M; exp.w/D ew D z;

whose group of deck transformations is

� D fgn W gn.w/D wC2�in;n 2 Zg Š Z:

Then QgD exp� gD e�w, Q
D exp� 
D ewdw, and

Q̨ D exp�˛ D
0
@
1
2
.1� e�2w/

i
2
.1C e�2w/

e�w

1
AewdwD

0
@ sinhw

icoshw
1

1
Adw;

so

QxD 2<
Z w

0

Q̨ D 2<
0
@coshw

isinhw
w

1
A :

If we set wD sC i� , then

coshwD coshscos�C isinhssin�; sinhwD sinhscos�C icoshssin�;
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Fig. 8.3 The catenoid

so

QxD 2
0
@ coshscos�
�coshssin�

s

1
AD

0
@ cos� sin� 0
�sin� cos� 0
0 0 1

1
A
0
@2coshs

0

2s

1
A ;

which is invariant under the group of deck transformations � because of the
periodicity of cos� and sin� . Therefore, Qx descends to the map x WM! R3 given
by the formula (8.28).

The induced metric of x is

I D dx � dxD .1Cjgj2/2
 N
D .1C 1

jzj2 /
2dzdNz:

Its Hopf differential is II2;0 D �
dg D 1
z2

dzdz, and its Gauss map (followed by
stereographic projection onto C) is g.z/D 1=z.

Example 8.16 (Catenoid associates and Helicoid). M D C n f0g, g.z/ D 1=z, 
 D
eitdz, for a fixed real constant t. The isotropic C3-valued holomorphic 1-form is
eit˛, where ˛ is the isotropic abelian differential (8.26) defining the Catenoid. If x
denotes the Catenoid solution (8.27), then the present solution is .cos t/x� .sin t/xc,
where xc is the conjugate

xc.z/D 2=
Z
˛ D 2=

0
B@
1
2
.zC 1

z /
i
2
.z� 1

z /R
dz
z

1
CA ;

which is multivalued on M, since =R dz
z has real periods. See Figure 8.4.
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Fig. 8.4 Catenoid conjugate
t D �

2
, the helicoid

In fact, if we take 0¤ Œ�� 2 �1.M/, where � W Œ0;2��!M, �.t/D eit, then

Z
�

dz

z
D
Z 2�

0

e�i�dei� D 2�i:

The solution xc composed with the universal covering projection QM D C! C n
f0g DM, zD ew, where wD uC iv is the complex coordinate on QM, is

xc.ew/D 2=
0
@
1
2
.ewC e�w/

i
2
.ew� e�w/

w

1
AD 2

0
@sinhusinv

sinhucosv
v

1
A ;

which is single valued on QM. It is a helicoid. Figure 8.5 shows the associates when
t equals �

8
, �
6

, �
4

, and 3�
8

, respectively.

Example 8.17 (Scherk’s surface). This example illustrates many important sub-
tleties of the Enneper–Weierstrass representation. On the Riemann surface

M DC[f1gnfz4D 1g D C[f1gnf˙1;˙ig;
take the meromorphic function g and the holomorphic differential 
,

g.z/D z; 
D 2 dz

z4�1:

The only pole of g on M is1, which is a simple pole. To see the behavior of 
 at
1, let wD 1=z, a local complex coordinate centered at1. Then dzD� 1

w2
dw and


D 2�dw=w2

1=w4�1 D
2w2dw

w4�1 ;
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Fig. 8.5 Catenoid associates
for t D �

8
; �
6
; �
4
; 3�
8

,
respectively.

which has a double zero at1, that is, at wD 0, as required. Then

˛ D
0
@˛

1

˛2

˛3

1
AD

0
@
1
2
.1� z2/

i
2
.1C z2/

z

1
A 2

z4�1 dzD

0
B@
� i
2
. 1

zCi � 1
z�i /dz

� i
2
. 1

zC1 � 1
z�1 /dz

. z
z2�1 � z

z2C1 /dz

1
CA (8.29)

is a holomorphic, nowhere zero isotropic differential on M whose integral

Z z

0

˛ D

0
BB@
� i
2

log. zCi
z�i /

� i
2

log. zC1
z�1 /

1
2

log. z2�1
z2C1 /

1
CCA (8.30)

depends on the homotopy class of the piecewise smooth path chosen from 0 to z
in M. Thus, to obtain a single valued map, we consider this map as defined on the
universal cover � W . QM; Q0/! .M;0/, which does not have an elementary expression
like that used above for the Catenoid. We shall use the representation of QM as the set
of all homotopically equivalent paths in M from the base point 0 (see, for example,
A. Hatcher’s text [83, §1.3]). For the rest of this example, path will mean piecewise
smooth path. A point Œ��2 QM is represented by a path � in M with initial point �0 D 0
and terminal point �1 D z 2M. The covering projection is given by �Œ��D �1. If ı
is another path in M from 0 to z, then the homotopy classes Œ��D Œı� if and only if
the loop �ı�1 at 0 is homotopically trivial; that is, Œ�ı�1� D 1 in the fundamental
group GD �1.M;0/.
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Our minimal immersion is

Qx W QM! R3; QxŒ��D 2<
Z
�

˛ D

0
BB@

arg� .
zCi
z�i /

arg� .
zC1
z�1 /

log j z2�1
z2C1 j

1
CCAD

0
B@

x1� .z/
x2� .z/
x3.z/

1
CA ; (8.31)

where arg� .
zCi
z�i / denotes the continuous extension of the argument function along

the path �Ci
��i from �1 to zCi

z�i , with the initial value arg.�1/D � . Define arg� .
zC1
z�1 /

in the same way. Notice that the third component of Qx depends only on z, and not on
the path from 0 to z. Since arg.z/ is determined by z up to adding an integer multiple
of 2� , the functions cosxi

� .z/ and sinxi
� .z/, for iD 1;2, depend only on the endpoint

z and not on the path � . For any point z 2M,

w1 D zC i

z� i
D jzj

2�1C i.zCNz/
jz� ij2 D

ˇ̌̌
ˇ zC i

z� i

ˇ̌̌
ˇ.cosx1.z/C isinx1.z//;

w2 D zC1
z�1 D

jzj2�1CNz� z

jz�1j2 D
ˇ̌
ˇ̌ zC1

z�1
ˇ̌
ˇ̌.cosx2.z/C isinx2.z//:

(8.32)

Comparing the real and imaginary parts in each line, we find

cosx1.z/D jzj
2�1
jz� ij2

ˇ̌
ˇ̌ z� i

zC i

ˇ̌
ˇ̌D jzj2�1jz2C1j ; cosx2.z/D jzj

2�1
jz2�1j :

Thus, for any z 2M for which jzj ¤ 1, we have

cosx1.z/

cosx2.z/
D jz

2�1j
jz2C1j D ex3.z/;

by (8.31). This shows that Qx. QM n��1fjzj D 1g/ is contained in the Scherk surface
given as a graph in (8.2). Moreover, from (8.32) we also have

sinx1.z/D zCNz
jz2C1j ; sin x2.z/D i.z� Nz/

jz2�1j : (8.33)

Let us examine Qx on the set OD of all homotopy classes of paths in the open unit disk
DD fjzj < 1g �M. Each such class is determined uniquely by its endpoint z 2 D,
since D is contractible, and so we may write ODDD. Then (8.32) shows that both w1
and w2 map D biholomorphically onto the left half-plane f<.w/ < 0g, with 0 going
to �1 in both cases. They are biholomorphic because in each case one can explicitly
solve for z in terms of w. Thus,

.x1;x2/.D/D .�=2;3�=2/� .�=2;3�=2/D S1;1;
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in the notation of (8.3). Combining this with (8.33), we get

Qx W D! R3; Qx.z/D

0
B@
� � arcsin. zCNz

jz2C1j /
� � arcsin. i.z�Nz/

jz2�1j
log j z2�1

z2C1 j

1
CA ;

which gives the conformal parametrization Qx WD!R3 of Scherk’s surface over S1;1
shown in Figure 8.6.

Fig. 8.6 The Weierstrass
image of the unit disk D for
Scherk’s surface.

Next we examine the value of Qx.Œ�� �/, for � in each of the open intervals .0;�=2/,
.�=2;�/, .�;3�=2/, and .3�=2;2�/, where �� is the the line segment from 0 to ei� .
From (8.32), we get

w1.e
i� /D i

cos�

1� sin�
; w2.e

i� /D i
�sin�

1� cos�
:

Combining this with the fact that for z 2 D, along a path inside D, arg.w1.z// and
arg.w2.z// are both in the open interval .�=2;3�=2/, we conclude that along paths
inside D,

x1�� .e
i� /D arg�� .w1.e

i� //D
�
�=2; if 0 < � < �=2 or 3�=2 < � < 2� ,
3�=2; if �=2 < � < � or � < � < 3�=2,

x2�� .e
i� /D arg�� .w2.e

i� //D
�
3�=2; if 0 < � < �=2 or �=2 < � < � ,
�=2; if � < � < 2�=2 or 3�=2 < � < 2� .

(8.34)

See Figure 8.7. Moreover, on each of these four intervals, x3.ei� /D log j tan� j. We
conclude that Qx maps each of these quarter circles onto a vertical line through a
vertex of the square S1;1.
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12

3 4

1

34

2

Fig. 8.7 .x1;x2/ sends numbered arc to same numbered vertex.

Now consider what Qx does to ND0, the complement of the closed unit disk in M,
on the set of homotopy classes of paths consisting of the line segment from 0 to
1� i followed by a path entirely in ND0. Each such class is uniquely determined by
its endpoint z 2 ND0, since ND0 contains the point 1 so is topologically a disk. We
may thus denote this set of homotopy classes by ND0. By (8.32) we see that both
w1 and w2 map ND0 biholomorphically onto the right half-plane f<.w/ > 0g, and so
arg.w1.z// and arg.w2.z// lie in the open interval .��=2;�=2/ modulo an additive
integer multiple of 2� . But then (8.34) and the required continuity of arg along paths
imply that x1.z/ and x2.z/ lie in .��=2;�=2/ for every z2 ND0. This with (8.33) gives
us the Enneper–Weierstrass parametrization

Qx W ND0! R3; Qx.z/D

0
BB@

arcsin zCNz
jz2C1j

arcsin i.z�Nz/
jz2�1j

log j z2�1
z2C1 j;

1
CCA ;

which is illustrated in Figure 8.8. Putting together the Weierstrass images of D and
ND0, we get Figure 8.9.

Finally, we examine Qx on all of QM. If � is a closed loop in M, then ˛ holomorphic
on M implies

Z
�

˛ D 2�i
X

p2f˙1;˙ig
n� .p/res˛.p/;

where n� .p/ is the winding number of � about p and res˛.p/ denotes the residue of
˛ at p (see [118, Residue Theorem, pp. 217 ff]). Using (8.29), we find
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Fig. 8.8 The Weierstrass
image of ND0 for Scherk’s
surface.

Fig. 8.9 The Weierstrass
image of D and ND0 for
Scherk’s surface.
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2�i res˛.1/D �
0
@ 0

�1
i

1
A ; 2�i res˛.�1/D �

0
@01

i

1
A ;

2�i res˛.i/D �
0
@�10
�i

1
A ; 2�i res˛.�i/D �

0
@ 10
�i

1
A :

(8.35)

Then the period vectors of the minimal immersion Qx W QM! R3 given in (8.31) are
twice the real part of each of the vectors in (8.35). This means that for any closed
path � in M, based at 0,

2<.
Z
�

˛/D 2�..n�.�i/�n�.i//�1C .n�.�1/�n�.1//�2/: (8.36)

Since the winding number is invariant under homotopy, we have the map

F W G! Z2; FŒ��D .n�.�i/�n�.i//�1C .n� .�1/�n�.1//�2; (8.37)

which is a group homomorphism, since the winding number of a product of closed
loops at 0 is the sum of their winding numbers. The fundamental group G of M acts
as holomorphic deck transformations on QM by

G� QM! QM; Œ��Œ��D Œ���;
for any homotopy class of closed loops Œ�� at 0 and any homotopy class of paths Œ��
starting at 0 in M. Under this action, Qx satisfies

Qx.Œ��Œ��/ D Qx.Œ��/C2�FŒ��; (8.38)

by elementary properties of path integrals and (8.36). If

H D ker.F/;

is the kernel of F, then H is a normal subgroup of G and

OM D QM=H

is a Riemann surface covered by QM by the holomorphic projection

Q� W QM! OM; Q�Œ��D ŒH��;
the H-orbit of Œ��. Then H Š �1. OM; O0/, where the base point O0DH Q0, the H-orbit of
the base point of QM. Moreover,

O� W OM!M; O�ŒH��D �Œ��
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is a holomorphic covering space of M whose group of deck transformations is
isomorphic to G=H. Then (8.38) implies that Qx W QM ! R3 descends to a smooth
immersion of OM, which we denote

Ox W OM! R3; OxŒH��D QxŒ��: (8.39)

Recall how we identified the open unit disk D � M with the component of Q��1D
containing the base point Q0, the homotopy class of the constant path at 0 in M.
Similarly, we identified the complement of its closure, ND0 with the component of
Q��1 ND0 containing the homotopy class of the line segment from 0 to 1� i in M. We
continue to use the same letters to denote the images Q�.D/ and Q�. ND0/ in OM, and
these sets are mapped biholomorphically onto D and ND0, respectively, by O�.

Since the homomorphism F defined in (8.37) is surjective, we know that
G=H Š Z2. Given .m;n/ 2 Z2, let �m;n be a closed loop at 0 in M for which
FŒ�m;n�D .m;n/. Then D is evenly covered by O�,

O��1DD[.m;n/2Z2 Œ�m;n�D

is a disjoint union of connected open subsets mapped biholomorphically onto D by
O� and (8.38) implies that the restrictions

OxjŒ�m;n�D D OxjDC2�.m�1Cn�2/;

for any .m;n/ 2 Z2. Similarly, ND0 is evenly covered by O�,

O��1 ND0 D[.m;n/2Z2 Œ�m;n� ND0

is a disjoint union of connected open subsets mapped biholomorphically onto ND0 by
O� and the restrictions

OxjŒ�m;n� ND0

D Oxj ND0

C2�.m�1Cn�2/;

for any .m;n/ 2Z2. As observed above, the lifts of the common boundary @DD @ ND0
are mapped to the corresponding vertical lines at the corners of the domains Sm;n.
From all this we conclude that (8.39) is a conformal embedding of OM onto Scherk’s
surface. In particular, Scherk’s surface is homeomorphic to OM, which is connected
and whose fundamental group is isomorphic to H, the group of deck transformations
of its universal cover Q� W QM! OM described above.

Since � W QM!M is the universal cover of M, which is homotopically equivalent
to C minus three points, QM must be the Poincaré disk (hyperbolic type). In fact, the
only other possibility for QM is that it be the whole complex plane C (parabolic type),
in which case the holomorphic covering projection � W QM ! M would be a non-
constant entire function that omits exactly three points, an impossibility (see, for
example, [103, Corollary 4, p. 81]). In particular, Scherk’s surface is of hyperbolic
type.
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The image of the Gauss map of x is g.M/DM, which corresponds to the sphere
minus four points. Actually, Og D g ı O� W OM ! C[ f1g is the Gauss map on the
parameter domain (after stereographic projection), which is infinite to one, so the
total curvature of x is infinite. For more details on this example see Osserman [132],
Dierkes et al. [61], and Weber [167].

8.6 The Ricci condition

What characterizes the metrics induced on a Riemann surface by a conformal
minimal immersion x W M! R3? If e3 W M! S2 is its Gauss map, then the third
fundamental form of x is III D de3 � de3, which is the pull-back to M of the metric
of constant curvature 1 on S2. By Problem 4.69,

III D 2H II�KI D�KI

if the mean curvature HD 0. Therefore, on the open set where K <0, the metric�KI
on M has constant curvature equal to 1. This necessary condition is also sufficient.
This result and its proof are presented by Lawson [108, p. 363].

Theorem 8.18 (Ricci [138]). Let M be a simply connected Riemann surface with a
conformal metric I. Then there exists an isometric minimal immersion of .M; I/ into
R3 if the Gaussian curvature K satisfies either

1. K D 0 on M, or
2. K < 0 on M and the conformal metric �KI has constant curvature equal to 1.

Proof. In case 1), M has a conformal minimal immersion as a plane in R3. To prove
case 2), we begin with the following.

Lemma 8.19. Suppose K < 0 on M. The metric

eI D�KI

has constant curvature equal to 1 if and only if

� log.�K/D 4K (8.40)

on M, where � is the Laplace-Beltrami operator of .M; I/.

Proof. A simply connected Riemann surface M is either the Riemann sphere or
it has a global complex coordinate z. Since the Riemann sphere cannot possess a
metric whose Gaussian curvature is always negative, the latter case must hold. Then
I D e2udzdNz, for some smooth function u on M, and

�D 4e�2u @2

@z@Nz ; (8.41)
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so K D��u, by (7.31). TheneI D e2QudzdNzD�KI D�Ke2udzdNz; so

QuD uC 1
2

log.�K/; Q�D 1

�K
�

and

QK D� Q�QuD�1C 1

2K
� log.�K/;

from which the Lemma follows. ut
Returning to the proof of case 2) of the Theorem, we see from (8.40) and (8.41)

that

@2

@z@Nz log.e4u.�K//D e2u

4
.� log.�K/C4�u/D e2u.K�K/D 0:

Hence e4u.�K/ is a positive harmonic function on M. It follows that there exists a
holomorphic function f .z/ on M such that

e4u.�K/D jf j2:
If hD e�2uf WM! C, then e2uhD f is holomorphic on M, so

0D fNz D .e2uh/Nz D e2u.2huNzChNz/;

which implies (7.32) when H D 0. Then Theorem 7.28 implies that there exists an
isometric immersion x W .M;dzdNz/! R3, unique up to rigid motion, whose mean
curvature H � 0 and whose Hopf invariant is h relative to z. ut

8.7 Image of the Gauss map

The image of the Gauss map of a minimal immersion x W M ! R3 becomes
interesting only if one imposes the condition that the induced metric on M is
complete. By the Hopf-Rinow Theorem there are several equivalent formulations
of completeness. See, for example, [100, Theorem 4.1, p. 172]. The infinite length
of divergent curves is the most useful characterization of completeness in the context
of minimal immersions.

Definition 8.20. A divergent curve is a smooth curve � W Œ0;1/!M such that for
any compact subset K of M there exists a number T such that �.t/ … K for all t > T.

Definition 8.21. The Riemannian metric I on the manifold M is complete if every
divergent curve has infinite length. An immersion is complete if the induced metric
is complete.
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Theorem 8.22 (Bernstein [4]). A function f .x;y/ is a solution of the minimal
surface equation on the whole plane R2 if and only if f .x;y/ D axC byC c, for
some real constants a;b;c.

The proof is elementary and uses properties of the minimal surface equation. We
have developed the tools here to sketch a proof of a generalization of Bernstein’s
Theorem, first conjectured by L. Nirenberg, and subsequently proved by R. Osser-
man [129] and [133][Theorem 8.1, p. 68] in 1959.

Theorem 8.23 (Osserman). Let x W M ! R3 be a complete minimal immersion.
Then either x.M/ is a plane or the image of the Gauss map is dense in the unit
sphere S2.

Remark 8.24. Bernstein’s theorem is an immediate corollary because if a minimal
immersion is given by a graph defined on the whole plane, x.u;v/D .u;v; f .u;v//,
for all .u;v/ 2R2, then the Gauss map takes values in an open hemisphere of S2 and
the metric I D dx � dx induced on M D R2 is complete because

I D .1C f 2u /du2C2fufvdudvC .1C f 2v /dv
2

D du2Cdv2C .fuduC fvdv/
2 
 du2Cdv2

(8.42)

and du2Cdv2 on R2 is complete.

Proof (Proof of Osserman’s Theorem.). Let � W QM!M denote the universal cover
of M. Then x ı � is a complete minimal immersion whose Gauss map has the
same image as the Gauss map of x and whose image is the same as the image
of x. Therefore, it is sufficient to prove the theorem for the case when M is simply
connected.

Suppose that the image of the Gauss map is not dense in S2. Then there is an open
set U � S2 in the complement of the image of the Gauss map. Applying a rotation
to x if necessary, we may assume that U contains the north pole .0;0;1/. Let ˛ be
the nowhere zero isotropic C3-valued holomorphic 1-form on M given by the (1,0)
part of dx. If ˛1� i˛2 D 0, then ˛3 D 0 and x.M/ is a plane. Otherwise,

˛ D
0
@
1
2
.1�g2/

i
2
.1Cg2/

g

1
A


where g is a meromorphic function on M and 
 is the abelian differential

D ˛1� i˛2 on M. We know that g is the composition of stereographic projection
from the north pole with the Gauss map. From our assumption on the Gauss map it
follows that jgj < R for some positive constant R. Therefore, g has no poles and 

has no zeros in M.

Up to biholomorphism, the only non-compact simply connected Riemann sur-
faces are the complex plane C and the unit disk D D fjzj < 1g. If M D C, then
g would be a bounded holomorphic function on C, hence constant, which would
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mean that the Gauss map is constant and therefore that x.M/ is a plane. If M is
the unit disk D, then 
D f .z/dz, where f is holomorphic and never zero on D. The
induced metric is given in (8.9) as

I D .1Cjgj2/2jf j2dzdNz< .1CR2/2jf j2dzdNz:

From this we conclude that I is not complete, because the following lemma shows
that the metric on the right is not complete. Therefore, M cannot be the unit disk,
and we have shown in all possible cases that x.M/ is a plane. ut
Lemma 8.25. Let f .z/ be a holomorphic function on the unit disk D such that f has
no zeros in D. Then the metric jf .z/j2dzdNz on D is not complete.

Exercise 33. Prove this lemma. See [133, Lemma 8.5, p. 67].

For nearly forty years mathematicians searched for the optimal version of this
theorem. The question is how large is the set O of points on the sphere omitted by the
Gauss map of a nonplanar complete minimal immersion. In 1961 Osserman [130]
proved that the set of omitted points must have capacity zero. In this paper he gave
an example of a complete minimal surface whose Gauss map omits exactly 4 points.
In [164], Voss proved the following exercise, thus giving simpler examples where
the number of omitted points is precisely k, where k can be 1, 2, 3, or 4.

Exercise 34 ([164]). For n
 1, let p0;p1; : : : ;pn be distinct points on the sphere S2.
After a possible rotation, we may assume p0 D t.0;0;1/. Let zj D s.pj/, jD 1; : : : ;n,
be the the stereographic projection from p0 of these points into the complex plane.
Let M D Cn fz1; : : : ;zng, let g.z/D z and let


D 1Qn
1.z� zj/

dz:

On M, g has no poles and 
 has no zeros. Prove that this Weierstrass data gives a
minimal immersion Qx W QM! R3 whose Gauss image is

S2 n fp0; : : : ;png;

where Q� W QM!M is a holomorphic covering space of M. The induced metric QI on
QM is the lift of

I D .1Cjgj2/2
 N
D .1Cjzj2/2Qn
1 jz� zjj2 dzdNz

on M. Prove that this metric is complete if and only if n 	 3. Prove that the total
curvature is always infinite.

In 1981 F. Xavier [172] proved that O can contain no more than 6 points. In
1988 H. Fujimoto [71] proved that O can contain no more than 4 points, which
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is the optimal result. Fujimoto’s methods use the value distribution theory of R.
Nevanlinna. In 1990, X. Mo and R. Osserman [120] proved a stronger version of
Fujimoto’s result, including that if the Gauss map omits 4 points of the sphere, then
it covers every other point infinitely often. In 2002, Ros [140] gave another proof of
this result.

Another direction in which Bernstein’s Theorem has been generalized is to
minimal hypersurfaces in RnC1 – that is, to the case of the minimal surface equation
for n independent variables. In 1969 E. Bombieri, E. De Giorgi and E. Giusti [13]
proved that the generalization is true for n 	 6, but false for n D 7. They made
essential use of J. Simon’s 1968 paper [153].

8.8 Finite total curvature

Theorem 8.26. Let .M2; I/ be an oriented, complete Riemannian 2-manifold whose
Gaussian curvature K satisfies

K 	 0 and
Z

M
KdA> �1:

Then there exists a compact Riemann surface QM and a finite number of points
p1; : : : ;pk on QM, such that the Riemann surface structure induced on M by the metric
I is biholomorphic to QM n fp1; : : : ;pkg.
Proof. See Osserman [133, Theorem 9.1, pp. 81–82]. ut

The following combines the results of Lemma 9.5 and Theorem 9.2 in [133].

Theorem 8.27. If x W M ! R3 is an oriented, complete minimal immersion with
finite total curvature,

Z
M

KdA> �1;

then the conclusion of Theorem 8.26 applies, the meromorphic function g of the
Enneper–Weierstrass representation extends to a meromorphic function on the
Riemann surface QM, and the total curvature of x is �4�n for some integer n
 0.

Proof. We know M D QM n fp1; : : : ;pkg, where QM is a compact Riemann surface.
The function g is holomorphic on M. If one of the isolated singularities pj of g
were essential, then by Picard’s Great Theorem (see, for example, [103, Theorem 2,
pp. 92–93]), g would assume every value infinitely often, with at most two
exceptions. This implies that the area of the image of g is infinite, which means
that the total curvature must be infinite, since K < 0 at all but a discrete set of points
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and its constant sign means there is no cancelation of areas. Hence, each pj is a pole
or removable singularity of g and g is meromorphic on QM. Then limp!pj g.p/ exists,
possibly equal to 1, implies that the Gauss map n WM! S2 extends smoothly to
the complex surface QM. By Corollary 4.35,

Z
M

K dAD
Z

M
n�	 D

Z
QM

n�	 D deg.n/4�;

where 	 is the area form on the unit two-sphere S2. If K is identically zero, the n is
constant and deg.n/D 0. Otherwise, K < 0 at all but a discrete set of points of M,
so deg.n/ is a negative integer. ut
Theorem 8.28 (Osserman). The only complete minimal immersions whose total
curvature is �4� are the catenoid and Enneper’s surface. These two surfaces are
the only complete minimal surfaces whose Gauss map is one-to-one.

Proof. See [133, Theorem 9.4 and Corollary on p.87]. ut
Theorem 8.29 (Osserman). If x W M ! R3 is an oriented, complete minimal
immersion with finite total curvature, whose Gauss map n W M ! S2 omits more
than three points, then x.M/ is a plane.

Proof. See [131, Theorem 3.3, pp. 359–360]. ut
Theorem 8.30 (Osserman). If x W M ! R3 is an oriented, complete, minimal
immersion with finite total curvature, whose Gauss map omits exactly three points,
then the genus of the compact Riemann surface QM of Theorem 8.26 and the total
curvature of x satisfy

genus. QM/
 1;
Z

M
K dA	�12�:

Proof. See [131, Theorem 3.3A, p. 360]. ut
C. Costa’s 1982 IMPA thesis [54] presents a minimal immersion of genus one and

total curvature �12� whose Gauss map omits exactly two points. See Figure 8.10.
Subsequently, D. Hoffman and W. Meeks [91] proved that Costa’s surface is

an embedding. Their proof uses symmetries in the solution that they found from
computer graphics of x. The book [2] by J.L.M. Barbosa and A.G. Colares contains
a detailed expositions of how to do calculations on a Riemann surface of arbitrary
genus G and of how to work with the Enneper–Weierstrass data on such surfaces.
Their book contains many examples, including a detailed description of Costa’s
surface.

We believe that the following problem, posed in [133, p. 90], remains unsolved.

Osserman’s Problem 1. Does there exist a complete minimal surface of finite total
curvature whose Gauss map omits exactly three points?
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8.9 Goursat transforms

Let M be a connected Riemann surface. A holomorphic curve � WM!C3 is regular
if P�.z/ ¤ 0 for all z, where dot means the derivative with respect to z, any local
complex coordinate in M.

Fig. 8.10 Costa’s minimal
embedding of a torus with
three punctures

Definition 8.31. A nonzero vector v 2 C3 is isotropic if v � vD 0. Otherwise it is
nonisotropic. Here the dot product is the symmetric bilinear form

t.x;y;z/ � t.u;v;w/D xuC yvC zw

for any two vectors in C3 expressed in terms of the standard basis.

The complex Euclidean group is

E.3;C/D C3ÌSO.3;C/;

where

SO.3;C/D fA 2GL.3;C/ W tAAD I; detAD 1g
is the complex special orthogonal group. The complex Euclidean group acts
on C3 by

E.3;C/�C3! C3; .v;A/xD vCAx:
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The theory of regular holomorphic curves � WM!C3 under this action is the same
as that of regular curves in R3 under the action of E.3/DR3ÌSO.3/, provided that
the tangent vector to the curve is always nonisotropic. There is no change in the
definition of arclength parameter, first order frame, curvature, second order frame,
and torsion for such curves. In this case the curvature and torsion are holomorphic
functions on the domain of the curve.

The situation is quite different when the tangents to the curve are isotropic.

Definition 8.32. A minimal curve in C3 is a regular holomorphic curve in C3 each
of whose tangent vectors is isotropic.

If we express the real and imaginary parts of a regular holomorphic curve by
� D xC iy, then x;y WM! R3 are smooth harmonic maps, since �z D xzC iyz is
holomorphic and thus xzNz D 0D yzNz for any local complex coordinate z in M. They
are harmonic conjugates in the sense that xC iy WM!C3 is holomorphic (see [118,
p 141]). By the Cauchy-Riemann equations,

P� D 2xz D 2iyz;

so if � is a minimal curve, then

0D P� � P� D 4xz � xz D�4yz � yz

shows that the immersions x;y W M ! R3 are conformal, by (7.19). That is, the
complex structure of M is that induced by these immersions. Hence, the real and
imaginary parts of a minimal curve are minimal immersions into R3.

Conversely, start with a smooth immersion x W M2! R3. If .U;z/ is a complex
coordinate chart for the induced complex structure on M, then x is conformal so
xz W U! C3 is isotropic at every point of U by (7.19). It is holomorphic if and only
if x is minimal, by Corollary 7.34.

If x W M2 ! R3 is a minimal immersion, then x is harmonic in the sense that
each of its component functions is harmonic, by Corollary 7.36. If U;z is a complex
coordinate chart in M for which U is simply connected, then there exists a conjugate
harmonic function y W U ! R3, determined up to an additive constant vector (see
[118, Theorem 32, pp 140–141]), such that

� D xC iy W U! C3

is holomorphic. It is a minimal curve. This is just a recapitulation of the Enneper–
Weierstrass representation of a minimal immersion, which is based on the differen-
tial ˛D d� of a minimal curve in C3.

If � WM!C3 is a minimal curve, and if .v;T/ 2 E.3;C/, then .v;T/� D vCT�

is also a minimal curve. How do the real and imaginary parts x;y W M! R3 of �

transform? If vD aC ib, where a;b 2R3, and if T D AC iB, where A;B 2GL.3;R/
must satisfy

tAA� tBBD I3;
tABC tBAD 0; (8.43)
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then QxC iQyD .v;T/� satisfies

QxD aCAx�By; QyD bCAyCBx:

We are interested in the cases when Qx is not E.3/-congruent to x, so we may assume
vD 0 and B¤ 0, that is, T 2 SO.3;C/nSO.3/.

Definition 8.33 (Goursat transform). Let x WM!R3 be a minimal immersion of
a simply connected surface M that possesses a global complex coordinate z. Let y W
M!R3 be a harmonic conjugate of x. The Goursat transform of x by T 2 SO.3;C/
is the minimal immersion Qx W M! R3 given by the real part of the minimal curve
T.xC iy/ WM! C3.

As a tool for understanding the Goursat transform, we consider a double covering
of SO.3;C/ by the complex special linear group

SL.2;C/D fA 2GL.2;C/ W detAD 1g:

This is obtained from the following generalization of Example 7.17 (see Goursat
[74, 75]). We begin with a parametrization of the set of point pairs in CP1.

Example 8.34 (Point pairs in CP1). The set P of point pairs in CP1,

P D f.p;q/ 2CP1�CP1 W p¤ qg;

is an open complex submanifold of CP1�CP1 biholomorphically equivalent to the
nonsingular complex affine variety

V D f.x;y;z/ 2C3 W x2C y2C z2 D 1g;

by the map F W V!P , where

F.x;y;z/D
��
1C z
x� iy

�
;

�
xC iy
�.1C z/

��
D
��

xC iy
1� z

�
;

��.1� z/
x� iy

��
:

Equality of these two expressions for F follows from the factorization of x2C y2 D
1� z2 into .xC iy/.x� iy/D .1� z/.1C z/, which gives the ratios

uD xC iy

1� z
D 1C z

x� iy
; v D�xC iy

1C z
D� 1� z

x� iy
: (8.44)

Thus, u and v are local complex coordinates in CP1 and

F.x;y;z/D .
�

u
1

�
;

�
v

1

�
/D .u;v/:
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We regard u and v as points on the extended plane OCD C[f1g, where1D
�
1

0

�
.

The equations (8.44) can be inverted, giving

xD 1�uv

u�v ; yD i
1Cuv

u�v ; zD uCv
u�v ;

thus showing that the inverse mapping F�1.u;v/ D .x;y;z/ exists and is
holomorphic.

An element T 2 SL.2;C/ acts on P by

T.u;v/D T.

�
u
1

�
;

�
v

1

�
/D .

�
T

�
u
1

��
;

�
T

�
v

1

��
/:

An element T 2 SL.2;C/ can be written as

T D
�

m n
p q

�
; m;n;p;q 2 C; mq�npD 1: (8.45)

The action of T on P is then

T.u;v/D .muCn

puCq
;

mvCn

pvCq
/D .u1;v1/:

Lemma 8.35 (Double cover SL.2;C/ ! SO.3;C/). For any T 2 SL.2;C/, the
map

˙.T/D F�1 ıT ıF W V! V (8.46)

is the action of a unique element of SO.3;C/. The resulting map

˙ W SL.2;C/! SO.3;C/

is a 2:1 Lie group homomorphism and a covering map. Its induced isomorphism on
the Lie algebras is

˙� W sl.2;C/! o.3;C/;

�
a b
c �a

�
7!
0
@ 0 2ia c�b
�2ia 0 i.bC c/
b� c �i.bC c/ 0

1
A ;

for all a;b;c 2 C.

Thus SL.2;C/ is the universal cover of SO.3;C/, since it is simply connected,
being homeomorphic to S3�R3 by [84, Lemma 4.3, p 345].
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Proof. Let .x;y;z/ 2 V and let T D
�

m n
p q

�
2 SL.2;C/ be given by (8.45). Then an

elementary, but long, calculation gives

˙.T/.x;y;z/D

0
B@

m2�p2

2
.xC iy/C .pq�mn/zC q2�n2

2
.x� iy/

�i m2Cp2

2
.xC iy/C i.mnCpq/zC i n2Cq2

2
.x� iy/

�mp.xC iy/C .mqCnp/zCnq.x� iy/

1
CA ;

which is the action on t.x;y;z/ 2 V by the matrix in SO.3;C/,
0
@
1
2
.m2�p2Cq2�n2/ i

2
.m2�p2Cn2�q2/ pq�mn

i
2
.n2Cq2�m2�p2/ 1

2
.m2Cn2Cp2Cq2/ i.mnCpq/

nq�mp �i.mpCnq/ mqCnp

1
A :

It follows from (8.46) that the map˙ is a Lie group homomorphism. Another direct
calculation shows that its derivative map on the Lie algebras is as given above.
In particular, ˙ is nonsingular at every point of SL.2;C/ and thus it is an open
mapping. Since both groups are connected, it follows that ˙ is surjective. It is 2:1
because ˙.T/D I3 if and only if the action of T on P is the identity, and this is so
if and only if T D˙I2. ut

Exercise 35. Let T D
�

m n
p q

�
2 SL.2;C/. Prove that˙.T/ıWDWıT, where W

is the Enneper–Weierstrass map (8.12) and the matrix ˙.T/ is given in the proof of
Lemma 8.35.

The Goursat transform of a minimal immersion preserves the second fundamen-
tal form, as we now show.

Proposition 8.36. Suppose the surface M is simply connected. If the minimal
immersion Qx WM! R3 is a Goursat transform of a minimal immersion x WM!R3,
then x and Qx have the same second fundamental form at each point of M.

Proof. Suppose that x is given by the Enneper–Weierstrass data .g;
/, so its
minimal curve � D xC iy satisfies

d� DW

�
g
1

�

D

0
@
1
2
.1�g2/

i
2
.1Cg2/

g

1
A
;

by (8.8). The Hopf quadratic differential of x is II2;0 D �
dg, by (8.17). If T 2
SL.2;C/ is given by (8.45), and QxC iQyD Q� D˙.T/� gives a Goursat transform Qx
of x, then the commutation formula of Exercise 35 gives

d.˙.T/�/D˙.T/d� D˙.T/W
�

g
1

�

DW.T

�
g
1

�
/
DW


Qg� Q
;
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where

QgD mgCn

pgCq
; Q
D .pgCq/2


are thus the Enneper–Weierstrass data of Qx. The Hopf quadratic differential of Qx is

eII2;0 D�Q
d QgD�
..pgCq/mdg� .mgCn/pdg/D�
dgD II2;0;

since mq�npD 1. The minimal immersions x and Qx must then have the same second
fundamental form at each point of M by (7.26) and (7.27). ut

Any element of SO.3/ has a fixed vector in R3, and is thus rotation through some
angle about the line though the origin and this vector. Goursat proved that a similar
description holds for any element of SO.3;C/, up to composition with real rotations.

Theorem 8.37 (Goursat). Let T 2 SL.2;C/. The following are equivalent:

1. ˙.T/S2 � S2,

2. T 2 SU.2/D
��

m n
�Nn Nm

�
W jmj2Cjnj2 D 1

	
,

3. ˙.T/ 2 SO.3/.

The restriction of ˙ to SU.2/ � SL.2;C/ is the double cover SU.2/! SO.3/
described in Example 7.17.

If T … SU.2/, then there exists a unique pair of antipodal points ˙x 2 S2 � R3

such that˙.T/x 2 S2.

Proof. Let T 2 SL.2;C/ be given by (8.45). By Problem 8.63, a point .x;y;z/ 2
V lies in S2 if and only if .u;v/ D F.x;y;z/ satisfies u Nv D �1. Suppose this last
equation holds for .u;v/ and let

.u1;v1/D T.u;v/D .muCn

puCq
;

mvCn

pvCq
/:

Then u1 Nv1 D�1 if and only if

.mNnCpNq/u2C .jnj2�jmj2Cjqj2�jpj2/u� . NmnC Npq/D 0:

In terms of the columns T1;T2 2 C2 of T and the standard hermitian inner product
on C2, this quadratic equation in u can be written

hT1;T2iu2C .jT2j2�jT1j2/u�hT1;T2i D 0: (8.47)

The discriminant

DD .jT2j2�jT1j2/2C4jhT1;T2ij2 
 0;
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with equality if and only if T 2 SU.2/, in which case the coefficients of (8.47) are
identically zero, so every u 2 C is a solution and ˙.T/S2 D S2. If ˙.T/ 2 SO.3/,
then ˙.T/S2 D S2, so T 2 SU.2/.

Conversely, if T 2 SU.2/, then ˙.T/ 2 SO.3/ by the formula for ˙.T/ in
the proof of Lemma 8.35. When T 2 SU.2/, this formula agrees with that of
Example 7.17.

In the case T … SU.2/, the roots of (8.47),

u˙ D jT1j
2�jT2j2˙

p
D

2hT1;T2i ;

are distinct and uC Nu� D�1. Hence F�1.uC;u�/, F�1.u�;uC/ is the unique pair of
antipodal points in S2 taken by˙.T/ to points in S2. ut
Corollary 8.38. If T 2 SO.3;C/ nSO.3/, then there exists a vector e3 2 S2 � R3,
unique up to sign, such that Te3 2 S2. Complete e3 to a positively oriented
orthonormal basis e3;e1;e2 of R3 and let

e?
3 D spanCfe1;e2g Š C2:

If R 2 SO.3/ rotates Te3 back to e3, then RTe?
3 D e?

3 and

RTe1 D e1 cos�C e2 sin�; RTe2 D�e1 sin�C e2 cos�;

for some unique � 2C.

Proof. Relative to the basis e1;e2 of e?
3 , the matrix of RT is an element of SO.2;C/,

whose form is given by Problem 8.64. ut
Example 8.39 (Goursat transforms of the catenoid). For w D uC iv 2 C, the
catenoid is the minimal immersion

x W C! R3; x.u;v/D
0
@ coshucosv
�coshusinv

u

1
A ;

which is the real part of the minimal curve

� W C! C3; �.w/D
0
@coshw

isinhw
w

1
A :

Then

d� D
0
@
1
2
.1� .e�w/2/

i
2
.1C .e�w/2/

e�w

1
Aewdw
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shows that the Enneper–Weierstrass data of x is (g D e�w, 
 D ewdw). See
Example 8.15. The Goursat transform of x by

T D
0
@cosh t �isinh t 0

isinh t cosh t 0

0 0 1

1
A 2 SO.3;C/nSO.3/;

for any 0¤ t 2R, is the real part of T� D QxC iQy, so

QxD
0
@ cosh.uC t/cosv
�cosh.uC t/sinv

u

1
AD x.uC t;v/� t�3;

which is a translate of a reparametrization of x. In particular, it is E.3/-congruent
to x even though T is not real. The special relation T has with the catenoid is that it
fixes the antipodal points of S2 where the rotation axis of the catenoid intersects S2.

For a more general Goursat transform consider T 2 SO.3;C/ for which the
unique antipodal pair of points ˙e3 2 S2 taken by T into S2 is not ˙�3. To be

specific, suppose T�1 D �2 and let RD
0
@0 1 00 0 1

1 0 0

1
A 2 SO.3/, so R�1 D �3, R�2 D �1,

and R�3 D �2. Then RT�1 D �1, so by Corollary 8.38,

RT D
0
@1 0 0

0 cos� �sin�
0 sin� cos�

1
A ;

for some � D aC ib 2 C, where a and b ¤ 0 are real. Define constants c D cosa,
sD sin a, C D coshb, and SD sinhb. Calculating the real part of RT� , we find the
Goursat transform of x by RT to be

Qx.u;v/D
0
@ coshu cosv
�cC cosh u sin vC sS sinh u cosv� sCuC cSv
�sC cosh u sinv� cS sinh u cosvC cCuC sSv

1
A ;

which is not E.3/-congruent to x, as is evident in Figures 8.11 and 8.12, which
illustrate the cases aD �=2, and bD 0, 0:4, 1, and 20, respectively. One obtains the
catenoid when bD 0, but as b increases, the Goursat transform of it does not close
and it bends.

In his Ph.D. thesis, M. Deutsch [60] uses the Goursat transform to find new
CMC-1 immersions in H3.
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Fig. 8.11 a D �=2 and
b D 0 on left, b D :4 on right.

8.10 Frames along minimal curves

The action of .x;A/ 2 E.3;C/ on y 2C3 is

.x;A/yD xCAy

Fig. 8.12 a D �=2 and
b D 1 on left, b D 20 on right.

This action is transitive. If we choose the zero vector 0 as the origin of C3, then the
action defines a principal SO.3;C/-bundle projection

� W E.3;C/! C3; �.x;A/D .x;A/0D x:

In the theory of regular curves in Euclidean space, a group element .x;A/ is
identified with an orthonormal frame at x by choosing the standard basis .�1;�2;�3/
as the reference frame at 0 and then .x;A/ defines the orthonormal frame at x
given by

d.x;A/�i D A�i D Ai; iD 1;2;3;
where Ai is column i of A. Consequently, if we use the standard basis of C3 as
reference frame at 0, then no frame defined by E.3;C/ contains an isotropic vector,
and thus no such frame can have its first vector equal to P�.t/, when � is a minimal
curve. The first step in the construction of a Frenet frame along a nonminimal curve
makes no sense for a minimal curve.

Following E. Cartan’s exposition in his book [32], we begin the frame construc-
tion along minimal curves by first changing the choice of reference frame at 0.
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Definition 8.40. A frame F D .F1;F2;F3/ of C3 is cyclic if Fi �Fj D Lij, for i,j =
1,2,3, where

LD .Lij/D
0
@0 0 10 1 0

1 0 0

1
A :

If F D .Fj
k/ 2 GL.3;C/ is defined by Fk DP3

1Fj
kEj, then tFF D L and detF D˙i.

The frame is called direct cyclic, respectively indirect cyclic, according to whether
detF D i or detF D�i.

Exercise 36. Prove that the first and third vectors of a cyclic frame are isotropic
and that LD tLD L�1.

We choose as our reference frame at 0 the direct cyclic frame

ED .E1;E2;E3/D .�1;�2;�3/
0
@
1
2
0 1

i
2
0 �i

0 1 0

1
A ;

so

E1 D 1

2
.�1C i�2/; E2 D �3; E3 D �1� i�2: (8.48)

The dot product of vectors xDP3
1 xjEj and yDP3

1 yj Ej relative to this frame is

x � yD x1y3C x3y1C x2y2 D txLy;

where now we identify a vector x 2 C3 with the column matrix of its components
relative to E. Relative to E, a frame F D .F1;F2;F3/ of C3 is direct cyclic if and
only if tFjLFk D Ljk and detF D 1, where now F D .Fj

k/ 2 GL.3;C/ is given by
Fk DP3

1Fj
kEj. Let

GD fB 2GL.3;C/ W tBLBD L; detBD 1g Š SO.3;C/:

A matrix B 2 GL.3;C/ belongs to G if and only if its columns form a direct cyclic
frame (relative to E). The Lie algebra of G is

gD fX 2 C3�3 W tXLCLX D 0; traceX D 0g

D
8<
:
0
@x y 0

z 0 �y
0 �z �x

1
A W x;y;z 2C

9=
; :

(8.49)

A matrix F of three column vectors in C3 is a direct cyclic frame if and only if
F 2G.
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Let M be a connected Riemann surface and let

� WM! C3

be a regular minimal curve; that is, d� is never zero and d� � d� D 0 at every point
of U. We emphasize that elements of C3 are now column matrices relative to E.

Definition 8.41. A direct cyclic frame field along � on an open subset U �M is a
holomorphic map

.� ;e/ W U! C3ÌGŠ E.3;C/:

At each point m 2 U, .�;e/ defines the direct cyclic frame e.m/D .e1;e2;e3/.m/ at
�.m/.

If .�;e/ is a direct cyclic frame field along � , then we can express d� in terms
of the direct cyclic frame e by

d� D
3X

iD1
!iei so e�1d� D t.!1;!2;!3/D t�;

where the !i are C-valued 1-forms on U, and � is a C3-valued 1-form. Likewise,

dei D
3X

jD1
!

j
i ej;

for iD 1;2;3. In matrix notation this is

e�1deD !;

where ! is a g-valued 1-form on U, which looks like

! D
0
@!

1
1 !12 0

!21 0 �!12
0 �!21 �!11

1
A ;

by (8.49). If .�;e/ WU!C3ÌG is a direct cyclic frame field along � , then any other
is given by .�; Qe/, where QeD eB and

B W U! G

is an arbitrary holomorphic map.
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Definition 8.42. A direct cyclic frame field .�;e/ along � is first order if e1 is a
non-zero multiple of d� at every point of U. That is,

!2 D 0D !3

at every point of U. It follows that !1 is a nowhere zero holomorphic 1-form on U,
since � is regular.

Lemma 8.43. If .� ;e/ W U! CÌG/ is a first order direct cyclic frame field along
� , then any other is given by QeD eB, where

B W U! G1

is an arbitrary holomorphic map into the complex subgroup

G1 D fB.r;s/D
0
@r �rs �rs2=2
0 1 s
0 0 1=r

1
A 2 G W r;s 2C; r¤ 0g: (8.50)

Proof. On U, d� is a multiple of e1 and of Qe1 DP3
1 eiBi

1 if and only if

B21 D B31 D 0 (8.51)

on U. The proof is then completed by the following exercise. ut
Exercise 37. Prove that B 2 G satisfies (8.51) if and only if B is an element of the
subgroup G1 defined in (8.50).

Exercise 38. Prove that the Lie algebra of G1 is

g1 D
8<
:
0
@r �s 0

0 0 s
0 0 �r

1
A W r;s 2 C

9=
; :

For the next step of the frame reduction process, we fix a first order direct cyclic
frame field .�;e/, with ! D e�1de, and then examine the entries of ! that do not
involve dB when the frame is changed to QeD eB, for some

BD B.r;s/ W U! G1: (8.52)

To do this, we choose a vector subspace m1 � g complementary to g1,

m1 D
8<
:
0
@0 0 0

z 0 0

0 �z 0

1
A W z 2 C

9=
; ;
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to arrive at a vector space direct sum

gD g1˚m1:

Writing a subspace as a subscript to denote projection, we have

Q! D .eB/�1d.eB/D B�1!BCB�1dBD B�1!g1BCB�1dBCB�1!m1B;

which shows, after a calculation, that

Q!m1 D .B�1!m1B/m1 D
0
@ 0 0 0

r!21 0 0

0 �r!21 0

1
A ;

so

Q!21 D r!21 :

Furthermore,

d� D !1e1 D Q!1 Qe1 D Q!1re1

implies that

Q!1 D 1

r
!1: (8.53)

If we set

!21 D a!1; Q!21 D Qa Q!1;
where a and Qa are holomorphic functions on U, then

QaD r2a:

There are three cases:

!21 never 0; !21 has isolated zeros, !21 identically 0.

Example 8.44 (Case !21 never zero). Now the holomorphic function r above can be
chosen so that QaD 1 on U, that is Q!21 D Q!1.
Definition 8.45. A second order direct cyclic frame field along � is a direct cyclic
frame field for which

!2 D 0D !3 (first order), and

!21 D !1 (second order):
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A second order direct cyclic frame field along � exists on a neighborhood of a
point of U, provided that !21 is never zero on a neighborhood of the point, for some,
hence any, first order frame field. If .� ;e/ is second order, then

QeD eB.r;s/

is also second order if and only if rD 1. By (8.53) this condition is equivalent to

Q!1 D !1;

so the 1-form !1 is invariant under change of second order frames. It is, therefore,
a globally defined nowhere zero holomorphic 1-form on M. We shall call it the
element of pseudoarc on M. We define a pseudoarc parameter to be a locally defined
holomorphic function z in M such that

!1 D dz:

At a point of M where !21 ¤ 0, there is a neighborhood of the point on which a
pseudoarc parameter exists. It is unique up to additive constant. Let

G2 D fB.1;s/D
0
@1 �s �s2=2
0 1 s
0 0 1

1
A 2 G1 W s 2 Cg;

which is a Lie subgroup of G1 with Lie algebra

g2 D
8<
:
0
@0 �s 0
0 0 s
0 0 0

1
A W s 2C

9=
; :

As a vector subspace complementary to g2 in g1, we choose

m2 D
8<
:
0
@r 0 0

0 0 0

0 0 �r

1
A W r 2 C

9=
; :

For a second order direct cyclic frame field .�;e/, we have the decomposition

! D !g2C!m1Cm2 :

Any other second order frame field has

QeD eB.1;s/
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from which we calculate that

Q!m1Cm2 D
0
@!

1
1 C s!1 0 0

!1 0 0

0 �!1 �!11 � s!1

1
A ;

which implies that

Q!11 D !11 C s!1; Q!1 D !1:

We can choose the holomorphic function s so that Q!11 D 0 on U.

Definition 8.46. A third order direct cyclic frame field .�;e/ is a direct cyclic
frame field for which

!2 D 0D !3 (first order), and

!21 D !1 (second order), and

!11 D 0 (third order).

on U.

If e is third order, then

QeD eB.1;s/

is also third order if and only if s is identically zero on U; that is, B is the identity
matrix and QeD e. Third order frames are the Frenet frames. Under the assumption
that for any first order frame field .�;e/ we have !21 never zero, we have the result
that there exists a unique Frenet frame field .� ;e/ on M, characterized by

! D
0
@ 0 !12 0

!1 0 �!12
0 �!1 0

1
A :

The remaining form must be a multiple of !1, that is

!12 D k!1;

for some holomorphic function

k WM! C;

which is called the curvature of the minimal curve � .
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Example 8.47 (From the Weierstrass representation). If � W M! C3 is a minimal
curve, where M is a connected Riemann surface, then d� is a holomorphic, isotropic,
C3-valued 1-form on M. By the Weierstrass representation, d� has either the
degenerate form to be discussed below, or there exists a meromorphic function g
on M and a holomorphic 1-form 
 on M, such that g has a pole of order n at a point
if and only if 
 has a zero of order 2n at the point, and

d� D .1
2
.1�g2/�1C i

2
.1Cg2/�2Cg�3/
D .E1CgE2� g2

2
E3/
:

Relative to E,

d� D t.1;g;�g2

2
/
:

A first order direct cyclic frame field .�;e/ is given by

eD

0
B@
1 0 0

g 1 0

� g2

2
�g 1

1
CA ;

since then d� D 
e1, so

!1 D 
; !2 D 0D !3:

We calculate

! D e�1deD
0
@ 0 0 0

dg 0 0

0 �dg 0

1
A ;

which shows that

!21 D dg; !12 D 0D !11 :

Therefore, as can be verified directly,

de1 D dg e2; de2 D�dg e3; de3 D 0:

Any other first order frame field is given by QeD eB.r;s/, so

Qe1 D re1; Qe2 D e2� rse1; Qe3 D 1

r
e3� rs2

2
e1C se2
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and

Q!1 D 1

r
!1 D 1

r

; Q!21 D r!21 D rdg;

Q!11 D rsdgC 1
r

dr; Q!12 D�.
s

r
drCdsC s2r

2
dg/:

We assume that g is not constant, so outside a set of isolated points dg is never zero
and we can define a holomorphic function f by


D fdg:

Then Q!21 D Q!1 if and only if

r2 D f :

That is, Qe is a second order frame if and only if r D f 1=2. For this value of r, the
element of pseudoarc is

dzD Q!1 Dpf dg:

By (8.17), the Hopf quadratic differential of the minimal immersion defined by the
real part of � is

II2;0 D�
dgD�fdgdgD�dzdz: (8.54)

This gives another proof that a Goursat transform of a minimal immersion preserves
the second fundamental form.

This frame becomes third order if s is chosen so that Q!11 D 0, which, by the above
expression for Q!11 , is

sD� 1
r2

dr

dg
D� 1

2f 3=2
df

dg
D� 1p

f

f 0

2f
;

where we write dh D h0dg for any holomorphic function h. For these values of r
and s, we then calculate that Q!12 D k Q!1, where the holomorphic function k is the
curvature,

kD 1

2f

�
.
f 0

f
/0� . f 0

2f
/2
�
:
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Problems

8.48. Prove that the catenoid is the only surface of revolution with mean curvature
zero.

8.49. Prove that the plane and the right helicoid are the only minimal surfaces that
are ruled surfaces. See Catalan [34].

8.50. Prove that the immersion

x W [mCn evenSm;n! R3; x.x;y/D t.x;y; log.
cosx

cosy
//

is not conformal. We invite the reader to try to find a complex coordinate chart
for the complex structure induced by dx � dx, for example by applying the proof of
Theorem 7.4. See Weber’s geometric solution to this exercise in [167, §5D]. We
describe this complex structure in Example 8.17.

8.51. Prove that Scherk’s surface is the only surface of translation with mean
curvature zero, up to a change of scale .x;y;z/ 7! .ax;ay;az/, for some positive
constant a.

8.52. Prove that for an immersion x WM! S3 or x WM!H3, the mean curvature is
identically zero if and only if the first variation vanishes for any admissible variation.

8.53. Prove that any point of CP1 has a neighborhood U on which there is a
holomorphic section s W U ! C2 n f0g; that is, � ı s is the identity map of U.
Use this to prove that any holomorphic map F W M! CP1 locally factors through
holomorphic maps U �M! C2 n f0g.
8.54. Prove that, for the local holomorphic section

s W CP1 n fŒ�1�g ! C2; s

�
z
w

�
D
�

z=w
1

�
;

and for zD u�1Cv�2Cw�3 2I for which u� iv ¤ 0,

W ı sıw�1 ı�.z/D 1

u� iv
z:

This formula lies behind the construction of the map F in (8.10).

8.55. If x WM!R3 is a minimal immersion of a connected surface M, and if ˛D @x
is given by (8.15), derive the formula

dAD i

2
.1Cjgj2/2
^ N


for its area element and the formula
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Z
M

K dAD�2i
Z

M

1

.1Cjgj2/2 dg^d Ng

for its total curvature. Use (8.18) to prove that K 	 0 on M and that K.p/D 0 for
some point p 2M if and only if dgp D 0. Conclude that either K is identically zero
on M, or the zeros of K are isolated points of M.

8.56. Prove that a minimal immersion x W M ! R3 has a conformal associate Ox
defined by any nowhere zero holomorphic function p on M. Prove that d Ox � d Ox D
jpj2dx � dx, that x and Ox have the same Gauss map, and their Hopf quadratic
differentials are related by bII2;0 D pII2;0.

8.57. Prove that the induced metric of Scherk’s surface x of Example 8.17 is

I D 16.1Cjzj2/2
j1� z4j2 dzdNz (8.55)

and prove that it is complete.

8.58. Analyze and describe the conjugate to Scherk’s surface of Example 8.17.
This would be the imaginary part of the complex minimal curve (8.30). See [167]
for details.

8.59. Prove that G D �1.C n f˙1;˙ig;0/ Š Z �Z �Z, the free product of three
copies of the integers Z. See, for example, [83, §1.2].

8.60. Prove that if f .x;y/ is a solution to the minimal surface equation on all of
R2, then the minimal immersion x W R2! R3 given by the graph of f is complete.
See (8.42) in Remark 8.24.

8.61. Use Example 8.13 to prove that the total curvature of Enneper’s Surface is
�4� and its Gauss map omits one point of S2. Use Example 8.15 to prove the total
curvature of the Catenoid is �4� and its Gauss map omits two points of S2.

8.62. Given T D AC iB 2 SO.3;C/, so A;B 2 GL.n;R/ satisfy (8.43). Prove that
if A 2 SO.3/, then BD 0. Prove that B cannot be in SO.3/.

8.63. If .x;y;z/ 2 V and u and v are defined by (8.44), so F.x;y;z/ D .u;v/, prove
that .x;y;z/ 2 S2 � R3 if and only if u Nv D �1. Prove also that �.x;y;z/ 2 V and
F.�x;�y;�z/D .v;u/. Compare the map F restricted to S2 with Example 7.16.

8.64. Prove that any element A 2 SO.2;C/ is of the form

AD
�

cos� �sin�
sin� cos�

�
;

for some unique � 2C. Writing � D xC iy, where x;y 2R, it follows that AD BCD
CB, where
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BD
�

cosx �sinx
sinx cosx

�
; CD

�
coshy �isinhy
isinhy coshy

�
:

8.65. Here G is the representation of SO.3;C/ in the basis L as defined in
Section 8.10.

8.66. Let �; Q� W M ! C3 be minimal curves of the type !21 never zero, with
curvature functions k and Qk, and pseudoarc parameters z and Qz, respectively, on a
neighborhood U �M. Prove that if k.z/D Qk.Qz/ and dzD dQz on U, then there exists
an element .a;A/ 2C3ÌG such that Q� D aCA� on U.

8.67. Prove that if k WM! C is any holomorphic function on the Riemann surface
M, and if � W QM!M is the universal cover of M, then there exists a unique, up to
congruence, minimal curve � W QM! C3 whose curvature is k ı� .

8.68. Why does formula (8.54) imply the invariance of the second fundamental
form under Goursat transform?

8.69 (Enneper’s surfaces). Find the curvature of the minimal curve defined by the
Enneper surface data gD z, 
D dz on M D C. What is the element of pseudoarc?

8.70 (Catenoid). Find the curvature of the minimal curve defined by the catenoid
data on the universal cover C. Here, by Example 8.15, gD e�w, 
D ewdw where w
is the standard complex coordinate on C. Find its element of pseudoarc.

8.71 (Scherk’s surface). Let g D z and 
 D 2
z4�1dz be the Scherk surface data of

Example 8.17. Find the curvature and element of pseudoarc of the minimal curve
defined by this data.

8.72. What Weierstrass data defines a minimal curve with a given nonzero constant
curvature k?

8.73. Find the minimal curve and its curvature defined by the degenerate Weier-
strass data, namely, for which d� D t.0;0; i/
 relative to E.

8.74. Complete the frame reduction for minimal curves � WM! C3 for which !21
has isolated zeros, for any first order frame field along � .

8.75. Complete the frame reduction for minimal curves � WM! C3 for which !21
is identically zero, for any first order frame field along � .



Chapter 9
Isothermic Immersions

We present here a brief introduction to classical isothermic immersions in Euclidean
space, a notion easily extended to immersions of surfaces into each of the space
forms. The definition, which is the existence of coordinate charts that are isothermal
and whose coordinate curves are lines of curvature, seems more analytic than
geometric. We show that CMC immersions are isothermic away from their umbilics,
which indicates that isothermic immersions are generalizations of CMC immer-
sions. The Christoffel transform provides geometric content to the concept.

9.1 Background and motivation

Minimal immersions possess two remarkable properties that we now recall in a
geometric formulation. Let x W M! R3 be a minimal immersion whose image is
not a plane. For ease of exposition we assume that x has no umbilic points, which
would be isolated in any case.

Let the Gauss map of x, denoted Ox WM! S2 � R3, be given by the unit normal
vector field e3 along x. Then e3 is also a unit normal vector field along the immersion
Ox, which means that x and Ox have the same Gauss map, or equivalently, they have
parallel tangent planes at each point of M. Of course, this much is true for any
immersion x W M ! R3. If x is minimal, however, then by (2) of Theorem 7.40,
the immersions x and Ox induce conformally related metrics on M and x and Ox
have opposite orientations. This last property means that for any local coordinate
chart .U; .x;y// in M, the parallel vectors xx � xy and Oxx � Oxy have opposite signs,
or equivalently, if .x;e/ is any first order frame field along x on U, then .Ox;e/ is a
first order frame field along Ox and then dx D !1e1C!2e2 and d Ox D O!1e1C O!2e2
with O!1^ O!2 D f!1^!2 for some negative function f on U. In the language

© Springer International Publishing Switzerland 2016
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274 9 Isothermic Immersions

of Definition 9.22, the Gauss map Ox is a Christoffel transform of the minimal
immersion x. We shall see that the much wider class of isothermic immersions
possess Christoffel transforms.

The second remarkable property of a minimal immersion x is its possession of a
conformal associate Ox defined by any nowhere zero holomorphic function f on M.
By Definition 8.12, this means that @OxD f@x, which shows that x and Ox have parallel
tangent planes and the same orientation at each point. By Problem 8.56, they have
conformally related metrics. We shall see that only minimal immersions have this
property.

In his 1867 paper [50], Christoffel considered the problem of which immersions
x W M! R3 possess the property that there exists another immersion Ox W M! R3

such that x and Ox have the same Gauss map and induce conformally related metrics
on M. His answers depend dramatically on whether x and Ox are to have the same
or opposite orientations. They also require the concept of isothermic immersion. In
this chapter we describe this concept and Christoffel’s transform.

The classical definition of isothermic immersion in Euclidean space carries over
without change to immersions in any space form. As the property is preserved by
conformal transformations, we shall profit from studying it in the context of Möbius
geometry, which we shall do in Chapter 14. For these chapters we have used the
papers by Musso [124] and Bernstein [3] and the monographs of Burstall [24],
Hertrich-Jeromin [86] and Kamberov et al. [98].

9.2 Classical isothermic immersions

In his 1871 paper [35], written without apparent knowledge of Christoffel’s earlier
paper cited above, Cayley posed the following problem, shown graphically in
Figure 9.1. Suppose x W M ! R3 is an immersion such that at a point A 2 M the
principal curvatures a and c are independent, meaning that da^dc ¤ 0 at A. Then
a;c are local coordinates on some open neighborhood U about A. Suppose that the
coordinates of A are .a0;c0/ and consider the coordinate curve quadrilateral ABCD
in U, where the coordinates of B, C and D are .a;c0/, .a0;c/ and .a;c/ respectively.
Notice that the coordinate curves are lines of curvature. Consider the infinitesimally
nearby lines of curvature, the vertical one given by setting the first curvature to

Fig. 9.1 Cayley’s problem

c0

c0+dc

c

c+dc

A B

C
D

a +daa0+daa0 a
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a0C da and the horizontal one given by setting the second curvature to c0C dc,
with da and dc chosen so that an infinitesimal square is formed at A. Consider the
vertical line of curvature given by setting the first curvature to aC d Na so that an
infinitesimal square is formed at B, and the horizontal line of curvature given by
setting the second curvature to cCdNc so that an infinitesimal square is formed at C.
Cayley’s problem is: When does this construction produce an infinitesimal square
at D, for all .a;c/?

His answer goes like this. With these coordinates, the induced metric is I D
E da2CGdc2, since the lines of curvature are always orthogonal. That the construc-
tion produces an infinitesimal square at A means

p
E.a0;c0/daD

p
G.a0;c0/dc;

at B means p
E.a;c0/d NaD

p
G.a;c0/dc;

and at C means p
E.a0;c/daDpG.a0;c/dNc:

Consequently, dcD Lda, where L is a constant, and

d NaD
p

G.a;c0/p
E.a;c0/

LdaD f .a/da; dNcD
p

E.a0;c/p
G.a0;c/

daD g.c/da:

An infinitesimal square is formed at D means
p

E.a;c/d Na D pG.a;c/dNc, which
occurs if and only if

E.a;c/

G.a;c/
D
�

dNc
d Na
�2
D g.c/2

f .a/2

in which case the metric takes the form

I D g.c/2

f .a/2
Gda2CGdc2 D Gg2.

�
da

f .a/

�2
C
�

dc

g.c/

�2
/D e2u.dx2Cdy2/

where e2uDGg2 and dxD da
f .a/ and dyD dc

g.c/ are local coordinates whose coordinate
curves remain lines of curvature. They are principal isothermal coordinates, a
concept defined below.

The only examples given by Cayley of immersions possessing this property are
the quadrics

x2

p
C y2

q
C z2

r
D 1 (9.1)

when the constants p;q and r are distinct. See Problem 9.33.
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Using nonstandard analysis, Hertrich-Jeromin [85] has given a modern interpre-
tation of Cayley’s geometric characterization of isothermic immersion. We proceed
now to the definition of isothermic immersion.

Definition 9.1. A chart .U; .x;y// on a Riemannian surface .M; I/ is isothermal if
it puts the metric in the form

I D e2u.dx2Cdy2/:

Definition 9.2. For an immersion x WM! R3, a coordinate chart .U; .x;y// on M
is principal, if it diagonalizes the second fundamental form of x as

II D Ldx2CN dy2; (9.2)

where L and N are smooth functions on U. In this case the coordinate curves are
lines of curvature, which are orthogonal at points where L ¤ N, in which case I D
E dx2CGdy2, for some positive smooth functions E and G on U.

Lemma 9.3. For an immersion x WM! R3, a chart .U; .x;y// is isothermal if and
only if

jxxj D jxyj and xx � xy D 0
on U. An isothermal chart is also principal if and only if it also satisfies

xxy 2 span fxx;xyg
at each point of U.

Proof. The conditions to be isothermal are clear. If .U; .x;y// is an isothermal chart,
let eu D jxxj D jxyj. Define an orthonormal frame field .x;e/ W U! E.3/ by

e1 D e�uxx; e2 D e�uxy; e3 D e1� e2:

Then xx � e3 D 0D xy � e3, so

!31 D e�u.xxx � e3 dxCxxy � e3 dy/; !32 D e�u.xyx � e3 dxCxyy � e3 dy/:

The second fundamental form II D !31!1C!32!2 has the form (9.2) if and only if
!31 D a!1 D aeudx and !32 D ceudy if and only if xxy � e3 D 0 on U. ut
Remark 9.4. For an immersion x W M! R3 of an oriented surface M, an oriented
chart .U;x;y/ is isothermal if and only if .U;zD xC iy/ is a chart for the complex
structure induced by I D dx � dx. A complex chart .U;z/ is principal if and only if
the Hopf invariant h relative to z is real valued on U. For a principal complex chart
.U;z/, we have

I D e2udzdNzD e2u.dx2Cdy2/; II D e2u.adx2C cdy2/

where zD xC iy, u is a smooth function on U and a;c are the principal curvatures.
Then hD .a� c/=2.
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Definition 9.5. An immersion x WM!R3 of a surface is isothermic if M possesses
an atlas f.U˛;.x˛;y˛//g˛2A of principal isothermal charts.

Remark 9.6. The definitions of principal chart, principal complex chart, and
isothermic immersion remain unchanged for immersions x of oriented surfaces
into S3 or H3. In fact, these same definitions apply to an immersion x of a surface
into any three-dimensional Riemannian manifold.

By the Korn-Lichtenstein Theorem, isothermal coordinates always exist about
any given point. The existence of principal isothermal coordinates, however, implies
special properties of the immersion, as Cayley observed. We begin with some more
examples of isothermic immersions.

Example 9.7 (Surfaces of Revolution). A surface of revolution in R3 is isothermic
(provided that it never touches the axis of revolution). Let t.f .s/;0;g.s// 2 R3 be
a smooth curve (the profile curve) immersed in the x1x3-plane, for s in some open
interval J, with f .s/ > 0 on J. The surface of revolution obtained by revolving this
curve around the x3-axis is given by the immersion

x WM D J�S1! R3; x.s; .cos t;sin t//D t.f .s/cos t; f .s/sin t;g.s// (9.3)

Notice that t is a local coordinate on the complement of any point of S1 and that dt
is a 1-form smooth on all of S1. See Examples 7.18 and 4.40. From

dxD t.Pf cos t; Pf sin t; Pg/dsC t.�f sin t; f cos t;0/dt;

where Pf and Pg denote derivatives with respect to s, the induced metric is

dx � dxD .Pf 2C Pg2/ds2C f 2dt2 D f 2.dr2Cdt2/; (9.4)

so the orthonormal coframe field is !1 D fdr;!2 D fdt, where the coordinate
function r is defined by

rD
Z

w

f
ds and wD

q
Pf 2C Pg2 > 0;

which is the arclength parameter for the profile curve . f .s.r//;g.s.r// in the

half-plane f > 0 with the hyperbolic metric df 2Cdg2

f 2
. Therefore r; t are isothermal

coordinates with conformal factor eu D f . From the second of equations (4.53) of
Example 4.40, we see that these coordinates are also principal, since wds D f dr
gives

II D aw2ds2C cf 2dt2 D f 2.adr2C cdt2/D a!1!1C c!2!2;

where the principal curvatures are

aD
Pf Rg� PgRf

w3
; cD Pg

wf
:
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We conclude that any surface of revolution is isothermic. Notice that

x; e1 D 1

w

0
@
Pf cos t
Pf sin t
Pg

1
A ; e2 D

0
@�sin t

cos t
0

1
A ; e3 D 1

w

0
@�Pgcos t
�Pgsin t
Pf

1
A

is the frame field adapted to the complex coordinate zD rCit, and the Hopf invariant
of x relative to z is real valued,

hD 1

2
.a� c/D 1

2
.
Pf Rg� PgRf

w3
� Pg

wf
/:

We want to include the possibility that the profile curve is closed, meaning that it
is periodic, in which case its domain is a circle S1.L/ of radius L > 0. In that case
s is a local coordinate on S1.L/ on the complement of any point. For example, the
torus of revolution obtained by revolving the circle of radius b in the x1x3-plane,
center at .B;0;0/, where 0 < b < B, would have profile curve parameterized by
f .s/D BCbcoss, g.s/D bsins.

Example 9.8 (Cylinders). Let

x W J�R! R3; x.s; t/D �.s/C t.��3/

be the cylinder over the plane curve � W J ! R2, where R2 is the span of �1;�2.
See Problem 4.65 for details. Here s is arclength parameter and � W J ! R is the
curvature of � . We assume � > 0 on J. We know zD sC it is a complex coordinate
on J�R, the principal curvatures are aD � and cD 0, with a> c, and

H D 1

2
.aC c/D �=2D 1

2
.a� c/D h (9.5)

are the mean curvature of x and the Hopf invariant of x relative to z. Thus h is real
valued on J�R, so z is a principal complex coordinate and x is isothermic.

Example 9.9. Any proper Bonnet immersion is isothermic off its discrete set of
umbilic points. See Corollary 10.46.

Example 9.10 (CMC Immersions). Let x WM! R3 be an immersion with constant
mean curvature H of an oriented surface M. Let Mc be the set of nonumbilic points
of x, an open subset of M, assumed nonempty. Then x WMc! R3 is isothermic. To
see this, we recall that the Hopf quadratic differential II2;0 is holomorphic, by Hopf’s
Theorem 7.29. Given a point in Mc, let .U;z/ be a complex coordinate chart in Mc

about this point. If eu is the conformal factor and h is the Hopf invariant relative
to z on U, then II2;0 D 1

2
he2udzdz on U, so 1

2
he2u is a holomorphic function on U,

never zero on U, because h is zero precisely at the umbilic points of x. This nonzero
holomorphic function has a holomorphic square root, f , on some neighborhood of
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the point. If the holomorphic function w is defined by dw D fdz, then dw is not
zero at the point, so w is a complex coordinate on a neighborhood V of the point and
II2;0D f 2dzdzD dwdw on V . If eQu is the conformal factor and Qh is the Hopf invariant
relative to w on V , then 1

2
Qhe2Qu D 1 implies that Qh is real valued on V and therefore

.V;w/ is a principal complex coordinate chart in Mc about the point. Since the point
was arbitrarily chosen, we conclude that x WMc! R3 is isothermic.

Remark 9.11. If a CMC immersion x is not totally umbilic, then it is not isothermic
at its umbilic points, which are isolated, being the zeros of the nonzero holomorphic
quadratic differential II2;0. If .U;z/ were a connected principal complex coordinate
chart about an umbilic point m, then the real, holomorphic function he2u=2 must be
constant on U, and zero at m, thus contradicting that II2;0 has an isolated zero at
m. We should not conclude from this, however, that isothermic immersions cannot
have umbilic points. Example 4.41 exhibits surfaces of revolution with one or two
circles of latitude consisting of umbilic points, and we have seen above that such an
immersion is isothermic. See also H. Bernstein’s examples in [3].

The criterion form ˛ of Definition 4.14 determines when immersions are
isothermic.

Theorem 9.12 (Isothermic criterion). An immersion x WM! R3 of a surface M
is isothermic if and only if each point of M has a neighborhood U on which there is
a second order frame field .x;e/ WU! E.3/ whose criterion form ˛ is closed on U.

Remark 9.13. If the set of all nonumbilic points of an isothermic immersion x W
M! R3 is dense in M, then Theorem 9.12 and Problem 4.63 imply that the unique
smooth criterion form on M must be closed.

Proof. If x is isothermic, then about any point there exists a principal complex
coordinate chart .U; .z D xC iy//. The frame field .x;e/ W U! E.3/ adapted to z
is second order with !1C i!2 D eudz and !21 D�uye�u!1Cuxe�u!2, by (7.28), so
˛ D e�uux!

1C e�uuy!
2 D uxdxCuydyD du, which is closed on U.

Conversely, given arbitrary m 2 M, let .x;e/ W U ! E.3/ be a second order
frame field with closed criterion form ˛ on a neighborhood U of m. The Frobenius
Theorem implies the existence of functions x, y, A, and B on a neighborhood W �U
of m such that A> 0, B> 0 on W and

!1 D Adx; !2 D Bdy:

Then, dx^ dy > 0 on W implies .x;y/ is a coordinate system on a neighborhood
V �W of m, and (see Remark 4.15)

˛^!1 D d!1 D Ay

A
dy^!1; ˛^!2 D d!2 D Bx

B
dx^!2;

so

˛ D Bx

B
dxC Ay

A
dyD .logB/xdxC .logA/ydy:
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By the assumption that ˛ is closed on U, we have

0D d˛ D 
�.logB/xyC .logA/yx
�

dx^dyD .log
A

B
/xydx^dy

on V , which implies that log.A=B/D f .x/�g.y/ for some smooth functions f and g
on x.V/� R and y.V/� R, respectively. Defining the smooth function

u W V! R; uD logA� f .x/D logB�g.y/;

we get

!1 D AdxD euef .x/dx; !2 D BdyD eueg.y/dy:

There exist antiderivatives F and G such that F0D ef and G0D eg. If we let QxD F.x/
and QyD G.y/, then

dQxD ef .x/dx; dQyD eg.y/dy:

Then .Qx; Qy/ are coordinates on a neighborhood of m, which we continue to call V ,
on which

!1 D eudQx; !2 D eudQy;

so !1C i!2D eu.dQxC idQy/ implies zD QxC iQy is a complex coordinate of the induced
structure on V . The integral curves of the distributions !1 D 0 and !2 D 0 are lines
of curvature, and these coincide with the coordinate curves dQx D 0 and dQy D 0,
respectively. Thus, z is a principal complex coordinate on V . Hence, x is isothermic.

ut
Corollary 9.14. Suppose the immersion x WM! R3 is umbilic free. Let h WU! C
be the Hopf invariant of x relative to a complex chart .U;z/ of M; I. Then x WU!R3

is isothermic if and only if

@2

@z@Nz=.logh/D 0

identically on U.

Proof. If .x;e/ W U! E.3/ is the frame field adapted to z, then its criterion form is
du, by Problem 7.46, where eu is the conformal factor relative to z. Given a point
of U, there is a neighborhood QU � U of this point on which hD ef Cig, for smooth
functions f ;g W QU! R. If

BD
�

cos t �sin t
sin t cos t

�
W QU! SO.2/;
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where tD�g=2 W QU! R, then B�1dBD
�
0 �dt
dt 0

�
. By (4.24), the Hopf invariant Qh

of the frame field

.x; Qe/D .x;e
�

B 0
0 1

�
/ W QU! E.3/

satisfies QhD e2ithD ef , which is positive on QU. Hence, .x; Qe/ is a second order frame
field on QU. By Exercise 12, its criterion form Q̨ on QU is Q̨ D duC�dt. By Exercise 11,
this is closed if an only if

0D d �dtD�1
2

gzNz

identically on QU. ut
Not all immersions are isothermic, as we now show.

Proposition 9.15. A tube about a curve in R3 is isothermic if and only if the curve
is (part of) a circle or a line.

Proof. We will use the notation and calculations for tubes given in Subsection 4.8.2.
There f.s/ is a smooth curve in R3 defined on an interval J and parametrized by
arclength s, with curvature �.s/ and torsion �.s/. Its Frenet frame consists of the
vector fields TD Pf;N;B, which satisfy the Frenet-Serret equations (4.62). Assume
that the curvature is bounded above, that is, there is a positive constant kM such that
� 	 kM on J. For a constant r satisfying 0 < r< 1=kM, the tube about f of radius r is
the immersion (4.63), which is

x W J�R! R3; x.s; t/D f.s/C r.cos t NC sin t B/:

A second order frame field .x;e/ is constructed along x in (4.64), whose coframe
field is

!1 D .1� r� cos t/ds; !2 D�r.�dsCdt/;

and the principal curvatures are given by

!31 D
� cos t

1� r� cos t
!1; !32 D�

1

r
!2:

All points are nonumbilic, and the calculations

d!1 D r� sin t

1� r� cos t
dt^!1; d!2 D 0;

imply, by Remark 4.15, that the criterion form is

˛ D r� sin t

1� r� cos t
.�dsCdt/:
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By Theorem 9.12, x is isothermic if and only if ˛ is closed. But

d˛ D r

.1� r� cos t/2
. P� sin t��� cos tC r�2�/ds^dt

shows that d˛ D 0 if and only if

P� sin tC��.r�� cos t/D 0

identically for all s and t; that is,

P� sin t��� cos tD�r�2�;

for all s and t. The right side does not depend on t, so the partial derivative with
respect to t of the left side must be identically zero. This gives

. P�;��/ � .cos t;sin t/D 0

for all s and t. This holds if and only if

. P�;��/D .0;0/

identically; that is, � is constant and � D 0 or � D 0. ut

9.3 Affine structures

There is a close relationship between isothermic immersions and affine structures
on a Riemann surface. For more background on affine structures see Gunning [82,
p.167ff].

Definition 9.16. An affine structure on a Riemann surface M is an atlas of complex
coordinate charts fU˛;z˛g˛2A such that for any ˛;ˇ 2 A , the function c˛ˇ D dzˇ

dz˛
is locally constant on U˛ \Uˇ , meaning that it is constant on each connected
component of this set.

Example 9.17. A torus M D C=� is a compact Riemann surface with an affine
structure. Here � is any lattice in C, which we may assume is generated over
the integers by 1 and a complex number � whose imaginary part is positive. (See
Examples 7.44 and 7.45.) Let z be the standard complex coordinate on C and let
fU˛g be an open cover of M by open sets which are evenly covered by the projection
map � W C!M. Then z descends to a complex coordinate z˛ on each U˛ such that
on U˛ \Uˇ we must have z˛ D zˇC b˛ˇ , where b˛ˇ 2 � . In particular, dz˛ D dzˇ
on U˛\Uˇ. Therefore, fU˛;z˛g˛2A is an atlas defining an affine structure on M.
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Theorem 9.18. If x W M! R3 is an isothermic immersion of an oriented surface
M, such that the set of nonumbilic points is open and dense in M, then an atlas of
principal isothermic charts on M defines an affine structure on M.

Proof. Let fU˛;z˛g be an atlas of principal complex coordinate charts on M. This
atlas exists because x is isothermic. On U˛\Uˇ, assumed nonempty, let

c˛ˇ D dzˇ
dz˛

For each chart U˛;z˛ in this atlas, its Hopf invariant h˛ is real valued on U˛, because
it is a principal chart. By the change of coordinate formula (7.41), on U˛ \Uˇ we

have hˇ D Nc˛ˇ
c˛ˇ

h˛. The nonumbilic points of this intersection form an open dense

subset of U˛ \Uˇ, on which c2˛ˇ D jc˛ˇj2h˛=hˇ is holomorphic and real valued,
therefore locally constant on U˛\Uˇ. But then c˛ˇ is locally constant on U˛ \Uˇ,
and this atlas defines an affine structure on M. ut
Remark 9.19. The hypothesis of open dense nonumbilic set is necessary in the
preceding proposition. For example, a sphere of any radius in R3 is isothermic,
since every complex coordinate chart is principal. But as a Riemann surface it has
no affine structure, as the next theorem implies, because the genus of the sphere is
zero.

Theorem 9.20. If a compact Riemann surface M possesses an affine structure, then
its genus is 1, that is, as a Riemann surface M is a torus.

Proof. See Gunning [82, Cor. 3, p. 173]. ut
Corollary 9.21. If M is a compact oriented surface and if x W M ! R3 is an
isothermic immersion whose set of nonumbilic points is dense in M, then M is a
torus.

9.4 Christoffel transforms

Isothermic immersions are characterized geometrically by the existence of a Chris-
toffel transform.

Definition 9.22. A Christoffel transform of an immersion x WM!R3 of an oriented
surface M is an immersion Ox WM! R3 such that

1. At each point of M, the tangent plane to x is parallel to the tangent plane to Ox.
2. The metrics induced by x and Ox are conformally related.
3. x and Ox induce opposite orientations at each point of M.

In more detail: (1) means that .x;e/ W U! E.3/ is first order along x if and only
if .Ox;e/ W U! E.3/ is first order along Ox; (2) means d Ox � d OxD e2udx � dx, for some
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smooth u WM! R; given (1) and (2), (3) means that for any first order frame field
.x;e/ W U! E.3/, so .Ox;e/ W U! E.3/ is first order along Ox, we have

dxD !1e1C!2e2; d OxD �1e1C �2e2; (9.6)

and �1^�2 D�e2u!1^!2 on U. All three conditions are equivalent to: for any first
order frame field .x;e/ W U! E.3/ along x, (9.6) holds and

�1� i�2 D f .!1C i!2/; (9.7)

for some smooth f W U! Cn f0g.
If Ox is a Christoffel transform of x, then x is a Christoffel transform of Ox.

In addition, for any nonzero real constant r and any constant vector v 2 R3, the
immersion r OxCv is also a Christoffel transform of x.

Example 9.23 (Christoffel transform of a CMC immersion). Recall the statement in
Theorem 4.50 of Bonnet’s remarkable result that for an immersion x WM! R3 of
constant mean curvature H ¤ 0 and unit normal vector field e3, the parallel surface
Ox D xC 1

H e3 has constant mean curvature OH D �H relative to e3. This parallel
surface is a Christoffel transform of x on Mc �M, the open subset of all nonumbilic
points of x, assumed nonempty. In fact, let .x;e/ be a first order frame field on
U �Mc, with the given unit normal vector field. Then dxD !1e1C!2e2 and

d OxD !1e1C!2e2C 1

H
.!13e1C!23e2/D .!1C !

1
3

H
/e1C .!2C !

2
3

H
/e2;

so the tangent plane of Ox is parallel to that of x, and

.!1C !
1
3

H
/� i.!2C !

2
3

H
/D� h

H
.!1C i!2/;

where hD 1
2
.h11�h22/�ih12 is the Hopf invariant of x relative to .x;e/. The function

h=H vanishes exactly at the umbilic points of x, so (9.7) holds on a neighborhood
of any point of Mc. Hence, Ox WMc! R3 is a Christoffel transform of x WMc! R3.

Theorem 9.24 (Christoffel [50]). Let x W M ! R3 be an immersion of a
surface M.

(1) If x possesses a Christoffel transform, then x is isothermic.
(2) If M is simply connected and if x is isothermic and has a dense set of nonumbilic

points in M, then x possesses a Christoffel transform Ox, unique up to homothety
and translation, r OxC v, where r is a nonzero real constant and v 2 R3 is
constant.

Proof. Suppose that x possesses the Christoffel transform Ox W M ! R3. Choose a
point of M and let .U;z/ be a complex coordinate chart about this point for the
complex structure induced by x. If .x;e/ W U! E.3/ is the frame field adapted to z,
then
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dxD !1e1C!2e2; d OxD �1e1C �2e2; !1C i!2 D eudz;

for smooth u W U! R, and

�1� i�2 D f .!1C i!2/

for some smooth function f W U! Cn f0g. From

dxD xzdzCxNzdNzD
�

e1� ie2
2

�
eudzC

�
e1C ie2
2

�
eudNz;

d OxD OxzdzC OxNzdNzD
�

e1C ie2
2

�
feudzC

�
e1� ie2
2

�
Nf eudNz

we get

xz D eu

�
e1� ie2
2

�
; OxNz D Nf eu

�
e1� ie2
2

�
;

so OxNz D Nf xz and

d OxD f xNzdzC Nf xzdNz (9.8)

on U. Taking the exterior derivative of (9.8) and using the formula xzz D 2uzxzC
1
2
e2uhe3 from (7.35), where h is the Hopf invariant of x relative to z, we have

0D�.fNzC2fuNz/xNzC .NfzC2Nf uz/xzC 1
2

e2u.Nhf �hNf /e3:

Using the fact that xz;xNz;e3 are linearly independent over C at each point of U, we
conclude that

fNzC2fuNz D 0 and Nhf D hNf : (9.9)

The first equation is equivalent to .e2uf /Nz D 0, which means that e2uf is a holomor-
phic function on U. Since e2uf is never zero on U, it has a holomorphic square root g
on U. Since g is never zero on U, the holomorphic function w, for which dwD gdz,
is a local complex coordinate on a neighborhood V of the chosen point. By (7.41)
the Hopf invariant Qh of x relative w satisfies

QhD Ng
g

hD Ng
2

jgj2 hD e2uNf h

jgj2 ;
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which is real valued on V by the second equation in (9.9). Hence, .V;w/ is a
principal complex coordinate chart for x containing the chosen point. As the point
was arbitrarily chosen, it follows that x is isothermic.

Remark 9.25. If z itself had been a principal complex coordinate for x, then h would
be real valued and (9.9) would imply that e2uf is holomorphic and real valued on
U so, supposing U connected, e2uf D r, a nonzero real constant on U. Then (9.8)
becomes

d OxD re�2u.xNzdzCxzdNz/D re�2u.!1e1�!2e2/

so

�1� i�2 D re�2u.!1C i!2/D re�udz

on U, where .x;e/ W U! E.3/ is adapted to z.

For the converse, suppose that M is simply connected and x W M ! R3 is
isothermic with a dense set of nonumbilic points. To construct a Christoffel
transform Ox WM! R3, we try to construct the R3-valued differential 1-form

� D d Ox

on M. It is tangential in the sense that at any m 2M, the value of � on any v 2 TmM
is in dx.TmM/ � R3. We first construct � on a given principal complex coordinate
chart .U;z/. The next step will be to see how these locally defined 1-forms are pieced
together to give a Christoffel transform of x on all of M.

9.4.1 Local construction

Let U;z be a principal complex coordinate chart of x. Let .x;e/ be the frame adapted
to z, so that !1C i!2 D eudz, for some smooth u W U ! R, and h W U ! R is the
Hopf invariant of x relative to z. By Remark 9.25, up to constant multiple the only
candidate for an R3-valued tangential 1-form � on U is,

� D e�2u.xNzdzCxzdNz/D e�2u.!1e1�!2e2/: (9.10)

To see when � is closed on U, we calculate

d� D e�2u.2uNzxNz�2uzxz�xNzNzCxzz/dz^dNz

and then substitute in xzz D 2uzxzC 1
2
e2uhe3 from (7.35), to find
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d� D 1

2
.h� Nh/e3dz^dNz:

Hence, � is closed if and only if h is real valued on U, which is the case if and
only if z is a principal complex coordinate. Thus we see the essential role of the
assumption that x be isothermic. If U is simply connected, then there exists a smooth
map Ox W U! R3 such that d OxD �. Then (9.10) shows that .Ox;e/ is first order along
Ox with

�1� i�2 D e�2u!1C ie�2u!2 D e�2u.!1C i!2/;

so Ox is a Christoffel transform of x on U, by (9.7). If r is any nonzero real number,
then r� remains tangentially valued and closed and d.r Ox/D r d Ox. The zeros of h do
not affect this local construction. It works even if h is identically zero on U.

9.4.2 Global construction

Let fU˛;z˛g˛2A be an atlas of principal complex coordinate charts on M. We may
assume that U˛ \Uˇ is connected whenever this intersection is non-empty. Let eu˛

be the conformal factor and let h˛ be the invariant of x relative to z˛ . If U˛\Uˇ ¤;,
let

c˛ˇ D dzˇ
dz˛

a holomorphic function on this intersection. By (7.41), we know that on this
intersection hˇ D c˛ˇ

c˛ˇ
h˛. Since we have principal charts, the functions h˛ and hˇ

are real valued. In addition, we have assumed that the set of nonumbilic points is
dense in M. It follows that hˇ is nonzero on a dense open subset, V , of U˛\Uˇ, and
therefore c2˛ˇ D jc˛ˇj2h˛=hˇ is a real valued holomorphic function on V and so must
be locally constant on V . Since V is dense in the connected open set U˛\Uˇ where
c2˛ˇ is continuous, it follows that c2˛ˇ is a real valued constant, nonzero, but possibly
negative.

Use (9.10) to define �˛, a tangentially valued closed 1-form on U˛ . If U˛\Uˇ ¤
;, then by (7.40) e�2uˇ D e�2u˛ jc˛ˇj2 and

�ˇ D jc˛ˇj2e�2u˛

�
xNz˛
Nc˛ˇ c˛ˇdz˛C xz˛

c˛ˇ
Nc˛ˇdNz˛

�
D c2˛ˇ�˛; (9.11)

because c2˛ˇ is real valued. We now use a Čech cohomology argument to piece
together the �˛ into a tangentially valued closed 1-form � on all of M. For
background on Čech cohomology see Conlon [53, pages 284ff]. We define a Čech
1-cocycle cD fc˛ˇg by assigning to the ordered pair .U˛;Uˇ/, when U˛\Uˇ ¤ ;,
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the real number c2˛ˇ . It satisfies the cocycle condition c2˛ˇc2ˇ�c2�˛ D 1 whenever

U˛\Uˇ\U� ¤;. It is proved in [53] that the Čech cohomology equals the de Rham
cohomology, LH1.M/ D H1.M/, and this last space is zero by our assumption that
M is simply connected. Therefore, there exists a 0-cochain s D fs˛g (where s˛ is
a nonzero real number assigned to U˛) whose coboundary ıs D fsˇ=s˛g equals c.
That is, for the ordered pair .U˛;Uˇ/, we have on U˛\Uˇ

sˇ=s˛ D c2˛ˇ

Therefore, by (9.11)

�˛=s˛ D �ˇ=sˇ

on U˛\Uˇ allows us to define � on M by defining

�jU˛ D �˛=s˛:

The resulting 1-form � is smooth, tangentially valued and closed on M. Because M
is simply connected, there exists a smooth map Ox WM!R3 such that d OxD �. As in
the local case, it follows that Ox is a Christoffel transform of x. If Q� is any smooth,
tangentially valued, closed 1-form on M, then for any U˛ ,

Q�jU˛ D a˛�jU˛ ;
for some real constant a˛ , by (9.10). But then a˛D aˇ whenever U˛\Uˇ ¤;, so we
conclude that � is unique up to a constant real multiple. Then Ox satisfying d OxD � is
unique up to additive constant vector, implies that Ox is unique up to homothety and
translation. ut
Corollary 9.26. If Ox WM! R3 is a Christoffel transform of the isothermic immer-
sion x and if .U;z/ is a principal chart for x such that d Ox D � is given by (9.10),
then .U; Nz/ is a principal chart for Ox, so lines of curvature are preserved, and

eOu D e�u; OH D e2uh; OhD e2uH; (9.12)

where eu and eOu are the conformal factors and h and Oh are the Hopf invariants
relative to z of x and relative to of Ox, respectively, and H and OH are the mean
curvatures relative to the normal vector e3. Hence:

(1) If x is minimal, then Ox is totally umbilic.
(2) If x is totally umbilic, then Ox is minimal.

Proof. The first equation follows immediately from (9.10), where now � D d Ox. For
the other two equations, use the fact that e3 is the unit normal vector for both x and
Ox, and thus (7.25) applied to each gives

OHd OxC OhOxzdNzC NOhOxNzdzD�de3 D HdxChxNzdzC NhxzdNz
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Comparing coefficients of dz, we find that

OH OxzC NOhOxNz D HxzChxNz (9.13)

By (9.10), we have OxzD e�2uxNz and OxNz D e�2uxz, which substituted into (9.13) gives
the second and third equations in (9.12). ut
Remark 9.27. The above local construction works for any principal chart .U;z/,
regardless of the presence of umbilic points in U. In fact, it works even when x is
totally umbilic on U. The construction depends, however, on the choice of principal
chart. As shown in the above global construction, if the set of nonumbilic points is
dense, then this choice is limited to only one together with its rotation by an integer
multiple of �=2. On a totally umbilic set, any complex chart is principal. If a totally
umbilic immersion x WM!R3 is nonplanar, then any nonplanar minimal immersion
is a Christoffel transform of it for an appropriate choice of complex principal chart.

Corollary 9.28. If Ox WM! R3 is a Christoffel transform of an isothermic immer-
sion x W M! R3, then Q D .dx � d Ox/2;0 is a holomorphic, nowhere zero quadratic
differential on M.

Proof. If U;z is any principal complex coordinate chart in M for x, then by (9.10)

dx � d OxD ce�2uxz � xNz.dzdzCdNzdNz/

from which the results follows because xz � xNz D 2e2u. ut
Remark 9.29. By the Uniformization Theorem (see Farkas-Kra [66, §IV.4.1, p195
and §IV.5.6, p206], the universal cover � W QM!M of a given Riemann surface M
must be either the Riemann sphere S2, the complex plane C or the unit disk D D
fz 2C W jzj< 1g. If x WM! R3 is an isothermic immersion whose induced complex
structure is the given structure on M, then the composition Qx D x ı� W QM! R3 is
also isothermic. A point of QM is umbilic for Qx if and only if it covers an umbilic
point of x in M. It follows that if x has a dense set of nonumbilic points in M
then Qx has a dense set of nonumbilic points in QM, and therefore Qx has a Christoffel
transform Ox W QM! R3. If U �M is an open subset evenly covered by the covering
projection, and if QU � QM is a connected component of ��1U, then � W QU! U is a
diffeomorphism and Oxı��1

j QU WU!R3 is a Christoffel transform of x restricted to U.

But Ox will be a Christoffel transform of x on all of M if and only if Ox ıF D Ox for
every deck transformation F W QM! QM of this covering space. In this case we say
that Ox descends to M.

Sometimes the Christoffel transform descends, as for example in every case when
x is of constant mean curvature, because then OxD xC e3=H is a parallel surface, as
shown in Example 9.23. The next family of examples contains cases where Ox does
not descend.

Example 9.30 (Christoffel transform of a surface of revolution). Consider a surface
of revolution x W J�S1 ! R3 given in (9.3). See Example 9.7 for the notation we
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use here. A principal complex coordinate chart is .U;z/, where,

zD rC it; rD
Z

w

f
ds; wD

q
Pf 2C Pg2 > 0: (9.14)

Here U D J�K, where K is any open interval of length 2� . The conformal factor
of x relative to z is eu D f , by (9.4). Then

dzD drC idtD w

f
dsC idt

and

xz D 1

2
.xr� ixt/D 1

2
.

f

w
xs� ixt/;

from which we find the real part of xNzdz to be

<.xNzdz/D<.1
2
.

f

w
xsC ixt/.

w

f
dsC idt//D 1

2
.xsds�xtdt/;

where <.p/ denotes the real part of the complex number p. By (9.10), a Christoffel
transform of x satisfies, d OxD e�2u.xNzdzCxzdNz/D 2e�2u<.xNzdz/. Therefore,

d OxD 1

f 2
.xsds�xtdt/D

0
BB@

Pf
f 2

cos t dsC sin t
f dt

Pf
f 2

sin t ds� cos t
f dt

Pg
f 2

ds

1
CCA :

Integrate to find the components of Ox, up to additive constants,

Ox1 D�cos t

f
; Ox2 D� sin t

f
; Ox3 D

Z Pg
f 2

ds: (9.15)

Therefore, Ox is periodic in t, of period 2� , and thus it descends to M. Indeed,
Ox W M ! R3 is the surface of revolution obtained by revolving the profile curve
t.�1=f ;0;

R
.Pg=f 2/ds/ in the x1x3-plane about the x3-axis.

Here the universal cover of M is QM D J�R, which as a Riemann surface is C
or D according to whether the function r maps J onto R or not, since the Riemann
Mapping Theorem says that a simply connected domain in C, which is not all of C,
is biholomorphically equivalent to D.

Consider next the case where J D S1.R/. The universal cover of M is

' W QM D R2!M; '.s; t/D .e2� is=R;eit/:



9.4 Christoffel transforms 291

Now f .s/ and g.s/ are R-periodic. Up to translation, the Christoffel transform Ox W
QM! R3 is given again by (9.15) and it is periodic in t, of period 2� . It is a surface

of revolution, but its profile curve t.�1=f ;0;
R
.Pg=f 2/ds/ is R-periodic if and only ifR

.Pg=f 2/ds is R-periodic. Since the integrand is R-periodic,

d

dx

Z xCR

x

Pg
f 2

dsD 0;

so
R
.Pg=f 2/ds is R-periodic if and only if

Z R

0

.Pg=f 2/dsD 0: (9.16)

Thus, the Christoffel transform of a torus of revolution is again a torus if and only
if (9.16) holds. Figure 9.2 shows part of the Christoffel transform of a circular torus,
based on work by J. Hutchings.

Example 9.31 (Torus with torus transform). This example was found by Joseph
Hutchings. To find a torus of revolution whose Christoffel transform is a torus,
we look for R-periodic functions f .s/ and g.s/ with f > 0 and Pf 2C Pg2 > 0 such
that (9.16) holds. We take RD 2� and consider

f .s/D 2C sinscoss; g.s/D .1C coss/sin s:

Fig. 9.2 A piece of the
Christoffel Transform of a
circular torus.



292 9 Isothermic Immersions

Fig. 9.3 Profile curve of
Joey’s torus and of its
Christoffel transform
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Then Pg.s/D cossC cos2s, Pf 2C Pg2 > 0, and

Z 2�

0

Pg
f 2

dsD
Z �

0

Pg
f 2

dsC
Z 2�

�

Pg
f 2

dsD
Z �

0

2cos2s

.2C 1
2

sin2s/2
dsD 0

shows that the Christoffel transform descends. See Figure 9.3 for the profile curves
of Joey’s torus and of its Christoffel transform, which is also a torus of revolution.

If the definition of Christoffel transform is changed to require that x and Ox have
the same orientation, then conformal associates of a minimal immersion are the only
possibilities.

Theorem 9.32. If an immersion x W M! R3 possesses a transform Ox W M! R3,
nontrivial in the sense that Ox¤ rxCv, and satisfying all properties of a Christoffel
transform except that x and Ox now have the same orientation, then x is minimal and
Ox is a conformal associate of x.

Proof. By an argument similar to that given in Definition 9.22 of the Christoffel
Transform, if .x;e/ W U ! E.3/ is first order, then .Ox;e/ W U ! E.3/ is also first
order, and then same orientation and conformality imply

�1C i�2 D g.!1C i!2/;

for some smooth function g W U! Cn f0g. Now

d OxD gxzdzC NgxNzdNz (9.17)

whose exterior derivative is

0D�gNzxzC NgzxNzC .Ng�g/xzNz
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Substituting in (7.35), which is xzNz D 1
2
e2uHe3, we get

gNz D 0 and .Ng�g/H D 0 (9.18)

at every point of U. Therefore, g a holomorphic function of z on U and, at any point,
either g is real or H is zero.

The assumed nontriviality of our transform requires that H be identically zero
on M. In fact, suppose that H is not zero at the chosen point of M and assume that U
is connected. Then the continuous function H must be nonzero on a nonempty open
subset V of U and hence g is a real constant, c, on V . Being a holomorphic function
constant on an open subset V , it must be constant on all of the connected open set
U. Hence, gD c on U, which substituted into (9.17) gives

d OxD cdx (9.19)

on U. This must hold on all of M. To see this, let QU;w be another complex coordinate
chart for x and suppose that U\ QU¤ ;. If .x; Qe/ is the frame field adapted to . QU;w/,
then the above analysis leads to

d OxD QgxwdwC NQgx Nwd Nw (9.20)

on QU, where Qg must be a holomorphic function of w on QU and .Qg� NQg/HD 0 at every
point of QU. On U \ QU, we have w D w.z/ holomorphic and xwdwD xzdz, so that,
by (9.17) and (9.20),

gxzdzC NgxNzdNzD d OxD QgxzdzC NQgxNzdNz;

from which we conclude that Qg D g D c on U \ QU. Therefore, the holomorphic
function QgD c on all of QU (assumed connected) and we have d OxD cdx on U[ QU.
Since M is connected, any point of M lies in Uk of a finite chain of open coordinate
neighborhoods .Uj/

k
1 with U1 D U and Uj�1 \Uj ¤ ; for j D 2; : : : ;k. It follows

that (9.19) holds on all of M and this contradicts the nontriviality of the transform.
Therefore, H must be identically zero on M, that is, x is a minimal immersion. In

terms of a complex coordinate z of x we have, by (9.17),

Oxz D gxz

where, by (9.18), the function g is holomorphic in z on U. By Problem 8.56 we see
that Ox is a conformal associate of x on U. ut
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Problems

9.33. Use Dupin’s Theorem, The surfaces of a triply orthogonal system intersect in
the lines of curvature, (see Struik [155, pages 99–103]), to prove that

x2 D p.pCa/.pC c/

.p�q/.p� r/
; y2 D q.qCa/.qC c/

.q� r/.q�p/
; z2 D r.rCa/.rC c/

.r�p/.r�q/

is a parametrization of the quadric (9.1) by its principal curvatures a and c. Use this
to show that the induced metric has the form I D E da2CGdc2, where

ED a� c

4

a

.pCa/.qCa/.rCa/
; GD c�a

4

c

.pC c/.qC c/.rC c/

and therefore E=GD g.c/=f .a/, for some functions f .a/ and g.c/. Figure 9.4 shows
a triply orthogonal system of confocal quadrics.

9.34 (Cylinder in S3). Let y.s/ D t.y1.s/;y2.s/;y3.s/;0/ be an immersed curve in
the great sphere S2 � S3 � R4, parameterized by arclength parameter s 2 J. Let

x W J�S1! S3; x.s; t/D cos t y.s/C sin t�4:

Is x isothermic?

9.35 (Cones). Prove that any cone x W M ! R3 defined in Example 4.28 is
isothermic.

Fig. 9.4 A triply orthogonal
system of confocal quadrics.
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9.36 (Paraboloid). The immersion

x WM D R2! R3 x.x;y/D t.x;y;x2C y2/

is a paraboloid. Prove that .0;0/ 2M is an umbilic point, that x WM n f.0;0/g! R3

is isothermic, but that there is no principal complex chart .U;z/ about .0;0/ in M.

9.37. Prove that a Dupin immersion x W M! R3 is isothermic on the open set of
nonumbilic points.

9.38. Use (9.10) to prove that a Christoffel transform of the catenoid x.s; t/ D
.coshscos t;�coshssin t;s/ parametrizes the unit sphere with the north and south
poles removed. In the same way prove that a Christoffel transform of Enneper’s
surface x.s; t/ D .sC st2 � s3=3;�t� s2tC t3=3;s2� t2/ parametrizes a sphere with
the north pole removed.

9.39. Prove that if the profile curve of a torus of revolution is embedded, then
its Christoffel transform is not a torus. In particular, the Christoffel transform of
a circular torus is not a torus, as we have seen in Figure 9.2.

9.40. Find the Christoffel transforms of the cylinders of Example 9.8 and of the
cones of Problem 9.35. Do they descend?



Chapter 10
The Bonnet Problem

This chapter presents the Bonnet Problem, which asks whether an immersion of a
surface x WM!R3 admits a Bonnet mate, which is another noncongruent immersion
Qx W M ! R3 with the same induced metric and the same mean curvature at each
point. Any immersion with constant mean curvature admits a 1-parameter family of
Bonnet mates, all noncongruent to each other. These are its associates. The problem
is thus to determine whether an immersion with nonconstant mean curvature has a
Bonnet mate. A brief introduction to the notion of G-deformation is used to derive
the KPP Bonnet pair construction of Kamberov, Pedit, and Pinkall. We state and
prove a new result on proper Bonnet immersions that implies results of Cartan,
Bonnet, Chern, and Lawson-Tribuzy. The chapter concludes with a summary of
Cartan’s classification of proper Bonnet immersions.

10.1 Background

Consider an immersion x W M ! R3 of a connected, orientable surface M, with
unit normal vector field e3. Its induced metric I D dx � dx and the orientation of
M induced by e3 from the standard orientation of R3 induce a complex structure on
M, which provides a decomposition into bidegrees of the second fundamental form
of x relative to e3,

�de3 � dxD II D II2;0CHIC II0;2:

Here H is the mean curvature of x relative to e3 and II2;0D II0;2 is the Hopf quadratic
differential of x. Relative to a complex chart .U;z/ in M,

I D e2udzdNz; II2;0 D 1

2
he2udzdz;
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298 10 The Bonnet Problem

where the conformal factor eu, the Hopf invariant h, and the mean curvature H
satisfy the structure equations (7.31) and (7.32) on U:

�4e�2uuzNz D H2�jhj2 Gauss equation

.e2uh/Nz D e2uHz Codazzi equation

and the Gauss curvature is K D H2 � jhj2. It follows from Bonnet’s Congruence
Theorem 7.27 and Existence Theorem 7.28 that if functions

u;H W U! R; h W U! C

satisfy these structure equations, and if U is simply connected, then there exists an
immersion x WU!R3 whose conformal factor is eu, mean curvature is H, and Hopf
invariant is h, and this immersion is unique up to rigid motion.

In his Mémoire [15, pp. 72 ff], Bonnet considered

The Bonnet Problem 1. If two immersions x and Qx have the same induced metric,
I D QI, and the same principal curvatures aD Qa and cD Qc, then are they congruent?

Bonnet’s assumption of equality of the principal curvatures is equivalent to
assuming equality of the mean curvatures, QHDH. In fact, if the principal curvatures
agree, then so also do the mean curvatures, since

QH D .QaC Qc/=2D .aC c/=2DH:

Conversely, equality of the induced metrics implies equality of the Gauss curvatures,
K D QK, and therefore the principal curvatures

aD HC
p

H2�K; cD H�
p

H2�K

must agree (see (4.25)).
There is an extensive literature on this problem: Bonnet [14, 15], Cartan [33],

Roussos [143–145], Bobenko and Eitner [9], and many references within these
papers.

Definition 10.1. A Bonnet immersion is an immersion x W M2! R3 that admits a
noncongruent immersion Qx WM! R3 such that QI D I and QH D H. Call Qx a Bonnet
mate of x and call .x; Qx/ a Bonnet pair.

This chapter contains a detailed study of Bonnet’s Problem. If H is constant,
then x is isothermic and has a 1-parameter family of Bonnet mates, as seen
in Example 10.11. If H is nonconstant, then isothermic immersions play an
important role in the problem, illustrating again that the isothermic condition is a
generalization of constant mean curvature.
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Definition 10.2. A proper Bonnet immersion is a Bonnet immersion x W M! R3

whose mean curvature is nonconstant and which admits at least two noncongruent
Bonnet mates.

We shall see that nonisothermic immersions have a unique Bonnet mate, while
proper Bonnet immersions must be isothermic. We believe the first statement is a
new result.

During our discussion of the Bonnet problem the following concept of equiva-
lence becomes essential.

Definition 10.3. Immersions x W M! R3 and Ox W OM! R3 are equivalent if there
exists a diffeomorphism F WM! OM such that OxıF is congruent to x.

Remark 10.4. If x; Ox W M ! R3 are immersions of a simply connected surface M
with the same induced metrics I D OI and if there exists an isometry F W .M; I/!
.M; I/ such that F�bII D II, then Ox ıF and x are congruent, because then Bonnet’s
Theorem 4.18 implies there exists A 2 E.3/ such that Aı xD OxıF.

10.2 The deformation quadratic differential

From the Gauss equation above, the Hopf invariants relative to a complex coordinate
z of two immersions with the same induced metric and the same mean curvatures
must satisfy

jQhj D jhj;

since Qu D u. Hence, the only possible difference in the invariants of two such
immersions must be in the arguments of the complex valued functions h and Qh.
Moreover, taking the difference of their Codazzi equations, we get

.e2u Qh� e2uh/Nz D e2u.Hz�Hz/D 0;

at every point of the domain U of the complex coordinate z. This means that the
function

F D e2u.Qh�h/ WU! C

is holomorphic.

Definition 10.5. If x; Qx W M ! R3 are immersions that induce the same complex
structure on M, then their deformation quadratic differential is

Q DeII2;0� II2;0:
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If x and Qx have the same induced metric and mean curvature, then the expression
for Q relative to a complex coordinate z is

QD 1

2
e2u.Qh�h/dzdzD 1

2
Fdzdz; (10.1)

which shows that Q is a holomorphic quadratic differential on M, and

jFC e2uhj D je2u Qhj D je2uhj (10.2)

on U, since jQhj D jhj. As a convenient shorthand, we will express (10.2) as

jQC II2;0j D jII2;0j:
Q is identically zero on M if and only if QhD h in any complex coordinate system.
Therefore, by Bonnet’s Congruence Theorem 7.27, Q D 0 if and only if the
immersions x and Qx are congruent in the sense that there exists a rigid motion
.y;A/ 2 E.3/ such that Qx D yC Ax W M ! R3. Thus, an immersion Qx W M ! R3

is a Bonnet mate of x WM! R3 if it induces the same metric and mean curvature
and the deformation quadratic differential is not identically zero.

Proposition 10.6. If an immersion x WM! R3 possesses a Bonnet mate Qx WM!
R3, then the umbilic points of x must be isolated.

Proof. Under the given assumptions, the holomorphic quadratic differential Q is
not identically zero. Therefore, in any complex coordinate chart .U;z/, we have
Q D 1

2
Fdzdz, where F is a nonzero holomorphic function of z. Its zeros must be

isolated. A point m 2 U is umbilic for x if and only if h.m/ D 0, in which case
F.m/ D 0 by (10.2). Therefore, the set of umbilic points is a subset of the set of
zeros of Q, which is a discrete subset of M. ut
Lemma 10.7. A compact Riemann surface M of genus zero has no nonzero
holomorphic quadratic differentials.

Proof. A compact Riemann surface of genus zero must be the Riemann sphere. This
means that there exist points p;q 2M and complex coordinates z WM nfqg! C and
w W M n fpg ! C, both onto C, such that z.p/ D 0 D w.q/, and on M n fp;qg we
have wD 1=z. Let Q be a holomorphic quadratic differential on M. On M nfqg, we
have Q D f .z/dzdz, and on M n fpg we have Q D g.w/dwdw, where f and g are
entire holomorphic functions. On M n fp;qg we have dwD� 1

z2
dz, so

f .z/dzdzDQD g.w/dwdwD g.w/
1

z4
dzdz:

Therefore, f .z/D g.w/=z4, from which it follows that

lim
z!1 f .z/D lim

z!1
1

z4
lim
w!0

g.w/D 0;

since g.0/ is finite. Hence, f .z/ must be identically zero, and therefore Q must be
identically zero. ut
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Proposition 10.8. Suppose M is homeomorphic to S2. If two immersions

x; Qx WM! R3

have the same induced metrics, I D QI, and the same mean curvatures, H D QH, then
they are congruent. That is, there exists a rigid motion .v;A/ 2 E.3/ such that

QxD vCAx

Proof. In the above discussion we saw that Q D eII2;0 � II2;0 is a holomorphic
quadratic differential on M. By Lemma 10.7, this must be identically zero on a
surface M homeomorphic to S2. The result now follows from Bonnet’s Congruence
Theorem 7.27. ut

The idea of this proof comes from H. Hopf’s proof of the next theorem.

Theorem 10.9 (H. Hopf [92]). Suppose M is homeomorphic to S2. If x WM! R3

is an immersion with constant mean curvature, H, then H ¤ 0 and x.M/ is a sphere
of radius 1=jHj.
Proof. In any complex coordinate chart .U;z/ on M, the Hopf quadratic differential

II2;0 D 1

2
e2uhdzdz

is holomorphic by the Codazzi equation, which for constant H is

.e2uh/Nz D e2uHz D 0:
Therefore, II2;0 must be identically zero on M, by Lemma 10.7 above, so h D 0
in any complex coordinate chart and x is totally umbilic. We can now apply
Theorem 4.23. If H D 0, then the principal curvatures a D 0 D c at every point
of M and x.M/ must be an open subset of a plane in R3. This is impossible for a
compact surface M. Hence H is a nonzero constant and the principal curvatures at
every point are aD cD H and x.M/ is a sphere of radius 1=jHj. ut
Theorem 10.10. If x W M ! R3 is an immersion admitting a Bonnet mate
Qx WM! R3, then the deformation quadratic differential Q is nonzero, holomorphic
on M (with the complex structure from the induced metric), and satisfies (10.2).

Conversely, if x WM! R3 is an immersion whose induced complex structure on
M admits a nonzero holomorphic quadratic differentialQ satisfying (10.2), and if M
is simply connected, then there exists a Bonnet mate Qx WM!R3 whose deformation
quadratic differential is Q.

Proof. The first part has been proved in the discussion above. For the converse,
suppose given a nonzero holomorphic quadratic differential Q on the simply
connected M satisfying (10.2). Consider the Riemannian metric ID dx �dx, the mean
curvature function H WM! R of x, and the smooth quadratic differential

eII2;0 D II2;0CQ;
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where II2;0 is the Hopf quadratic differential of x. In a complex coordinate chart
.U;z/ in M, we have I D e2udzdNz, II2;0 D 1

2
he2udzdz, and Q D 1

2
Fdzdz, for some

holomorphic function F on U, soeII2;0 D 1
2
Qhe2udzdz, where

Qhe2u D he2uCF:

By (10.2), jII2;0CQj D jII2;0j, which implies

jQhe2uj D jhe2uCFj D jhe2uj:

on U, so u, H, and Qh satisfy the Gauss equation (7.31). They also satisfy the Codazzi
equation (7.32), because

.e2u Qh/Nz D .e2uhCF/Nz D .e2uh/Nz D e2uHz;

since FNz D 0 and since u, H, and h satisfy the Codazzi equation. By Bonnet’s
Existence Theorem 7.28, there exists an immersion Qx WM!R3 with induced metric
I, mean curvature H, and Hopf quadratic differentialeII2;0. It is a Bonnet deformation
of x with deformation quadratic differentialeII2;0� II2;0 DQ. ut
Example 10.11 (CMC immersions). Let M be a simply connected surface and let
x WM!R3 be an immersion with constant mean curvature H, induced metric I, and
Hopf quadratic differential II2;0. We exclude the totally geodesic case by assuming
that the Hopf quadratic differential II2;0 is not identically zero on M. Note that it
is holomorphic, since H is constant. For a real constant r, the Riemannian metric
I, the constant H, and the smooth quadratic differential eirII2;0 satisfy the Gauss
and Codazzi equations in any complex coordinate chart .U;z/ in M. Hence, there
exists an immersion Qx WM!R3 with induced metric I, mean curvature H, and Hopf
quadratic differential eirII2;0. Its deformation form

QD eirII2;0� II2;0 D .eir�1/II2;0

satisfies jII2;0CQj D jII2;0j and is nonzero provided that eir ¤ 1. This shows that
x possesses a 1-parameter family of Bonnet mates, which we call the associate
immersions of x. In the case H D 0, these are exactly the associates of the minimal
immersion x.

10.3 Bonnet versus proper Bonnet

Recall Definition 4.14 of the criterion form ˛ on M of any umbilic free immersion
x W M! R3. We know from Theorem 9.12 that x is isothermic if and only if ˛ is
closed on M.
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Definition 10.12. An umbilic free immersion x WM! R3 is totally nonisothermic
if d˛ is never zero, where ˛ on M is the criterion form of x.

Item (1) of the next theorem is due to Graustein [76]. See Problem 10.52. We
believe that item (2) is new.

Theorem 10.13. Let x W M ! R3 be an umbilic free immersion of a simply
connected surface M with complex coordinate zD xC iy WM! C and nonconstant
mean curvature H (i.e., dH ¤ 0 on a dense open subset of M).

1. If x is isothermic and if it admits a Bonnet mate, then it is proper Bonnet.
2. If x is totally nonisothermic, then it has a unique Bonnet mate (so it cannot be

proper Bonnet).

Proof. Let h and eu be the Hopf invariant and conformal factor relative to z. Then
hD ef Cig, for some smooth functions f ;g WM! R. Corollary 9.14 tells us that x is
isothermic if and only if gNzz D 0 identically on M.

By Theorem 10.10, any Bonnet mate of x must be given by a nonzero holomor-
phic deformation form Q D Fdzdz, where

F D he2u.eir�1/ WM! C

is holomorphic, for some smooth r WM! R, which must be nonconstant, since H
nonconstant implies he2u is not holomorphic. For convenience we write f C 2u D
G WM! R, so that he2u D eGCig. The Cauchy-Riemann equation FNz D 0 is

rNz D i.GC ig/Nz.1� e�ir/: (10.3)

To solve this equation for r, we consider the 2-dimensional distribution defined on
R�M by the 1-form

�D dr� rzdz� rNzdNzD dr� rxdx� rydy:

This distribution satisfies the Frobenius condition if and only if �^ d� D 0 if and
only if

=.rNzz/D .jGNzC igNzj2�GNzz/.cosr�1/�gNzz sinrD 0 (10.4)

on R�M.
If x is isothermic, then gNzz D 0 identically on M, so (10.4) holds identically on

R�M if and only if the invariants f , g, and u of x satisfy the PDE

jGNzC igNzj2 D GNzz (10.5)

identically on M. If (10.5) is not satisfied, then x has no Bonnet mates. If (10.5)
is satisfied by x, then there is an integrating factor m W R�M ! RC such that
m� D dR, for some smooth function R W R �M ! R, and R D c defines an
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integrable submanifold of the distribution defined by �, for any constant c in the
range of R. Since dR never vanishes and is proportional to �, it follows from the
Implicit Function Theorem that there exists a smooth function r WM! R such that
R.r.x;y/;x;y/D c. This function r, which is not identically 0, is a solution of (10.3)
and determines a Bonnet mate of x. Distinct values of the constant c determine
distinct Bonnet mates. Hence, x is proper Bonnet in this case.

If x is totally nonisothermic, then gNzz is never zero on M and the integrability
condition (10.4) holds for a unique value of eir. In fact,

eir D 1� 2gNzz

D
.gNzzC i.jGNzC igNzj2�GNzz//;

where DD g2NzzC .jGNzC igNzj2�GNzz/
2. This gives a unique Bonnet mate of x. ut

We will use Theorem 10.10 to determine all Bonnet cylinders and cones. As these
are all umbilic free isothermic immersions, Theorem 10.13 implies that only special
cylinders and cones can be Bonnet, and they must be proper Bonnet.

10.3.1 Bonnet cylinders

We consider now the problem of which cylinders (4.76) x W J�R! R3, x.x;y/D
�.x/� y�3, over a plane curve � W J ! R2, are Bonnet. See Problem 4.65 and
Example 9.8 for details. Here x is an arclength parameter for � and � is its curvature.
We assume � is positive, but nonconstant, so that H D �=2 D h, by (9.5), is
nonconstant. Then z D xC iy is a complex coordinate determined by the induced
metric dx �dxD dx2Cdy2 on MD J�R. By (10.2), we want to determine conditions
on � that allow the existence of a holomorphic function F.z/ satisfying

jFC�=2j D j�=2j:
Thus, F must be given by

F.x;y/D �.x/

2
.eir.x;y/�1/; (10.6)

for some smooth real valued function r WM! R. In order for F to be holomorphic,
it must satisfy the Cauchy-Riemann equations Fy D iFx. We compute

Fx D P�
2
.eir�1/C �

2
eirirx; Fy D �

2
eiriry;

where P� D d�
dx , so

Fy� iFx D i

2
�eir

�
ryC P�

�
.cosr�1/� i.

P�
�

sinrC rx/

�
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is zero if and only if r satisfies

rx D� P�
�

sinr; ry D P�
�
.1� cosr/: (10.7)

This is solvable for r.x;y/ if and only if rxy D ryx if and only if

0D rxy� ryx D .1� cosr/

(� P�
�

�P
�
� P�
�

�2)
:

The case r D 0 identically leads to F D 0 identically, which gives a trivial
deformation. The integrability condition to consider is thus

� P�
�

�P
D
� P�
�

�2
:

The general solution for P�=� is

P�
�
D �1

xCn1
;

where n1 is an arbitrary real constant. Then � D n=.xCn1/, where n is an arbitrary
nonzero real constant making � > 0. A change of arclength parameter from x to
xCn1, gives the curvature formula

� D n

x
;

where x > 0 and n > 0 or x < 0 and n < 0. Reversing the orientation of the curve
and of the plane, if necessary, we suffer no loss of generality if we assume n > 0
and J D RC D fx> 0g.

For any positive real constant n > 0, the curve �n W RC ! R2 with curvature
� D n=x is, up to rotation and translation in the plane, equal to

�n.x/D
1

1Cn2

�
xcos.n logx/�1Cnxsin.n logx/
�nxcos.n logx/CnC xsin.n logx/

�

D xAn.x/vn�vn

(10.8)

on x> 0, where

vn D 1

1Cn2

�
1

�n

�
2R2; (10.9)
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Fig. 10.1 Curves �n.x/ on :05� x � 5 for n D 1, 3, and 7.

and An W RC ! SO.2/ is the homomorphism from the multiplicative group of
positive real numbers onto SO.2/ given by

An.x/D
�

cos.n logx/ �sin.n logx/
sin.n logx/ cos.n logx/

�
: (10.10)

See Figure 10.1.
We summarize our results as follows.

Proposition 10.14 (Bonnet cylinders). Up to rigid motion and reflection, the only
Bonnet cylinders are

xn WM! R3; xn.x;y/D �n.x/� y�3; (10.11)

where M D f.x;y/ 2 R2 W x > 0g and n is any positive constant. The curvature of �n
is � D n=x. Distinct values of n give noncongruent Bonnet cylinders.

Figure 10.2 shows the cylinder x3.M/.
We continue our analysis of the cylinder (10.11) to see if we can determine its

Bonnet mates. With curvature function � D n=x, equations (10.7) become

rx D sinr

x
; ry D �1C cosr

x
: (10.12)

Integrating the second equation for any fixed x, we find

1C cosr

sinr
D
Z

dr

�1C cosr
D y

x
Cg.x/; (10.13)
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Fig. 10.2 The cylinder
through �3.

where g.x/ is an arbitrary function of x. Take the partial derivative with respect to x,
use the first equation in (10.12), and (10.13) again, to get

�
�y

x
�g
��1

x

�
D� y

x2
C Pg;

where Pg denotes derivative with respect to x. Hence

Pg
g
D�1

x
;

whose general solution is

g.x/D m

x
;

where m is an arbitrary nonzero real constant. Put this into (10.13) to get

1C cosr

sin r
D y

x
C m

x
D Qy

x
; (10.14)

where we let

QyD yCm:

Squaring (10.14), we get

� Qy
x

�2
D .1C cosr/2

1� cos2 r
D 1C cosr

1� cosr
;
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which we can solve for cosr, then use (10.14), to get

1C cosrD 2Qy2
x2C Qy2 ; sinrD 2xQy

x2C Qy2 :

Substituting these values of sinr and cosr, and � D n=x, into (10.6), we have

F.x;y/D �

2
.�1C cosrC isin r/D n

2x

� �2x2

x2C Qy2 C i
2xQy

x2C Qy2
�
D �n

zC im
;

a holomorphic function of zD xC iy. Relative to z, hD n
2x D H, and the conformal

factor is one, so the Hopf invariant of a Bonnet mate Ox relative to z is, by (10.1),

OhD FChD �n

zC im
C n

2x
D �n

2x

� Nz� im

zC im

�
: (10.15)

We get a mate Oxm for each value of the constant m 2 R. The frame field .Oxm; Oem/

along Oxm and adapted to z pulls back the Maurer–Cartan form of E.3/ to

.Oe�1
m d Oxm; Oe�1

m dOem/D . O!i; O!i
j /;

where

O!1 D dx; O!2 D dy; O!3 D 0; O!12 D 0;

O!31 � i O!32 D OhdzCHdNzD�n.
yCm

x
C i/d�;

where

d� D d arctan
yCm

x
D xd.yCm/� .yCm/dx

x2C .yCm/2
:

Can we integrate these equations to find .Oxm; Oem/? One suspects that the Bonnet
mates of this cylinder should be something like a cylinder. It can’t be a cylinder,
because we have just proved that these are the only Bonnet cylinders and distinct
values of the constant n give distinct values of the mean curvature. It might be a
cone.

10.3.2 Bonnet cones

Let

Qx W J�R! R3; Qx.s; t/D e�t� .s/
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be the cone with profile curve � W J!R. See Example 4.28 for a detailed description
of these cones. Assume s is arclength parameter and � W J!R is the curvature of � .
Assume � > 0 on J. We know that wD sC it is a complex coordinate on QMD J�R,
with conformal factor e�t. The mean curvature and Hopf invariant relative to w are

QH D �et

2
D Qh:

Proceeding as we did in the search for Bonnet cylinders above, we must find a
holomorphic function F.w/ that satisfies

F.s; t/D �

2
e�t.eir�1/;

for some real valued smooth function r.s; t/. Then F is holomorphic if and only if r
satisfies

rs D� P�
�

sinrC cosr�1; rt D P�
�
.1� cosr/� sinr: (10.16)

For nonzero F, the integrability condition rst D rts holds if and only if � satisfies

� P�
�

�P
�
� P�
�

�2
�1D 0:

Translating the arc parameter, if necessary, the general solution is

� D nsecs;

for each real constant n> 0, on the interval J D f��=2 < s< �=2g. Let

� n W J! S2

be the curve with curvature � D nsecs. Its Frenet equations are

P� n D Tn; PTn D nsecsNn��n; PNn D�nsecsTn:

See Figure 10.3 for the solution, up to rigid motion, of the case nD 3 with the cone
through it.

Proposition 10.15 (Bonnet cones). Up to rigid motion and reflection, the only
Bonnet cones are

Qxn W QM! R3; Qxn.s; t/D e�t� n.s/;
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Fig. 10.3 A curve � 3 and the
cone through it.

where M D f.s; t/ 2 R2 W ��=2 < s < �=2g and n is any positive constant. The
curvature of � n is � D nsecs. Distinct values of n give noncongruent Bonnet cones.

For � n, the system (10.16) becomes

rs D� tanssin rC cosr�1; rt D tans.1� cosr/� sinr:

Rather than solve this system for r.s; t/ and then use the resulting holomorphic
function F to find the Bonnet mate of this Bonnet cone, we will show, for each real
constant n>0, that the Bonnet cylinder xn and the Bonnet cone Qxn composed with an
isometry ˚ WM! QM are Bonnet mates. Define the orientation preserving isometry
˚ from the parameter domain M of the Bonnet cylinder xn onto the parameter
domain QM of the Bonnet cone Qxn, by

˚ WM! QM; ˚.x;y/D .s; t/;
where

sD arctan
y

x
; tD� log

p
x2C y2:

Indeed, this is a smooth map with inverse ˚�1.s; t/ D .e�t coss;e�t sins/. It is an
isometry, since the metric induced on QM by Qxn is QI D e�2t.ds2Cdt2/ and

˚� QI D I;

where I D dx2Cdy2 is the metric induced on M by xn. Composing the Bonnet cone
Qx.s; t/D e�t� .s/ with ˚ gives an immersion

Ox WM! R3; Ox.x;y/D Qxı˚.x;y/D
p

x2C y2� .arctan
y

x
/
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whose image is still the given cone Qxn. QM/. The cone Ox and the cylinder xn are both
immersions of M into R3. The metric induced on M by Ox is

OI D ˚� QI D I;

the metric induced on M by the cylinder xn. The mean curvature of Ox is

OH.x;y/D QH ı˚.x;y/D n

2
sec.s.x;y//et.x;y/ D n

2x
;

which is the mean curvature of the Bonnet cylinder xn. Thus, Ox is a Bonnet mate of
xn, as they are clearly not congruent. A one parameter family of mates of Ox, and thus
also of xn, is given by

Oxm D Ox.zC im/;

for any constant m 2 R, where zD xC iy is the complex coordinate induced on M
by I. In fact, the map z 7! zC im is a biholomorphic isometry and OH.zC im/DH.z/
on M. If m¤ m0, then Oxm is not congruent to Oxm0 , although they are equivalent, as
one is a reparametrization of the other. The Hopf invariant Oh of Ox relative to z is
related to the Hopf invariant Qh of Qx relative to w by (7.41), where now z D eiw, so
with z0 D dz

dw D iz,

Oh.z/D
Nz0
z0 Qh.w.z//D�

Nz
z

n

2x
;

which agrees with (10.15) for the case m D 0. Applying the same formula to find
the Hopf invariant Ohm of Oxm.z/D Ox.zC im/, we get

Ohm.z/D Oh.zC im/D� n

2x

Nz� im

zC im
;

again in agreement with (10.15) for any m 2 R.
We summarize the results for cylinders and cones as follows.

Proposition 10.16. A cylinder on a plane curve is Bonnet if and only if the curve
is a spiral �n.x/ of curvature n=x on x > 0, for some real constant n > 0. A cone
on a spherical curve is Bonnet if and only if the curve is the spherical spiral � n of
curvature nsecs, on ��=2< s<�=2, for some real constant n> 0. The cylinder on
�n is proper Bonnet and the cone on � n is a mate, and vice versa. The one parameter
family of mates of the cylinder or the cone are pairwise noncongruent, but are all
equivalent.

The cylinder in Figure 10.2 and the cone in Figure 10.3 are thus Bonnet mates.
Figure 10.4 shows the Bonnet mates comprising the cone through � 2:5 and the
cylinder through �2:5.
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Fig. 10.4 Bonnet mates: Cone through � 2:5 and cylinder through �2:5.

10.4 E.3/-deformations

Proposition 10.17. Immersions x; Qx W M ! R3, with unit normals e3 and Qe3,
respectively, induce the same orientation and metric on M if and only if there exists
a smooth map A WM! SO.3/ such that at each point m 2M,

A.m/dx.m/ D d Qx.m/ W TmM! R3: (10.17)

Proof. If A exists so that (10.17) holds, then x and Qx induce the same metric because
A.m/ 2 SO.3/ implies

QI D d Qx.m/ � d Qx.m/D A.m/dx.m/ �A.m/dx.m/D dx.m/ � dx.m/D I:

M is oriented by the unit normal vector field e3 along x. Namely, an orthonormal
basis X1;X2 of TmM for the metric induced by x is positively oriented means that the
orthonormal set

dxX1; dxX2; e3.m/;

is a positively oriented basis of R3. Then A.m/ 2 SO.3/ implies that the set

d QxX1 D A.m/dxX1; d QxX2 D A.m/dxX2; A.m/e3.m/

is again a positively oriented basis of R3, and therefore

Qe3.m/D A.m/e3.m/:

Conversely, suppose x and Qx induce the same metric on M and that the unit normal
vector fields e3 and Qe3 along x and Qx, respectively, induce the same orientation on M.
At a point m 2 M, if X1;X2 is a positively oriented orthonormal basis of TmM, for
the common metric and orientation, then both

eD .e1 D dxX1;e2 D dxX2;e3/; QeD .Qe1 D d QxX1; Qe2 D d QxX2; Qe3/
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must be positively oriented orthonormal bases of R3, hence elements of SO.3/.
Therefore, the matrix

A.m/D Qee�1 2 SO.3/

and d Qx.m/ D A.m/dx.m/, since for iD 1;2,

d Qx.m/Xi D Qei D A.m/ei D A.m/dx.m/Xi:

The map A W M! SO.3/ depends smoothly on m because the vector fields X1;X2
can be chosen to be smooth vector fields on a neighborhood U of m, in which case
the maps e; Qe W U! SO.3/ are smooth and AD Qee�1 is smooth on U. ut

We shall use the following terminology taken from [94].

Definition 10.18. Smooth maps of a surface

x; Qx WM! R3

agree to first order at a point m 2M if

x.m/D Qx.m/; and dx.m/ D d Qx.m/ W TmM! R3:

The maps x and Qx are first order E.3/-deformations of each other if there exists a
smooth map

.y;A/ WM! E.3/

such that for each point m 2M, the maps .y.m/;A.m//ı x and Qx agree to first order
at m. The deformation is trivial if the map .y;A/ is constant, which means that x and
Qx are congruent.

Corollary 10.19. The immersions x and Qx induce the same orientation and metric
if and only if they are first order E.3/-deformations of each other.

Proof. Use the map A WM! SO.3/ of the Proposition, and let y.m/D Qx.m/�x.m/,
for any m 2M. Then .y;A/ is the desired map. ut

10.4.1 The deformation form

Definition 10.20. For an immersion x WM!R3 and a smooth map A WM! SO.3/,
the deformation form of A relative to a first order frame field .x;e/ WU!E.3/ along
x is the o.3/-valued 1-form

 D e�1A�1dAe:

That is,  is A�1dA expressed in the frame e at each point.
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Suppose that

x; Qx WM! R3

are immersions that are first order E.3/-deformations of each other. Then there
exists a smooth map

A WM! SO.3/

such that

d QxD Adx (10.18)

at every point of M. Therefore,

0D dd QxD dA^dx

on M. If .x;e/ is a first order frame field along x on U � M, then .Qx;Ae/ is a first
order frame field along Qx, since

Q� D .Ae/�1d QxD e�1A�1AdxD e�1dxD �;

which shows that Q!3 D !3 D 0. The deformation form of the map A relative to
.x;e/ is

 D e�1A�1dA eD .Ae/�1d.Ae/� e�1deD Q!�!:

In addition, if .x;e/ is adapted to a complex coordinate z, then

Q!1C i Q!2 D !1C i!2 D eudz

shows that .Qx; Qe/ also is adapted to z and has the same conformal factor u.

Proposition 10.21 (Deformation criteria). Consider an immersion x W M ! R3

and a smooth map A WM! SO.3/. If there exists an immersion Qx WM! R3 such
that (10.18) holds, then the components of the deformation form  of A relative to
any first order frame field .x;e/ on U �M satisfy the conditions

(i).  12 D 0
(ii).  31 ^!1C 32 ^!2 D 0:

(10.19)

Conversely, if M is simply connected, and if (10.19) holds for any first order frame
.x;e/, then there exists an immersion Qx WM! R3 such that (10.18) holds.
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Let !1;!2 be the coframe field induced on M by .x;e/, and let ' D !1C i!2.
Then x and Qx have the same mean curvature if and only if  31 � i 32 is of bidegree
.1;0/; that is

 31 � i 32 D f';

for some smooth function f W U! C.

Proof. If there exists an immersion Qx WM! R3 satisfying (10.18), then

0D d.Adx/D dA^dxD dAe^ e�1dx:

Multiplying this by e�1A�1, we have

0D e�1A�1dAe^ e�1dxD  ^�; (10.20)

which is equivalent to (10.19). Conversely, if (10.20) holds for any first order frame
field .x;e/, then

d.Adx/D dAe^ e�1dxD .Ae/ ^� D 0;
on U. Therefore, Adx is a closed 1-form on M, so if M is simply connected, there
exists a smooth map Qx W M ! R3 such that d Qx D Adx, and thus Qx is actually an
immersion.

If Qx satisfies (10.18), then .Qx;Ae/ is a first order frame field along Qx whose dual
coframe field is also !1;!2. The deformation form  D Q!�! satisfies

 31 � i 32 D Q!31 � i Q!32 � .!31 � i!32/D .Qh�h/'C . QH�H/ N' (10.21)

by (7.23). Hence,  31 � i 32 is of bidegree .1;0/ if and only if QH D H. ut
Corollary 10.22. If immersions x; Qx W M ! R3 form a Bonnet pair, then their
deformation form  relative to any first order frame field .x;e/ on U � M has
isolated zeros in U.

Proof. By Proposition 10.17, there exists a smooth map A W M ! SO.3/ such
that (10.18) holds. Let .x;e/ be a first order frame field on U �M. Let !1;!2 be its
dual coframe field on U. Then .Qx; Qe/D .Qx;Ae/ is first order on U with the same dual
coframe field. Let ' D !1C i!2. The deformation form relative to .x;e/ is

 D Q!�! D Qe�1dQe� e�1de:

By (10.21) and the fact that QH D H,

. 31 � i 32 /' D .Qh�h/'' DQ;

the deformation quadratic differential (10.1), which is holomorphic and nonzero on
M so has only isolated zeros in U. Hence,  can have only isolated zeros in U. ut
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10.4.2 Specifying the deformation form

For an immersion x WM! R3 with a first order frame field .x;e/, what freedom do
we have to specify an o.3/-valued 1-form on M such that it is the deformation form
of a map A WM! SO.3/ relative to .x;e/?

Proposition 10.23. Let x WM!R3 be an immersion of a simply connected surface
M with a globally defined first order frame field .x;e/. An o.3/-valued 1-form
 D . i

j / on M is the deformation form of a smooth map A WM! SO.3/ relative to
.x;e/ if and only if

 31 ^!32 � 32 ^!31 C 31 ^ 32 D 0;
d 31 C 32 ^!21 D 0;
d 32 C 31 ^!12 D 0:

(10.22)

The last two equations are equivalent to

d. 31 � i 32 /D�i. 31 � i 32 /^!21: (10.23)

Proof. If a smooth map A W M! SO.3/ were to exist such that  D e�1A�1dAe,
then

A�1dAD e e�1:

By the Cartan–Darboux Theorem, such a map A exists if and only if

d.e e�1/D�.e e�1/^ .e e�1/D�e ^ e�1: (10.24)

Now

d.e e�1/D e.d C!^ C ^!/e�1;

so (10.24) is equivalent to

d C ^ C!^ C ^! D 0: (10.25)

Writing out the components, we find (10.25) is equivalent to (10.22). ut
As an application of the idea of deformation forms, we shall find some more

examples of Bonnet pairs using a construction of Kamberov, Pedit, and Pinkall [97],
which we call the KPP construction. For this we use the quaternions.
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10.5 Quaternions

If QE.3/ denotes the universal covering group of E.3/, then we shall see that the
covering projection � W QE.3/! E.3/ is two-to-one. This property allows us to make
a pair of similarity deformations of an isothermic immersion, such that the pair
of immersions are Bonnet deformations of each other. We use the quaternions to
construct this universal cover.

The normed division algebra of quaternions, H, is a right C-module

HDCC jC

where 1; j is a basis over C, with 1 the identity element and j satisfying

j2 D�1; zjD jNz; zC jwD Nz� jw:

for any z;w 2 C, where bar denotes quaternion and complex conjugation. Any
quaternions p;q 2H satisfy

pqD NqNp; jpj DppNp; p�1 D Np
jpj2 ;p¤ 0:

If iDp�1 2 C, then 1; i; j; ij is an orthonormal basis of H over R satisfying

i2 D j2 D .ij/2 D�1; j.ij/D i; .ij/iD j;

which gives the isomorphism over R,

HŠ R4; x0C x3iC .x1C ix2/j$ .x0;x1;x2;x3/:

The quaternion conjugation determines a direct sum decomposition

HD<H˚=H

where

<HD fq 2H W NqD qg D fx01 W x0 2Rg
is the set of real quaternions, and

=HD fq 2H W NqD�qg D fx3iC .x1C ix2/j W x1;x2;x3 2 Rg (10.26)

is the set of imaginary quaternions. The imaginary quaternions are thus identified
with the hyperplane x0 D 0, which we identify with R3. The standard basis of R3

corresponds to the following basis of =H,

�1$ j; �2$ ij; �3$ i:
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Exercise 39. Prove that if x;y 2 =H are imaginary quaternions, thus vectors in R3,
then their product as quaternions is given in terms of the dot product and vector
cross product of R3 by

xyD�x � yCx�y: (10.27)

Exercise 40. Prove that the set of all unit quaternions,

S3 D fq 2H W jqj D 1g

under quaternion multiplication is a Lie group whose Lie algebra, identified with its
tangent space at the identity element 1, is =H. This group is called the spin group,
often denoted Spin.3/, but we shall denote it by S3.

The multiplicative group of nonzero quaternions, denoted

H� DHn f0g;

acts on R3 via the homomorphism

˙ WH�! Hom.R3/; ˙.q/xD qxNq:

For q 2H� and x 2 =HDR3, we use (10.27) to find

˙.q/x �˙.q/xD�qxNqqxNqD�jqj2qxxNqD jqj4x � x;

which shows that ˙.q/ is a similarity transformation of R3 with conformal factor
jqj2. In particular, if jqj D 1, then˙.q/ is an orthogonal transformation.

For each q 2 H�, we let A.q/ denote the matrix of ˙.q/ relative to the standard
basis of R3 Š=H. Thus, if Ai denotes column i of the matrix A, then

qjNqD
3X
1

A.q/k1�k; q.�ji/NqD
3X
1

A.q/k2�k; qiNqD
3X
1

A.q/k3�k:

This defines a group homomorphism

A WH�!GL.3;R/; q 7! A.q/:

Exercise 41. Verify the statements of the preceding paragraph as follows. For any
q 2H�, prove:

1. ˙.q/x 2 =H, for every x 2 =H.
2. ˙.q/ W =H!=H is a linear transformation.
3. ˙.q/�1 D˙.q�1/.
4. ˙.pq/D˙.p/˙.q/, for every p;q 2H�.



10.5 Quaternions 319

5. ˙.q/D I, the identity transformation, if and only if q 2 R�.
6. ˙.q/x �˙.q/yD jqj4x � y, for every x;y 2 =H.
7. If T 2 SO.3/ is rotation about the oriented line determined by the unit vector

l 2 R3 D =H through the angle � , then T D A.q/, where q is the unit length
quaternion

qD cos.
�

2
/C sin.

�

2
/l:

8. The image of A is the similarity group,

A.H�/D CSO.3/D fB 2GL.3;R/ W tBBD tI; t > 0;detB> 0g:

9. The restriction of A to S3 defines a 2:1 covering projection

A W S3! SO.3/

whose derivative at the identity is the Lie algebra isomorphism

A� W =HŠ o.3/

ix3C j.x1� ix2/$
0
@ 0 �2x3 2x2

2x3 0 �2x1

�2x2 2x1 0

1
A (10.28)

It follows that the universal covering group of E.3/ is

QE.3/D=H�S3! R3�SO.3/D E.3/

.x;p/ 7! .x;A.p//:

The Lie algebras are isomorphic,

=H�=HD QE .3/Š E .3/D R3�o.3/
.x;y/$ .x;A�y/:

10.5.1 Spin frames

Definition 10.24. A spin frame field along an immersed surface x W M! R3 is a
smooth map defined on an open subset U �M,

.x;p/ W U! QE.3/:
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The pull-back of the Maurer–Cartan form of E.3/ by the projected frame field
.x;A.p// is

.x;A.p//�1d.x;A.p//D .�;!/

where

� D
0
@!

1

!2

!3

1
A ; ! D

0
@ 0 !12 !

1
3

!21 0 !23
!31 !

3
2 0

1
A :

By (10.28) the spin frame field pulls back the Maurer–Cartan form of QE.3/ to the
=HC=H-valued 1-form

.x;p/�1d.x;p/D .p�1dxp;p�1dp/

where

p�1dxpD i!3C j.!1� i!2/

p�1dpD 1

2
.i!21 C ji.!31 � i!32//:

(10.29)

The spin frame field is first order if its projection is a first order Euclidean frame,
that is,

!3 D 0:

It is adapted to a complex coordinate chart .U;z/ if and only if the Euclidean
projection is adapted, that is,

p�1dxpD jeudNz;

for some smooth function u W U! R.

Exercise 42. Prove that if .x;p/ W U! QE.3/ is a first order spin frame field along
x, then any other on U is given by .x;pa/, where a W U! C is any smooth map for
which jaj D 1 at every point of U. If . Q�; Q!/D .x;pa/�1d.x;pa/, then

Q� D �a2; Q! D a�1!aCa�1da: (10.30)

Writing � D j.!1� i!2/ and Q� D j. Q!1� i Q!2/, show that the first equation in (10.30)
is equivalent to

Q!1� i Q!2 D a2.!1� i!2/:
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10.5.2 Similarity deformations

Definition 10.25. A similarity deformation of an immersion x W M ! I H is an
immersion Qx WM!=H for which there is a smooth map q WM!H� such that

d QxD qdx NqD jqj2A. q

jqj/dx

at every point of M. Thus, the induced metrics satisfy

d Qx � d QxD jqj4dx � dx:

If .x;p/ W U!=H�S3 is a spin frame field along x, then

.Qx; q

jqjp/ W U!I H�S3

is a spin frame field along the similarity deformation Qx, and

i Q!3C j. Q!1� i Q!2/D
�

q

jqjp
��1

d Qx q

jqjpD jqjp
�1q�1qdx Nq q

jqjp

D jqj2p�1dxpD jqj2.i!3C j.!1� i!2//

shows that Q!3 D 0 if and only if !3 D 0; that is, the spin frame .Qx; q
jqj p/ is first order

if and only if the spin frame .x;p/ is first order. Assuming that .x;p/ is first order,
we set

' D !1C i!2; Q' D Q!1C i Q!2;
so that

Q' D jqj2':
In addition, if .x;p/ is adapted to a complex coordinate chart U;z, then

Q' D jqj2' D jqj2eudz

implies that .Qx; q
jqj p/ is adapted as well, and its conformal factor eQu is related to that

of .x;p/ by

eQu D jqj2eu: (10.31)

Remark 10.26. If x; Qx W M ! R3 are immersions with the same induced metrics,
jdxj D jd Qxj, and the same orientation, then by Proposition 10.17 there exists a
smooth map A W M! SO.3/ such that d Qx D Adx. If M is simply connected, then
there exists a smooth map

q WM! S3 �H;
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such that the projection A.q/D A at every point of M. That is, the map q is a lift of
A. Moreover,

d QxD qdx Nq

at every point of M.

Definition 10.27. The deformation form of a map q W M! H� relative to a first
order spin frame field .x;p/ along an immersion x is the H-valued 1-form

� D p�1q�1dqpD �1C j�2;

where �1 and �2 are C-valued 1-forms.

Continuing with our similarity deformation Qx of x above, and first order spin
frame fields .x;p/ and .Qx; q

jqj p/, we have

1

2
.i Q!21 C j. Q!32 C i Q!31//D

�
q

jqjp
��1

d

�
q

jqjp
�

D� 1jqjdjqjCp�1q�1dqpCp�1dp

D� 1jqjdjqjC�C
1

2
.i!21 C j.!32 C i!31//

so the deformation form � D �1C j�2 of q WM!H� relative to .x;p/ is given by

�1 D 1

jqjdjqjC
i

2
. Q!21 �!21/

�2 D i

2
. Q!31 � i Q!32 � .!31 � i!32//

Equating the right sides of

d Q' D�i Q!21 ^ Q' D�ijqj2 Q!21 ^';
d Q' D 2jqjdjqj^'� ijqj2!21 ^';

we get

�
2

jqjdjqjC i. Q!21 �!21/
�
^' D 0;

which is

�1^' D 0:



10.5 Quaternions 323

Recalling that for any first order frame field !31 � i!32 D h'CH N' (see (7.23)), we
get

�2 D i

2


Qh Q'C QH NQ'�h'�H N'�

D i

2
.jqj2 Qh�h/'C i

2
.jqj2 QH�H/ N';

(10.32)

which shows that

�2^' D i

2
.jqj2 QH�H/ N'^'

is real. We look next for a sufficient condition on a smooth map q W M! H� and
an immersion x W M! R3 so that q defines a similarity deformation Qx W M!=H.
Namely, when is qdx Nq a closed =H-valued 1-form?

Proposition 10.28. If q W M! H� is a smooth map and x W M! R3 is a smooth
immersion, then

d.qdx Nq/D 0
on M if and only if the deformation form of q relative to any first order spin frame
field .x;p/ W U! QE.3/ satisfies the two conditions

(i) �1^' D 0,
(ii) �2^' is real.

Proof. For a first order spin frame, we have dx D pj.!1 � i!2/p�1 and dq D
qp�p�1, so the form qdx Nq is closed on U if and only if

0D dq^dx Nq�qdx^d Nq
D qp



� ^ j N'� j N'^ N� �p�1 Nq

D qp


.�1C j�2/^ j N'� j N'^ . N�1� j�2/

�
p�1 Nq

D qp

� N�2^ N'C�2^'C j.2 N�1^ N'/�p�1 Nq;

from which the result follows. ut
Corollary 10.29. Moreover, if M is simply connected, and if the deformation form
� of a map q W M ! H� relative to a first order spin frame satisfies conditions
(i) and (ii), then there exists a similarity deformation Qx WM! R3 such that

d QxD qdx Nq
on M. The mean curvatures H and QH of x and Qx, respectively, are related by

i

2
.jqj2 QH�H/'^ N' D '^�2:
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Therefore,

QH D 1

jqj2H

if and only if condition (ii) is replaced with the condition

(iii) �2^' D 0 on U.

If (iii) holds, then the Hopf invariants Qh and h relative to the first order spin frames
.Qx; q

jqj p/ and .x;p/, respectively, satisfy

�2 D i

2
.jqj2 Qh�h/': (10.33)

Proof. Conditions (i) and (ii) imply that d.qdx Nq/D 0 on the simply connected M,
so there exists a smooth map Qx WM! R3 such that d QxD qdx Nq. Hence, d Qx is non-
singular and Qx is an immersion. The rest of the corollary follows from (10.32). ut

10.6 The KPP construction

Recall from Definition 9.22 that a Christoffel transform of an immersion x WM! R3

is an immersion Ox WM! R3 whose induced metric is conformally related to that of
x, whose tangent plane at each point is parallel to the tangent plane to x at that point,
and whose orientation induced by a unit normal vector field along it is opposite of
that induced by the same unit normal vector field along x.

If .x;e/ is an oriented first order frame field along x and dxD !1e1C!2e2, then
parallel tangent planes means that

d OxD �1e1C �2e2;

for real-valued 1-forms �1 and �2. If ' D !1 C i!2 and � D �1 C i�2, then
conformality and opposite orientation are equivalent to

N� D f' (10.34)

for some nowhere zero complex valued function f . By Theorem 9.24, the existence
of Ox implies that x is isothermic. If .U;z/ is a principal complex chart for the
isothermic x, then ' D eudz, where u W U! R is smooth, and f D re�2u in (10.34)
for some nonzero real constant r. (See Remark 9.25).

Relative to any first order spin frame field .x;p/ along x, we have p�1dxp^ N'D 0
on U, by (10.29), so

.p�1d Oxp/^' D 0: (10.35)
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Remark 10.30. A Christoffel transform Ox of x is defined up to transformations

r.aC Ox/;

where r is a positive constant and a 2R3 is any constant vector.

Proposition 10.31 (KPP Construction). Suppose x W M ! R3 is an isothermic
immersion of a simply connected surface M. Let Ox W M ! R3 be a Christoffel
transform of x. Make the identification R3 D=H given in (10.26). For any constant
c 2 R, the smooth map

qD cC Ox WM!H (10.36)

satisfies d.qdx Nq/ D 0 on M, so determines an immersion Qx W M ! R3, such that
d QxD qdx Nq. If c> 0 and if

q˙ D˙cC Ox;

then jqCj2 D jq�j2, and the immersions

x˙ WM! R3

determined by q˙ form a Bonnet pair.

Proof. For any map qD cC Ox defined in (10.36),

q�1 D 1

jqj2 NqD
c

jqj2 �
Ox
jqj2 :

Let .U;z/ be a principal complex coordinate for the isothermic immersion x. If .x;p/
is the first order spin frame field along x adapted to z, then

p�1dqpD p�1d OxpD j.�1� i�2/D jre�udz;

for some nonzero real constant r, by Remark 9.25. By Definition 10.27, the
deformation form � D �1C j�2 of q relative to .x;p/ is

�1C j�2 D p�1q�1dqpD p�1q�1p p�1dq pD c�p�1 Oxp

jqj2 jre�udz

D c

jqj2 jre�udz� p�1 Oxp

jqj2 jre�udz:

If we let

p�1 OxpD iy3C j.y1� iy2/ 2 =H;
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then

�1 D 1

jqj2 .y
1C iy2/re�udz; �2 D 1

jqj2 .cC iy3/re�udz; (10.37)

so � satisfies (i) and (iii) of Proposition 10.28 and Corollary 10.29:

�1^ eudzD 0; �2^ eudzD 0:

By Corollary 10.29, there exists an immersion Qx WM! R3 such that

d QxD qdx Nq

and .Qx; q
jqj p/ is a first order spin frame field along it with coframe

Q' D jqj2eudz;

thus showing that this frame also is adapted to z. In addition,

d Qx � d QxD jqj4dx � dx; QH D 1

jqj2H; jqj2 QhD h� 2i

jqj2 .cC iy3/re�2u;

where the last equation comes from comparing�2 in (10.37) and (10.33). Applying
these observations to the two cases

q˙ D˙cC Ox;

we get

jqCj2 D jcj2CjOxj2 D jq�j2;

so that the immersions x˙ determined by q˙, respectively, have the same induced
metric and mean curvature. They are not congruent, because their Hopf invariants
relative to z satisfy

h� D hC; =.hC/D �2cre�2u

jqj4 ;

so they are distinct. ut
By Remark 10.30, one may assume Ox chosen in the proof above in such a way

that

q˙ D˙1
2
C Ox:
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Then jqCj D jq�j implies that we have a smooth map

qD q�q�1C WM! S3 �H;

and .1�q/qCD qC�q� D 1 implies that

qC D .1�q/�1:

Essentially all Bonnet pairs are generated by the KPP construction.

Proposition 10.32. If M is simply connected, and if the immersions

xC;x� WM! R3

form a Bonnet pair, then there exists an isothermic immersion x W M ! R3 with
Christoffel transform Ox WM! R3 such that the smooth maps

q˙ D˙1
2
C Ox WM!H�

define similarity deformations of x to the immersions x˙, respectively; that is dx˙D
q˙ dx Nq˙.

Proof. Given a Bonnet pair x˙ WM! R3, then they have the same induced metric
and orientation on M. As observed in Remark 10.26, there exists a smooth map

q WM! S3 �H

such that

dx� D qdxC Nq: (10.38)

Let .xC;pC/ be a first order spin frame field along xC on M with dual coframe field
'C D !1CC i!2C on M, and let

�C D p�1C q�1dqpC (10.39)

be the deformation form of q relative to this spin frame field. Since x˙ have the
same induced metric and mean curvature, we know that

�C^'C D 0; (10.40)

by Corollary 10.29.
Rotating xC if necessary, we may assume that 1 is not in the image of q. In fact,

the image of q cannot be all of S3, so let b 2 S3 be a point not in the image of q.
Then x� and bxC Nb is still a Bonnet pair and

dx� D qdxC NqD qNbd.bxC Nb/.qNb/
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shows that for this pair the map q has been replaced by the map

qNb WM! S3

which never takes the value 1 on M. Assuming this done, we have a smooth map

.1�q/�1 WM!H�:

In order to show that .1� q/�1� 1=2 takes all its values in =H, write q D sC y,
where s 2 R, y 2 =H so that 1D jqj2 D s2Cjyj2. Then

.1�q/�1 D 1� Nq
j1�qj2 D

1� sCy
1�2sC s2Cjyj2 D

1

2
C y
2.1� s/

:

Hence, we have the smooth map

OxD .1�q/�1� 1
2
WM!=H;

for which, by (10.39),

d OxD d


.1�q/�1

�D�.1�q/�1.�dq/.1�q/�1

D .1�q/�1qpC�Cp�1C .1�q/�1:

Consider the similarity deformation of xC defined by the map 1�q WM! H�. Its
deformation form relative to .xC;pC/ is, by (10.39),

� D p�1C .1�q/�1d.1�q/pCD�p�1C .1�q/�1dqpC

D�p�1C .1�q/�1qpC�C:

Therefore, � ^ 'C D 0 by (10.40), which implies that there exists an immersion
x WM! R3 such that

dxD .1�q/dxC .1� Nq/:
A first order spin frame field along x is given by .x; 1�q

j1�qj pC/, whose coframe field

is ' D j1� qj2'C. If we set p D .1� q/pC=j1� qj, then p�1 D NpC.1� Nq/=j1� qj,
and

p�1d OxpD NpC
1� Nq
j1�qj2 .1�q/�1qpC�C:

Therefore, p�1d Oxp^' D 0, so Ox is a Christoffel transform of x, by (10.35). By our
construction, if we let

qC D 1

2
C OxD .1�q/�1;
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then

qCdx NqC D dxC:

Combining this with (10.38), we get dx� D q�dx Nq�, where

q� D qqC D q.1�q/�1 D .1� .1�q//
.1� Nq/
j1�qj2 D

1� Nq
j1�qj2 �1

D .1�q/�1�1D qC�1D�1
2
C Ox:

ut

10.7 KPP construction examples

Cylinders and cones are isothermic immersions simple enough to provide elemen-
tary examples of the KPP construction. In each case these pairs are congruent after
a reparametrization; that is, they are equivalent.

10.7.1 The Bonnet pair generated by a cylinder

Consider again the cylinder over a plane curve described in Subsection 10.3.1. The
curve is �.s/D f .s/C ig.s/, where s is arclength parameter, and the immersion is

x.s; t/D �.s/� t�3 D�itC�.s/j

under our identification (10.26) R3 Š =H. Then z D sC it is a principal complex
coordinate with adapted frame field .x; .T;��3;N//, and conformal factor eu D 1.
Here T D P� and N D i P� is the principal normal. The mean curvature H and Hopf
invariant h relative to z are both equal to �=2, where � is the curvature of the plane
curve � . By (9.10), up to nonzero constant real multiple, a Christoffel transform Ox
of x must satisfy

d OxD e�2u.xNzdzCxzdNz/D TdsC�3dtD idtCTjds;

in =H, from which we find the Christoffel transform to be, up to similarity and
translation,

Ox.s; t/D tiC�.s/jD x.s;�t/:
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Choose a real constant c> 0 and let

q˙ D˙cC OxD˙cC itC� j:

Applying the KPP construction, we compute

dx˙ D q˙dx Nq˙ D .i.j�j2� c2� t2/C2.�t˙ ic//�j/dt C
.2i.� � .tT� .˙c/N//C ..f Pf CgPgC i.Pf g�gPg//�C c2TC .�t2˙2itc/T/j/ds

Integrate the coefficient of dt with respect to t to get

x˙.s; t/D i

�
� t3

3
C .j�j2� c2/t

�
C
�
2i.˙ctC i

t2

2
/�

�
jCa˙.s/

where a˙.s/ 2 =H is a constant of integration for each s. Taking the partial
derivative with respect to s and equating this to the coefficient of ds in the above
expression for dx˙, we find

da˙
ds
D Pa˙ D

0
@.c

2C f 2�g2/Pf C2fgPg
.c2� f 2Cg2/PgC2fgPf
˙2c.f Pg� Pf g/

1
A : (10.41)

In conclusion, the Bonnet pair generated by the cylinder x W J�R! R3 comprises
x˙ W QJ�R! R3, where QJ is the universal cover of J, and

x˙.s; t/D
0
@ �˙2ctg� t2f

˙2ctf � t2g
�t3=3C .f 2Cg2� c2/t

1
ACa˙.s/: (10.42)

Proposition 10.33. This Bonnet pair generated by the cylinder x satisfy

x�.s; t/D AxC.s;�t/Cb;

where AD
0
@�1 0 0

0 �1 0
0 0 1

1
A is reflection in the �1�2-plane of R3 and b2R3 is a constant

vector. The immersions x˙ W QJ�R! R3 are equivalent, but not congruent.

Proof. By (10.41) and (10.42) the components of these vectors satisfy

x1�.s; t/� x1C.s;�t/D a1�.s/�a1C.s/D b1;

x2�.s; t/� x2C.s;�t/D a2�.s/�a2C.s/D b2;

x3�.s; t/C x3C.s;�t/D a3�.s/Ca3C.s/D b3;

for some real constants b1;b2;b3. ut
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Fig. 10.5 Bonnet pair from
KPP applied to circular
cylinder.

Example 10.34 (Circular cylinder). The integration of (10.41) can be done explic-
itly for the case where the cylinder is generated by the circle of radius R > 0,

� W J! CD R2; �.s/D .Rcos
s

R
;Rsin

s

R
/D Reis=R;

whose domain is J D R=2R� . Integrating (10.41), we get for (10.42)

x˙.s; t/D

0
B@
�2R.˙ct sin s

R C t2

2
cos s

R /

2R.˙ct cos s
R � t2

2
sin s

R /

.R2� c2/t� t3=3

1
CAC

0
@R.c2�R2/cos s

R
R.c2�R2/sin s

R
˙2cRs

1
ACb˙

where b˙ 2R3 are arbitrary constant vectors. The domain of a˙ is R, the universal
cover of J, so the immersions x˙ have domain R2 and are not periodic in s. They
are helicoidal immersions x˙.s; t/D T˙.s/�˙.t/, with the 1-parameter subgroups

T˙ W R! EC.3/; T˙.s/D .˙2cRs�3;

0
@cos s

R �sin s
R 0

sin s
R cos s

R 0

0 0 1

1
A/ (10.43)

and profile curves

�˙ W R! R3; �˙.t/D t.R.c2�R2� t2/;˙2Rct; .R2� c2/t� t3=3/:

The cases cD 1=2, RD 3=2, and b˙ D˙t.�10;0;�9/ over the domain Œ0;4R���
Œ�2;2� are shown in Figure 10.5. These are not embeddings, as can be seen by
extending t over Œ�4;4�, for example.

10.7.2 The Bonnet pair generated by a cone

Consider again the cone over a curve in the unit sphere described in Subsec-
tion 10.3.2. The curve

� W J! S2
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is parametrized by arc-length, so that � .s/ and TD P� .s/ are unit vectors for every s
in the open interval J. Let ND � �T. The cone through this curve is the immersed
surface

x W J�R! R3; x.s; t/D e�t� .s/:

Then

dxD e�t P� ds� e�t� dt

so the induced metric is

dx � dxD e�2t.ds2Cdt2/;

which shows that z D sC it is a complex coordinate for the induced complex
structure, and with respect to it the conformal factor is e�t. The adapted frame
field is

e1 D P� ; e2 D�� ; e3 D� P� �� DN;

with coframe field

!1 D e�tds; !2 D e�tdt:

Up to nonzero constant real multiple, the Christoffel transform Ox of x satisfies

d OxD e2t.e�tds P� C e�tdt� /D d.et� /;

so, up to translation,

Ox.s; t/D et� .s/D x.s;�t/:

In the quaternionic notation above, we identify R3 with the imaginary quater-
nions =H. Given any constant c> 0, let

q˙ D˙cC Ox.s; t/D˙cC et� .s/:

Then

dx˙ D q˙dxNq˙ D ..c2e�t� et/ P� ˙2cN/ds� .c2e�tC et/� dt:

Integrating this in the usual way, we get

x˙ D .c2e�t� et/� ˙2c
Z

N.s/ds: (10.44)
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Fig. 10.6 Bonnet pair from
KPP applied to circular cone.

In general, the domain of x˙ is the universal cover of J�R, so if � is periodic (so J
is a circle), then

R
N.s/ds might not be periodic.

Proposition 10.35. This Bonnet pair x˙ W R2 ! R3 generated by the cone x
satisfies

xC.s;�t�2T/Cx�.s; t/D b;

where b is a constant vector in R3 and T D � logc. In particular, xC and x� are
equivalent immersions.

Example 10.36 (Circular cone). Fix an angle � with 0< � <�=2 and let RD sin� .
Consider the circle on the unit sphere

� W R=2�R! S2 � =H; � .s/D
p
1�R2iCReis=Rj;

whose principal normal vector is N.s/ D Ri�p1�R2eis=Rj. Then x˙ is given
by (10.44), which is now the helicoidal immersion x˙.s; t/ D T˙.s/	˙.t/C b˙,
where b˙ are arbitrary constant vectors in R3, T˙ W R! E.3/ are the 1-parameter
groups (10.43), and the profile curves are lines

	˙.t/D .c2e�tC et/.R�1C
p
1�R2�3/˙2c

p
1�R2R�2:

The domain of x˙ is R2. Figure 10.6 shows x˙ W .�4R�;4R�/� .� log3; log3/!
R3 for the case cD 1=2, � D �=4, and b˙ D˙2�1.

10.8 Cartan’s Bonnet criterion

Let x WM! R3 be an immersion of an oriented surface M.

Definition 10.37. A principal frame field along x, oriented by a unit normal vector
field e3, is a second order frame field .x;e/ W U ! EC.3/ with the given normal
vector such that the principal curvatures a and c satisfy a� c > 0; that is, its Hopf
invariant hD .a� c/=2 is positive on U.
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For a principal frame field .x;e/ on a connected open set U � M, let !1;!2 be
its dual coframe field in U. Then ' D !1C i!2 is a bidegree .1;0/ form in U with
respect to the induced complex structure. Following Cartan [33], we define smooth
functions r;s W U! R by

1

h
dH D r!1C s!2; (10.45)

and the bidegree .1;0/-form �D �1C i�2 on U by

�D .rC is/.!1C i!2/: (10.46)

Remark 10.38. If eD .e1;e2;e3/, then the only other principal frame field .x; Qe/ on
U is given by QeD .�e1;�e2;e3/, whose dual coframe field is given by Q!1 D �!1,
Q!2 D�!2, so Q' D�'. It follows that QhD h and

1

h
dH D Qr Q!1C Qs Q!2

where

QrD�r; QsD�s:

Thus, relative to .x; Qe/,

Q�D .QrC iQs/ Q' D �

on U. Since each nonumbilic point of M possesses a neighborhood on which there is
a principal frame field, it follows that � is a bidegree .1;0/ form defined on M nU ,
where U is the set of all umbilic points of x.

Definition 10.39. The Cartan form of an immersion x W M! R3, oriented by the
unit normal vector field e3, is the smooth, bidegree (1,0) form � on M nU defined
locally by (10.46). Here U is the set of all umbilic points of x.

Theorem 10.40 (Cartan’s Criterion). Let x W M! R3 be an immersion without
umbilic points, oriented by the unit normal vector field e3 on M, and with Cartan
form �D �1C i�2 defined in (10.46). If x is Bonnet, then there exists a nonconstant
smooth map

p WM! RP1 (10.47)

such that

Z D fm 2M W p.m/D Œ1;0�g (10.48)
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is a possibly empty discrete subset of M and the smooth function

t W OM DM nZ ! R; pD Œt;1� (10.49)

satisfies

dtD t�1��2 (10.50)

on OM. Conversely, if M is simply connected and if there exists a smooth map
p WM! RP1 satisfying (10.48), (10.49), and (10.50), then x is Bonnet.

Proof. Suppose Qx WM!R3 is a Bonnet mate of x. Note that Qx has no umbilic points
on M, since its principal curvatures are the same as those of x. By Proposition 10.17,
there exists a smooth map A WM! SO.3/, which defines the corresponding E.3/-
deformation of x to Qx, so that d QxD Adx on M. Let

 D e�1A�1dAe

be its deformation form relative to a principal frame field .x;e/ on an open set U�M
and let � D t.!1;!2/ be its dual coframe field on U. This is also the coframe field
dual to the first order frame field .Qx;Ae/ on U. Because the deformation is non-
trivial, .Qx;Ae/ cannot be a principal frame field along Qx.

Let .Qx; Qe/ be a principal frame field on U with dual coframe field Q� D t. Q!1; Q!2/.
Because Qx is a Bonnet deformation of x, the mean curvature H and Hopf invariant
h of x relative to the principal frame .x;e/ coincide with the mean curvature and
Hopf invariant of Qx relative to its principal frame .Qx; Qe/. The two coframes on U are
related by

Q� D R.�/�;

for some smooth map

R.�/D
�

cos� �sin�
sin� cos�

�
W U! SO.2/:

It follows that the two frame fields .Qx;Ae/ and .Qx; Qe/ are related by

AeD Qe
�

R.�/ 0
0 1

�
:

Therefore, the Hopf invariant Oh of Qx relative to the first order frame field .Qx;Ae/ is

OhD ei2�h;

(see Exercise 9) so the components of

O! D .Ae/�1d.Ae/
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are given by (see equation (7.23))

O!31 � i O!32 D Oh'CH N';

where ' D !1C i!2. The deformation form of A relative to .x;e/,

 31 � i 32 D O!31 � i O!32 � .!31 � i!32/D .Oh�h/' D .ei2� �1/h'; (10.51)

has isolated zeros in U, since .ei2��1/h'' is holomorphic on U by Corollary 10.22.
Thus,

ZU D fm 2 U W ei2�.m/ D 1g

is a discrete (possibly empty) subset of U. Consider the smooth map

pD Œcos�;sin�� W U! RP1: (10.52)

By (10.23) and an elementary calculation we get

0D d. 31 � i 32 /C i. 31 � i 32 /^!21 D Œ.ei2� �1/.dh�2ih!21/C2ihei2�d��^':

Substituting in the Codazzi equation (7.23), which is

.dh�2ih!21/^'CdH^ N' D 0;

we get

d� ^' D ei2� �1
2ihei2�

dH^ N' D e�i� sin�
dH

h
^ N':

Substituting in ' D !1C i!2 and (10.45), we get

d� D�sin2 �


cot�.r!1� s!2/� .s!1C r!2/

�
;

on OU DU nZU , which gives (10.50) for

tD cot� W OU! R:

Any change of the principal frames .x;e/ or .Qx; Qe/ will at most change the sign of
� or of Q� , and therefore at most change the sign of R.�/, which means .cos�;sin�/
changes by˙.cos�;sin�/, and therefore pD Œcos�;sin�� does not change. Covering
M by open sets on each of which there exists a principal frame field along x, we can
define the map p on all of M such that it satisfies (10.48), (10.49), and (10.50).

Conversely, suppose M is simply connected and that there is a function
p WM! RP1 satisfying (10.48)–(10.50). Let .x;e/ be a principal frame field on
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M. Notice that if pD Œcos�;sin��, then ei2� is a well defined smooth function on M.
Therefore, we may define the o.3/-valued 1-form  on M by

 21 D 0;  31 � i 32 D .ei2� �1/h':

We proceed now to show that  31 and  32 satisfy equations (10.22). Compare the
imaginary parts of

. 31 � i 32 /^ .!31 C i!32/D .ei2� �1/h'^ .h N'CH'/

to get that

 31 ^!32 � 32 ^!31 D�2.cos2� �1/h2!1^!2:

Therefore,

 31 ^!32 � 32 ^!31 C 31 ^ 32 D

�2.cos2� �1/h2�jei2� �1j2h2�!1^!2

D h2.cos2 2� �1C sin2 2�/!1^!2 D 0;

which is the first equation in (10.22). We verify that the remaining two equations
in (10.22) hold by showing that (10.23) holds. Now

pD Œcos�;sin��D Œt;1�

on OM, where tD cot� satisfies dtD t�1��2, implies that

d� D�sin�.cos� �1� sin� �2/

on all of M, by continuity. Since dH
h D r!1C s!2 and .rC is/' D �1C i�2, we have

�1^' D�i�2^';

and

�2^' D .s!1C r!2/^ .!1C i!2/D .is� r/!1^!2 D�i
dH

h
^ N';

from all of which we get

d� ^' D e�i� sin�
dH

h
^ N':

Thus, using d'D i!12 ^', and making use of the Codazzi equation (7.23) in passing
from the second line to the third line, we calculate
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d. 31 � i 32 /C i. 31 � i 32 /^!21 D d


.ei2� �1/h'�C i.ei2� �1/h'^!21

D 2ihei2�d� ^'C .ei2� �1/.dh�2ih!21/^' D

2ihei� sin�
dH

h
^ N'� .ei2� �1/dH^ N' D 2ihei� .sin� � sin�/

dH

h
^ N' D 0:

Therefore, equations (10.22) hold on M and the proof is completed by applying
Proposition 10.23. ut

10.9 Proper Bonnet immersions

A proper Bonnet immersion x W M! R3 induces a nonconstant holomorphic map
from M to the right half-plane CC D fz 2 C W <z > 0g. To prove this we need the
following technical preparation.

Lemma 10.41. Let M be a connected Riemann surface with smooth bidegree .1;0/-
form � on OMDMnU , where U is a discrete subset of M. Let D be a discrete subset
of OM and let M0 D OM nD . If u;v WM0! R are smooth functions such that u� is not
identically zero on M0, and if wD uC iv WM0! C satisfies

dwD�u� (10.53)

on M0, then w is defined and holomorphic on all of M and u is never zero on M.

Proof. By (10.53), w is holomorphic and nonconstant on M0, since dw is of bidegree
.1;0/ and not identically zero on M0. Since �u�D dw is a holomorphic 1-form on
M0, the set Z of zeros of u is a discrete subset of M0.

We first prove that the points of D are removable singularities of w, so w is
defined and holomorphic on OM. For this, consider the trivial real vector bundle VD
OM�R2! OM on OM, with global smooth frame field E1;E2 W OM! V given by

E1.m/D .m;�1/; E2.m/D .m;�2/;
where �1;�2 is the standard ordered basis of R2. Consider the connection D on V
defined by

DE1 D �1E1C�2E2; DE2 D 0;
where � D �1C i�2 with �1 and �2 smooth, real 1-forms on OM. The section W W
M0! V defined by

W D uE1CvE2

is parallel, by (10.53), since
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DW D duE1CuDE1CdvE2CvDE2

D�u�1E1Cu.�1E1C�2E2/�u�2E2 D 0

on M0. Then W;E2 are parallel sections on M0, linearly independent at each point
of M0 nZ , so the curvature form of D is zero on OM n .D [Z /, and thus must be
zero on all of OM by continuity. If m0 2 D , then there must be a connected open
neighborhood U of m0 in OM on which there exists a parallel frame field F1;F2 of V.
We may assume that U\D D fm0g. Then W;E2 and F1;F2 are parallel frame fields
on the connected set U n fm0g, so they must be related by

W D A11F1CA21F2; E2 D A12F1CA22F2;

where the coefficients are constants. Thus, W extends smoothly to m0, so m0 must be
a removable singularity of w. We have thus proved that w is defined and holomorphic
on OM.

We next prove that u is never zero on OM. Seeking a contradiction, we suppose
that u.p0/ D 0 for some point p0 2 OM. Choose a complex coordinate chart .U;z/
around p0 and write � D Rdz, for some function R W U! C. In this coordinate the
equation dwD�u� can be written on U as

@w

@z
D�uR: (10.54)

By the Cauchy-Riemann equations, @v
@z D�i @u

@z , so

@w

@z
D 2@u

@z
: (10.55)

Thus, if u.p0/D 0, then (10.54) and (10.55) imply that

@w

@z
.p0/D 0; and

@u

@z
.p0/D 0: (10.56)

Differentiating (10.54) and (10.55) and using (10.56), we get

2
@2u

@z2
.p0/D @2w

@z2
.p0/D�@u

@z
.p0/R.p0/�u.p0/

@R

@z
.p0/D 0:

Proceeding inductively we conclude that

@kw

@zk
.p0/D 0; for all k 
 1:
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Hence, w must be constant on U, and therefore constant on all of OM. This gives the
desired contradiction and proves that u is never zero on OM. Since �w also satisfies
the theorem and since OM is connected, we may assume u> 0 on OM.

Finally, we will prove that w extends to a holomorphic function on M and that u
remains positive on all of M. The Cayley transform

F W CC! D; F.z/D i
z�1
zC1;

is a biholomorphic map from the right half-plane CC onto the unit disk D�C taking
the boundary of CC into the boundary of D. Then

QwD F ıw W OM! D

is a bounded holomorphic function on OM. If m0 2 U , let .U;z/ be a complex
coordinate chart of M centered at m0. We may take U small enough so that
U\U D fm0g. Then the local representation

f D Qwı z�1 W z.U n fm0g/� C! D

is a bounded holomorphic function, so

lim
z!0

zf .z/D 0:

Hence, the isolated singularity at z D 0 is removable (see Ahlfors [1, Theorem 7,
p. 100]). We conclude that w is holomorphic on all of M. Furthermore, if u.m0/D 0,
then jF.w.m0//j D 1, which implies that w is constant on U by the maximum
principle, and this is not the case. Hence, u> 0 on all of M. ut
Theorem 10.42. Let x WM! R3 be an immersion of a connected surface and e3 a
smooth unit normal vector field along x. If x is proper Bonnet, then there exists a
nonconstant holomorphic function

w WM! CC D fz 2C W <.z/ > 0g;
such that

dwD�u� (10.57)

on M nU , where uD<.w/ > 0, U is the necessarily discrete set of umbilic points
of M, and � is the Cartan form of x on M nU (see Definition 10.39).

Conversely, if M is simply connected, if the immersion x W M ! R3 has
nonconstant mean curvature, no umbilic points, Cartan form � D �1C i�2, and if
there exists a smooth function w WM! C satisfying (10.57) on M, where uD<.w/
and if u�1 is nonzero somewhere on M, then w is holomorphic on M and x is proper
Bonnet.
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Remark 10.43. The function w is called a Cartan holomorphic function of the
proper Bonnet immersion x. It is unique up to a change lwC in, where l > 0 and
n are real constants. The Cartan form � was defined in (10.46) only off the set of
umbilic points of x. For a proper Bonnet immersion, solving for � in (10.57) shows
that � extends smoothly over the umbilic points.

Proof. By the definition of � in (10.46), the assumption that H be non-constant on
M is equivalent to � being not identically zero on M.

Suppose x is proper Bonnet with noncongruent Bonnet mates Qx and Ox. Let U
be the set of umbilic points of x, a discrete subset (possibly empty) of M, and
let OM D M nU . Then x W OM! R3 is a proper Bonnet immersion without umbilic
points. Let Qp; Op W OM! RP1 be the smooth maps given by Qx and Ox, respectively, by
Theorem 10.40. We want to prove that

Z D fm 2 OM W Qp.m/D Op.m/g

is a discrete subset of OM. Writing

QpD Œcos Q�;sin Q��; OpD Œcos O�;sin O��;

we have Qp.m/D Op.m/ if and only if

ei2Q�.m/ D ei2O�.m/:

In (10.51) in the proof of Theorem 10.40 it was shown that relative to any first order
frame field .x;e/ on an open set U � OM, the quadratic differentials

.ei2Q�.m/�1/h''; and .ei2O�.m/�1/h''

are holomorphic on U. Therefore, their zero sets and the zero set of their difference,

QZ D fm 2 OM W Qp.m/D Œ1;0�g; OZ D fm 2 OM W Op.m/D Œ1;0�g;

and Z , are discrete subsets of M. The functions

QtD cot Q�; OtD cot O� ;

are smooth on the complements of QZ and OZ , respectively. Let

D DZ [ QZ [ OZ ;

a possibly empty discrete subset of OM. On M0 D OM nD define the smooth complex
valued function

wD uC iv WM0! C;
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by

uD 1

Qt�Ot ; v D Qt
Qt�Ot :

Using (10.50), we calculate

dwD� 1C iQt
.Qt�Ot/2 .dQt�dOt/C idQt

Qt�Ot D
��1� i�2

Qt�Ot D�u�

on M0. Note that w is not constant because u is never zero on M0. Since � is a
bidegree .1;0/ form, not identically zero, on M0, it follows from Lemma 10.41 that
w extends to a holomorphic function on M and that we may assume that u > 0 at
every point of M and that (10.57) holds on M.

Conversely, suppose that M is simply connected, that x has nonconstant mean
curvature and no umbilic points, and that there exists a nonconstant smooth function
wD uC iv WM!C satisfying u>0 and (10.57) on M. Then w is holomorphic on M
by Lemma 10.41. For any real constant c, the function

tc D vC c

u

is defined and smooth on M and, by (10.57), satisfies

dtc D dv

u
� vC c

u2
duD��2� vC c

u
.��1/D tc�

1��2:

We now apply Theorem 10.40 to conclude that there exists a Bonnet mate xc of
x giving rise to the map (10.47). Distinct constants c1 and c2 give rise to distinct
functions pc1 and pc2 , which in turn define distinct deformation forms relative to a
principal frame field, and therefore these define non-congruent Bonnet mates of x.

ut
Corollary 10.44. If x W M ! R3 is a proper Bonnet immersion, then its mean
curvature function has only isolated critical points.

Proof. Let w D uC iv be the holomorphic function on M given by the Theorem.
Then (10.57) is dw D �u�, which shows that � can be zero only at a zero of the
holomorphic 1-form dw, since u is never zero on M, so the zeros of � are isolated.
By (10.45) and (10.46), the set of zeros of dH is contained in the union of the set
of zeros of � and the set of umbilic points of x, and this union is a discrete subset
of M. ut
Corollary 10.45 (Lawson-Tribuzy [109]). There are no proper Bonnet immer-
sions of a compact surface M.

Proof. There is no nonconstant holomorphic function on a compact Riemann
surface. ut
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Corollary 10.46 (Bonnet [15]). If x WM! R3 is a proper Bonnet immersion, and
D is its discrete set of umbilic points, then x WM nD! R3 is isothermic.

Proof. Let wD uC iv WM! CC be a holomorphic function satisfying dwD �u�
and u > 0 on M. If m 2 M is any nonumbilic point, let .x;e/ be a principal frame
field on an open neighborhood U of m. Let h > 0 be the Hopf invariant of .x;e/
on U. Then .hu/1=2!1 and .hu/1=2!2 are closed 1-forms on U. In fact, using (4.36)
and (10.45), we get

1

h
dhD .r�2q/!1� .s�2p/!2; (10.58)

and then

d log.uh/D du

u
C dh

h
D�2q!1C2p!2:

Thus, again using (4.36), we get

d..hu/1=2!1/D .hu/1=2
�
1

2

d.hu/

hu
^!1Cp!1^!2

�
D 0;

and

d..hu/1=2!2/D .hu/1=2
�
1

2

d.hu/

hu
^!2Cq!1^!2

�
D 0:

Therefore, on a possibly smaller open neighborhood V �U of m, there exist smooth
functions x and y such that

dxD .hu/1=2!1; dyD .hu/1=2!2;

and x;y are local coordinates on V . They are principal coordinates, and

I D !1!1C!2!2 D .hu/�1.dx2Cdy2/

shows that they are isothermal as well. Hence, off the discrete set of umbilic points
of x, there exists a principal isothermal coordinate system on a neighborhood of
each point, so x is isothermic by Definition 9.5. ut
Corollary 10.47 (Chern [44]). If x WM! R3 is a proper Bonnet immersion, then
the Riemannian metric (singular at the discrete set of zeros of the Cartan form �)

QI D kdHk2
H2�K

I

on M has Gaussian curvature identically equal to �1.



344 10 The Bonnet Problem

Proof. Consider a holomorphic function w WM!CC satisfying (10.57). Using this
with (10.45) and (10.46), we find that w pulls back the Poincaré metric of constant
Gaussian curvature �1 on CC to

dwd Nw
u2
D � N�D .r2C s2/.!1!1C!2!2/D kdH

h
k2I D QI;

since H2�K D h2. Hence, the Gaussian curvature of QI is �1. ut

10.10 Cartan’s Classification

Definition 10.48. A B-immersion is a real analytic, conformal, proper Bonnet
immersion x W D! R3, where D � C is a simply connected domain for which the
standard complex coordinate z W D ,! C is principal (that is, the Hopf invariant h
relative to it is positive), and the mean curvature H of x has no critical points.

Cartan emphasized three classes of B-immersions:

• Class A consists of those B-immersions x admitting exactly three nonequivalent
Bonnet mates, none of which is equivalent to x;

• Class B consists of those B-immersions x all of whose Bonnet mates are
equivalent to x;

• Class C consists of those B-immersions x all of whose Bonnet mates are
equivalent to each other, but not to x.

In Class A, of the four immersions given by x and its three nonequivalent Bonnet
mates, two of them are helicoids, mirror images of each other. Of the other two, one
is either a surface of revolution or a cylinder.

Theorem 10.49 (Cartan [33]). If x W M! R3 is a proper Bonnet immersion of a
simply connected Riemann surface M and if dH is never zero on M, then there exists
a principal complex coordinate zD xC iy on M such that a Cartan function w of x
has real part <.w/ equal to one of the following seven cases, which are called the
canonical B-immersions.

1. sin xsinhy and M D fz 2 C W 0 < x< �; y > 0g
2. sinhxsin y and M D fz 2 C W x > 0; 0 < y< �g
3. xy and M D fz 2 C W x > 0 y> 0g
4. �xy and M D fz 2 C W x < 0 y > 0g
5. cosxcoshy and M D fz 2 C W ��=2 < x< �=2g
6. ey cosx and M D fz 2C W ��=2 < x < �=2g
7. x and M D fz 2C W x> 0g.
Remark 10.50. In cases 1)–4) and 6) the principal complex coordinate z is unique.
In case 5), z is unique up to˙z. In case 7), z is defined up to zC ic, for any c 2 R.
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Cartan classifies proper Bonnet immersions into the three Classes, A, B, and C.
Class A comprises cases 1)–4), Class B comprises only case 5), and Class C
comprises cases 6) and 7).

It would take us too far afield to give a more precise statement of Cartan’s
classification and to prove it. For all the details see Cartan’s 1942 paper [33].

Problems

10.51. Prove that the only Bonnet mates of a CMC immersion x WM! R3 are its
associates, as discussed in Example 10.11.

10.52. Prove that if x W M! R3 is isothermic and if the complex coordinate z in
Theorem 10.13 is principal, so h> 0 on M, then the PDE (10.5) holds if and only if
1=.he2u/ is harmonic. This latter condition is the one used by Graustein [76].

10.53 (Associates of a circular cylinder). For a constant R > 0, consider the
immersion

x W R2! R3; x.s; t/D 1

R
t.cosRs;sin Rs;Rt/;

whose image is a circular cylinder of radius R. Relative to the outward normal
the mean curvature is the constant H D �R=2. Let II2;0 denote its Hopf quadratic
differential. For each constant r with 0	 r < 2� , let

! D R

r
1C cosr

2
; 	 D R

r
1� cosr

2
:

Then F W R2! R2, F.s; t/ D 1
R .!s� 	t;	sC!t/ is an isometry for the metric I D

ds2Cdt2 induced by x. Prove that, up to congruence by a rigid motion, the associate
of x with Hopf quadratic differential eirII2;0 is

QxD x ıF W R2! R3;

which is a reparametrization of the original cylinder.

10.54. Prove that for any positive real constant n > 0, the curve �n W RC ! R2

with curvature �D n=x is, up to rotation and translation in the plane, given by (10.8),
where vn is given by (10.9) and An is given by (10.10).

10.55. Given positive real constants m> 0 and n> 0, let Q�.x/Dm�n.x=m/ on RC.
Prove that x is arclength parameter for Q�.x/ and that this curve has curvature
Q�.x/D n=x. Conclude that Q� is congruent to �n with congruence given by

Q�.x/D vC tAn.m/�n.x/;
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Fig. 10.7 Curve �3.x/ and
2�3.x=2/ with v marked on it.
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where the constant vector v D Q�.1/ D m�.1=m/ and where An W RC ! SO.2/ is
defined in (10.10). See Figure 10.7.

10.56. Prove that x˙ W QJ�R!R3 defined in (10.42) have the same mean curvatures

H˙ DH=jq˙j2 D �

2.c2C t2Cj�j2/ ;

the same induced metrics

I˙ D .c2C t2Cj�j2/2dzdNz;

and their Hopf invariants relative to zD sC it satisfy

hC�h� D �4ci

.c2C t2Cj�j2/2 :

10.57. Prove that F W R2 ! R2 given by F.s; t/ D .�s; t/ is an isometry for
the metric induced by the Bonnet pair x˙ of Example 10.34 and that xC ı F;
x� W R2! R3 are congruent.

10.58. Find the induced metric and mean curvature H of Bonnet pair x˙ in (10.44),
and the Hopf invariants h˙ of x˙ relative to zD sC it.

10.59. Do Problem 10.57 for the Bonnet pair x˙ in (10.44) generated by a cone.

10.60. Prove that if M is simply connected and if the immersion x WM!R3 has no
umbilic points, then there exists a principal frame field on all of M. Is it unique?



Chapter 11
CMC 1 Surfaces in H3

This chapter is an introduction to immersions of surfaces in hyperbolic space
with constant mean curvature equal to one (CMC 1 immersions in H3). Our
approach to the subject follows Bryant’s fundamental paper [21], in which he
replaces the hyperboloid model of H3 by the set of all 2� 2 hermitian matrices
with determinant one and positive trace. This model is acted upon isometrically by
SL.2;C/, the universal cover of the group of all isometries of hyperbolic space.
The method of moving frames is applied to the study of immersed surfaces in this
homogeneous space. Departing from Bryant’s approach, we use frames adapted to
a given complex coordinate to great advantage. A null immersion from a Riemann
surface into SL.2;C/ projects to a CMC 1 immersion into hyperbolic space. The
null immersions are analogous to minimal curves of the Weierstrass representation
of minimal immersions into Euclidean space. A solution of these equations leads to
a more complicated monodromy problem, which is described in detail. The chapter
ends with some of Bryant’s examples as well as more recent examples of Bohle-
Peters [12] and Bobenko-Pavlyukevich-Springborn [10]. We have also consulted
Umehara and Yamada [162, 163], Rossman [141], and Karcher [99]. There is a vast
literature on this active field of research.

In much of the growing literature on this subject a CMC 1 immersion into H3 is
called a Bryant surface or Bryant immersion. We shall adopt this terminology. As
with a minimal surface in R3, a Bryant surface cannot be compact, but an end can
converge to a single point in the sphere at infinity in such a way that the result is
a smooth immersion into H3[ S21. These are called Bryant surfaces with smooth
ends.

© Springer International Publishing Switzerland 2016
G.R. Jensen et al., Surfaces in Classical Geometries, Universitext,
DOI 10.1007/978-3-319-27076-0_11
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11.1 Hermitian matrix model

The hyperboloid model of hyperbolic space developed in Chapter 6 is given in
equation (6.1). It is the homogeneous space

H3 D SOC.3;1/=SO.3/:

We want to use the universal covering group SL.2;C/ of SOC.3;1/. For this
purpose, consider the vector space over R of all 2�2 hermitian matrices

HermD fv 2C2�2 W t Nv D vg D f
�

r z
Nz s

�
W r;s 2 R; z 2Cg;

with the signature .3;1/ inner product defined by �det.v/,

hu;vi D 1

2
.det.u/Cdet.v/�det.uCv//;

for any u;v 2Herm. The map

v W R3;1!Herm; v.x1;x2;x3;x4/D
�

x4C x3 x1C ix2

x1� ix2 x4� x3

�
(11.1)

is a linear isomorphism preserving the inner products.

Exercise 43. Prove that v is an isometry with inverse

v�1
�

r z
Nz s

�
D 1

2
t.zCNz; i.Nz� z/;r� s;rC s/;

for any r;s 2 R and z 2 C.

Denote the image of hyperbolic space under this map by

H.3/D v.H3/D fv 2Herm W det.v/D 1; trace.v/ > 0g:

The origin �4 of H3 is mapped by v to the identity matrix in Herm.

11.2 The Universal Cover

For any A 2 SL.2;C/ and v 2Herm, define the linear operator

˙.A/ WHerm!Herm ˙.A/v D AvA�;
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where A� D tNA is the adjoint of A. The operator˙.A/ preserves the inner product on
Herm, since det.A/D 1 implies that

det.˙.A/v/D det.AvA�/D det.A/det.v/det.A�/D det.v/:

The map

˙ W SL.2;C/!GL.Herm/; A 7!˙.A/;

is a group homomorphism of SL.2;C/ into the group GL.Herm/ of all non-singular
linear operators on Herm. In fact, if A;B 2 SL.2;C/, and v 2Herm, then

˙.AB/v D .AB/v.AB/� D ABvB�A� D˙.A/.˙.B/v/:

The image of this map must lie in the subgroup of GL.Herm/ that preserves the
inner product on Herm.

The map v sends the standard orthonormal basis �1;�2;�3;�4 of R3;1 to the
orthonormal basis of Herm given by the Pauli matrices

v4 D v.�4/D
�
1 0

0 1

�
; v1 D v.�1/D

�
0 1

1 0

�
;

v2 D v.�2/D
�
0 i
�i 0

�
; v3 D v.�3/D

�
1 0

0 �1
�
:

Let P W GL.Herm/! GL.4;R/ be the linear isomorphism that sends an operator
on Herm to its matrix relative to the Pauli basis of Herm.

Lemma 11.1. The composition

� D Pı˙ W SL.2;C/!GL.4;R/

is a Lie group homomorphism that defines a 2:1 cover of its image,

� W SL.2;C/! SOC.3;1/: (11.2)

Proof. Since the image of ˙ is contained in the subgroup of GL.Herm/ that
preserves the inner product on Herm, the map � must send SL.2;C/ into ˙ of this
subgroup, which is O.3;1/. These are both Lie groups of dimension 6. It is known
that SL.2;C/ is homeomorphic to SU.2/�R3 (see [84, Theorem 2.2, part iii),
page 219]), and therefore it is connected and simply connected, because SU.2/ is
diffeomorphic to the sphere S3. It follows that � sends SL.2;C/ onto SOC.3;1/, the
connected component of the identity of O.3;1/.

To prove that � is 2:1, it suffices to show that �.A/D 1 if and only if AD˙1. If
�.A/D 1, then˙.A/vD v for all v 2Herm. In particular, AviA� D vi, for the Pauli
matrices vi, for iD 4;1;2. From this it follows that AD˙1. Conversely, �.˙1/D 1
is clear. ut



350 11 CMC 1 Surfaces in H3

Remark 11.2. If v 2Herm, and if vi are the Pauli matrices, then

v D
4X
1

xivi D
4X
1

xiv.�i/D v.
4X
1

xi�i/D v.x/;

where xDP4
1 xi�i 2 R3;1. If A 2 SL.2;C/, then the entries of the matrix �.A/ are

determined by

AviA
� D˙.A/vi D

4X
1

�.A/jivj:

The linear action of SL.2;C/ on Herm preserves H.3/. Its isotropy subgroup at
1 is

SU.2/D fA 2 SL.2;C/ W AA� D 1g:

Thus, H.3/ is diffeomorphic to the quotient SL.2;C/=SU.2/, and we have the
principal SU.2/-bundle projection

� W SL.2;C/!H.3/; �.A/D AA�: (11.3)

Lemma 11.3. The derivative at the identity of the covering (11.2) is a Lie algebra
isomorphism

d� W sl.2;C/! o.3;1/;

which sends X D
�

X11 X12
X21 �X11

�
to

d�.X/D

0
BB@

0 �2=.X11/ <.�X12CX21/ <.X12CX21/
2=.X11/ 0 �=.X12CX21/ =.X12 �X21/
<.X12 �X21/ =.X12CX21/ 0 2<.X11/
<.X12CX21/ =.X12 �X21/ 2<.X11/ 0

1
CCA : (11.4)

If .!i
j/ is the o.3;1/-valued Maurer–Cartan form on SOC.3;1/ and ˛ D .˛a

b/ is the
sl.2;C/-valued Maurer–Cartan form on SL.2;C/, then

��!14 D<.˛12C˛21/; ��!24 D=.˛12 �˛21/; ��!34 D 2<.˛11/;
��!12 D�2=.˛11/; ��!31 D<.˛12 �˛21/; ��!32 D=.˛12C˛21/:

(11.5)

If we set

! D !14 C i!24 ;  D !31 � i!32 ; (11.6)
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then

��! D ˛12C N̨ 21 ; �� D N̨ 12 �˛21;

and

˛ D
�
˛11 ˛12
˛21 �˛11

�
D �� 1

2

�
!34 � i!12 !C N 
N!� �!34 C i!12

�
:

Proof. For any X 2 sl.2;C/, d�.X/ is the matrix of the endomorphism d˙.X/ W
Herm!Herm, which is

d˙.X/vD XvCvX�:

In fact, if we let a.t/ be a curve in SL.2;C/ such that a.0/D 1 and its tangent vector
Pa.0/D X, then for any v 2Herm,

d˙.X/v D d

dt

ˇ̌
ˇ̌
tD0
˙.a/v D d

dt

ˇ̌
ˇ̌
tD0
.ava�/D XvCvX�:

One then calculates column j of d�.X/ by calculating d�.X/vj and expanding it in
terms of the Pauli basis of Herm. This derives (11.4), from which the rest follows.

ut
Definition 11.4. An SL.2;C/-frame field on an open subset U �H.3/ is a smooth
map

F W U! SL.2;C/; (11.7)

such that its composition with the projection (11.3) is the identity map on U. That is,

� ıF.v/D F.v/F.v/� D v;
for every v 2 U.

Given a frame field (11.7), any other on U is given by

QF D FK; (11.8)

where

K W U! SU.2/ (11.9)

is any smooth map. Their pull-backs ˛ D F�1dF and Q̨ D QF�1d QF of the Maurer–
Cartan form of SL.2;C/ are related by

Q̨ D K�1˛KCK�1dK: (11.10)
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Since any map K of (11.9) is given by

K D
�

a �Nb
b Na

�
; (11.11)

where a;b WU!C are smooth functions satisfying jaj2Cjbj2 D 1 at every point of
U, we can write equations (11.10) as

Q̨11 D .jaj2�jbj2/˛11C Nab˛12CaNb˛21C NadaC Nbdb;

Q̨12 D�2NaNb˛11C Na2˛12 � Nb2˛21 � Nad NbC Nbd Na;
Q̨21 D�2ab˛11Ca2˛21 �b2˛12 �bdaCadb:

In particular,

Q̨11C NQ̨ 11 D .jaj2�jbj2/.˛11C N̨ 11/C Nab.˛12C N̨ 21/CaNb.˛21C N̨ 12/;
Q̨12C NQ̨ 21 D�2NaNb.˛11C N̨ 11/C Na2.˛12C N̨ 21/� Nb2.˛21C N̨ 12/;
Q̨ 21 � NQ̨ 12 D 2ab. N̨ 11�˛11/Ca2.˛21 � N̨ 12/Cb2. N̨ 21 �˛12/C2adb�2bda:

(11.12)

A matrix X 2 sl.2;C/ has a unique decomposition into skew-hermitian and
hermitian parts given by

X D 1

2
.X�X�/C 1

2
.XCX�/;

which gives rise to a vector space direct sum

sl.2;C/D su.2/Cm;

where the Lie algebra of SU.2/ is

su.2/D fX 2 sl.2;C/ W X� D�Xg;
and the vector subspace

mD fX 2 sl.2;C/ W X� D Xg:
Then the Maurer–Cartan form ˛ of SL.2;C/ decomposes as

˛ D ˛su.2/C˛m;
where

˛su.2/ D 1

2

�
˛11 � N̨ 11 ˛12 � N̨ 21
˛21 � N̨ 12 �˛11C N̨ 11

�
; ˛m D 1

2

�
˛11C N̨ 11 ˛12C N̨21
˛21C N̨ 12 �˛11 � N̨ 11

�
:

The subspace m is invariant under the adjoint action of SU.2/ on sl.2;C/; that is,
KmK�1 �m, for any K 2 SU.2/.
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11.3 Sphere at infinity of H.3/

The sphere at infinity of H3 is (6.18) S21 D N=R�, where N � R3;1 is the light
cone (6.17). The light cone N.3/�Herm is

v.N3/D N.3/D fv 2Herm W det.v/D 0g:
R� acts on this by scalar multiplication such that

v.tn/D tv.n/;

for all t 2 R�, and n 2 N3. The sphere at infinity of H.3/ is

S21 D N.3/=R�;

which we have denoted the same as the sphere at infinity of H3, because of the
natural map induced by v, which we also call v,

v W N3=RC! N.3/=RC; v.Œn�/D Œv.n/�: (11.13)

In Lemma 6.5 one proves that SOC.3;1/ acts transitively on N3=R� and one finds
the isotropy subgroup at Œ�3 C �4�, the chosen origin. For an origin of N.3/ we
choose

vŒ�3C�4�D Œv3Cv4�D
�
1 0

0 0

�
:

The action of SL.2;C/ on Herm induces a transitive action on N.3/=R�. Its
isotropy subgroup at Œv3Cv4� is

OG0 D f
�

z w
0 z�1

�
W z;w 2C;z¤ 0g:

We have a OG0-principal bundle

�1 W SL.2;C/! N.3/=R�; �1.A/D A

�
1 0

0 0

�
A� D ŒA1A�

1 �;

where A1 is the first column of A. The standard transitive action of SL.2;C/ on CP1

has isotropy subgroup at

�
1

0

�
also equal to OG0. We have another principal OG0-bundle

�2 W SL.2;C/! CP1; �2.A/D A

�
1

0

�
D ŒA1�:

These bundles are isomorphic.
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The light cone N.3/�Herm is

N.3/D f˙zz� W z 2 C2 n f0gg:

The map

� W CP1! N.3/=R�; � Œz�D Œzz��

is a diffeomorphism equivariant with the actions of SL.2;C/ on CP1 and N.3/=R�.
Namely, if A 2 SL.2;C/ and if Œz� 2 CP1, then

�.AŒz�/D Œ.Az/.Az/��D ŒA.zz�/A��D A.�Œz�/A�:

In particular, from the case zD tŒ1;0� we get

� ı�2 D �1:
The diagram

SL.2;C/
�2�! CP1

# �
SOC.3;1/

�1& # �
# �

N3=R� v�! N.3/=R�

(11.14)

commutes, where � W SOC.3;1/! N3=R� is the G0-bundle projection in (6.21).
If x 2H3 and if S2x is the unit tangent sphere to H3 at x, then

v.S2x/D S2v.x/ D fw 2Herm W hw;v.x/i D 0; hw;wi D 1g

is the unit tangent sphere to H.3/ at v.x/. Moreover, if v is applied to the map
S2x! N3=R� given in (6.19), it gives the map

S2v! N.3/=R� D S21; w 7! ŒvCw�:

11.4 Surfaces in H.3/

Since v WH3!H.3/ is an isometry, any immersion

f WM2!H.3/ (11.15)

comes from an immersed surface x WM!H3 by f D v.x/.
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Definition 11.5. An SL.2;C/-frame field along an immersion (11.15) is a smooth
map

F W U �M! SL.2;C/ (11.16)

on an open subset U of M such that its projection

FF� D f ;

at every point of U. Denote the pull-back by F of the Maurer–Cartan form of
SL.2;C/ by the sl.2;C/-valued 1-form on U

˛ D
�
˛11 ˛12
˛21 �˛11

�
D F�1dF: (11.17)

The reduction of SL.2;C/-frames can be carried out by the general procedure
described in Chapter 3, but we want to do this in such a way that the frames of first
order, and so on, correspond under the isomorphism v W R3;1! Herm to frames of
first order, etc., as defined in Chapter 6 for surfaces in H3. In the light of the third
equation in (11.5) and our definition of first order frames along immersed surfaces
in H3, we must define first order SL.2;C/-frames as follows.

Definition 11.6. A first order SL.2;C/-frame field along an immersed surface f W
M!H.3/ is an SL.2;C/-frame field (11.16) along f for which

˛11C N̨ 11 D 0

at each point of U.

This is the required definition for the following reasons. If

x WM2!H3

is an immersion, then

f D v.x/ WM!H.3/

is an immersion, and they both induce the same metric I on M, since v WH3!H.3/
is an isometry. If

F W U �M! SL.2;C/

is a frame field along f , then

eD � ıF W U! SOC.3;1/
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is a frame field along x. We want to define F to be first order along f if and only if
eD � ıF is first order along x. But e is first order along x if and only if !34 D 0 if
and only if 0D ��!34 D ˛11C N̨ 11 , by the third equation in (11.5).

For any point of M, there exists a first order SL.2;C/-frame along f on some
neighborhood of the point, because this is true for first order frames along x. Namely,
if e WU!SOC.3;1/ is a first order frame field along x, and if U is simply connected,
then there is a lift F W U! SL.2;C/, since � W SL.2;C/! SOC.3;1/ is a covering
projection, and this lift is a first order frame along f D v.x/.
Lemma 11.7. If F W U! SL.2;C/ is a first order frame field on a connected open
set U�M along an immersion f WM!H.3/, and if !D ˛12C N̨ 21 , where ˛ is defined
in (11.17), then the metric I D�det.df / induced by f on M satisfies

I D ! N!:

Thus, ! is of bidegree .1;0/ or .0;1/ relative to the complex structure induced on
M, according to whether the area form of F, i

2
! ^ N!, is positive or negative in the

orientation of M. Any other first order frame field along f on U �M, is given by

QF D FK;

where K W U! G1 is a smooth map into the subgroup G1 � SU.2/,

G1 D f
�

a 0
0 Na
�
W jaj D 1g[f

�
0 �Nb
b 0

�
W jbj D 1g:

The frame field QF defines the same orientation as F if and only if K takes values in

the connected component of the identity of G1; that is, K D
�

a 0
0 Na
�

, where a W U!
S1 � C is a smooth map.

Proof. For a first order frame field F we have ˛11C N̨ 11 D 0. Since f D FF� and ˛ is
given by (11.17), we have

df D d.FF�/D F.˛C˛�/F�:

Knowing det.F/D det.F�/D 1, we have

I D�det.df /D�det.˛C˛�/D ! N!:

Frame fields QF and F along f must be related by (11.8), where K W U! SU.2/ has
the form (11.11). If QF and F are both first order frame fields, then Definition 11.6
and the first two equations of (11.12) imply

0D Q̨11C NQ̨ 11 D Nab!CaNb N!; Q! D Na2!� Nb2 N!; (11.18)
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on U. This implies Nab D 0 on U, since ! and N! are linearly independent over C
at every point of U. With U connected, either a or b is identically zero on U, so
either Q! D Na2! or Q! D �Nb2 N! on U. That the frame fields F and QF induce the same
orientation on U means Q!^ NQ! D !^ N! on U, which requires that bD 0 identically
on U. ut

We assume now that M is a connected Riemann surface and that any immersion
f WM! H.3/ is conformal, which means that the complex structure defined by the
induced metric agrees with the given complex structure on M.

Definition 11.8. A first order SL.2;C/-frame field (11.16) along an immersion f W
M2! H.3/ is oriented on U if ! D ˛12 C N̨ 21 is of bidegree .1;0/; that is, for any
complex coordinate z in U,

! D adz;

for some nowhere vanishing function a W U! C. The frame field is adapted to U;z
if a is positive on U; that is,

! D eudz;

for some smooth function u W U! R.

Definition 11.9. The hyperbolic Gauss map of an immersion f WM2!H.3/ is

gf D v ı g

where g W M ! S21 D N3=RC is the hyperbolic Gauss map of the immersion x W
M!H3 for which f D v.x/, and is the map defined in (11.13).

Lemma 11.10. If F W U! SL.2;C/ is an oriented first order frame field along the
immersion f WM!H.3/, and ! D ˛12C N̨ 21 , then

d! D�2˛11^!; (11.19)

 D N̨12 �˛21 D h!CH N!; (11.20)

where H is the mean curvature of f , and h WU! C is the Hopf invariant

hD 1

2
.h11�h22/� ih12;

where

!3i D
2X

jD1
hij!

j;
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for iD 1;2, are components of e�1de2 o.3;1/ of the corresponding frame eD � ıF W
U! SOC.3;1/. The Codazzi equations become

.dh�4h˛11/^!CdH^ N! D 0: (11.21)

The hyperbolic Gauss map of f is given on U by

gf D �ŒF1�D ŒF1F�
1 �;

where F1 W U! C2 is the first column of F. If, in addition, F is adapted to z, then
! D eudz and

˛11 D
1

2
.uzdz�uNzdNz/; (11.22)

and the Codazzi equations become

.he2u/Nz D e�2uHz:

Proof. The structure equations d˛ D �˛^˛ of SL.2;C/ imply (11.19). Equa-
tion (11.20) follows from (11.6). Let x W M ! H3 be the immersion for which
f D v.x/. Then e D � ı F is a first order frame field along x and the hyperbolic
Gauss map of x is given on U by gD � ıeD Œe3Ce4�, where we use the notation of
the commutative diagram (11.14). Then, by Definition 11.9, the hyperbolic Gauss
map of f is given on U by

gf D v ı gD v ı� ı eD � ı�2 ıFD �ŒF1�;

by (11.14). If F is adapted to z, then the exterior derivative of ! D eudz and the
structure equations of SL.2;C/ imply that

.2˛11CuNzdNz/^dzD 0;

on U. Thus, the .0;1/ part of ˛11 must be �uNzdNz and (11.22) follows from the fact

that ˛11 D�˛11 when F is first order. ut
Theorem 11.11. If f W M2 ! H.3/ is an immersion whose mean curvature is
constant equal to 1, then for any complex coordinate chart U;z of M for which
U is simply connected, there exists a frame field

G W U! SL.2;C/

along f that is holomorphic, an immersion, and null in the sense that if � DG�1dG,
then det.�/ D 0 on U. If G is such a frame field on U, then any other is given by
GK, where K 2 SU.2/ is constant.
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Proof. Let U;z be a complex coordinate chart for which U is simply connected. Let
F W U! SL.2;C/ be the first order frame field adapted to z. If ˛ D F�1dF, and if
H D 1, then Definition 11.8 and Lemma 11.10 imply that

˛ D ˇC
�
0 eudz
0 0

�
;

where ˇ is the su.2/-valued 1-form on U,

ˇ D
�
1
2
.uzdz�uNzdNz/ 1

2
eu NhdNz

� 1
2
euhdz � 1

2
.uzdz�uNzdNz/

�
:

By the structure equations

dˇCˇ^ˇ D
�

0 1
2
.d NhC4Nh˛11/^ N!

� 1
2
.dh�4h˛11/^! 0

�
;

on U. If H is identically one on M, then the Codazzi equation (11.21) implies that

dˇCˇ^ˇ D 0;

on U. Therefore, by the Cartan–Darboux Theorem 2.22, there exists a smooth map

B W U! SU.2/;

such that

B�1dBD ˇ;

on U. Consider the frame field along f defined by

GD FB�1 W U! SL.2;C/:

Then

� D G�1dGD B.˛�ˇ/B�1 D B

�
0 eudz
0 0

�
B�1;

which is a bidegree .1;0/ form on U. Therefore, G is a holomorphic map on U. It is
an immersion, since � is never zero on U, and it is null because

det.�/D det

�
0 eudz
0 0

�
D 0;
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on U. Any other frame field along f on U is given by QGDGK, where

K W U! SU.2/

is a smooth map. If QG is holomorphic, then

K D G�1 QG W U! SL.2;C/

is holomorphic, and takes all its values in SU.2/. Hence, it must be constant (see
Problem 11.31). ut

This Theorem says that a CMC 1 surface in H.3/ is locally the projection of a
holomorphic, null immersion of the surface into SL.2;C/. In the next section we
shall see that any such projection is a CMC 1 surface in H.3/.

11.5 Null immersions

Definition 11.12. Let M2 be a connected Riemann surface. A holomorphic immer-
sion G WM! SL.2;C/ is null if the sl.2;C/-valued 1-form � D G�1dG satisfies

0D�det.�/D �11 �11 C�12 �21
at every point of M, where these are symmetric products of 1-forms on M.

The meaning of this definition is enhanced if we view it in a broader context. If X is
an element in a Lie algebra g, then the Jacobi identity implies that the map

ad.X/ W g! g; ad.X/Y D ŒX;Y�

is linear and a Lie algebra homomorphism. The Killing form of g is the symmetric
bilinear form K on g given by (see [84, p. 121])

K .X;Y/D trace.ad.X/ad.Y//:

On sl.2;C/ the Killing form is K .X;X/D �8det.X/, so G WM2! SL.2;C/ is
null if and only if

G�K DK .G�1dG;G�1dG/D 0:

As the parametrization (8.13) of the complex quadric Q1 led to the Enneper–
Weierstrass representation of a minimal immersion into R3, the following parametri-
zation of V leads to an analogous representation of CMC 1 immersions into H3.
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Lemma 11.13. If

V D
��

z1 z3
z2 �z1

�
2 sl.2;C/n f0g W z1z1C z2z3 D 0

	
;

then the map

� W C2 n f0g! V; �.p;q/D
��pq p2

�q2 pq

�
D
�

p
q

�
�q p
�

(11.23)

is a holomorphic two-to-one covering.

Proof. The component functions of � are polynomials, thus holomorphic. Given�
z1 z3
z2 �z1

�
2 V , let

qD˙p�z2; pD˙pz3:

Then z21 D �z2z3 D q2p2, so z1 D˙pq. Since z2 and z3 are not both zero, p or q is
not zero. Reversing the sign on one of these, if necessary, we may assume that

z1 D�pq:

Therefore the map is surjective. If

�.p;q/D �.Qp; Qq/;

then

QpD˙p; QqD˙q; QpQqD pq;

so both signs must be plus or both signs must be minus, and therefore

.Qp; Qq/D˙.p;q/;

which shows that � is two-to-one.
It remains to prove that d� is non-singular at every point of C2 nf0g, since a two-

to-one local diffeomorphism is a covering projection. For a point .p;q/ 2 C2 n f0g,
and for a tangent vector .z;w/ 2 C2, suppose

0D d�.p;q/.z;w/D
��q 2p
0 q

�
zC

� �p 0

�2q p

�
wD

��qz�pw 2pz
�2qw qzCpw

�
:

If p ¤ 0, then z D 0 so pw D 0 and thus w D 0 as well. Similarly, if q ¤ 0, then
zD 0D w. Therefore, d�.p;q/ is non-singular at every point .p;q/ 2 V . ut
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Lemma 11.14. If G WM2! SL.2;C/ is a null immersion, then its projection

f D GG� WM!H.3/

is an immersion.

Proof. Since

df D dGG�CGdG� DG.G�1dGC .G�1dG/�/G� D G.�C��/G�; (11.24)

where � D G�1dGD .� i
j / 2 sl.2;C/, the metric on M induced by f is

I D�det.df /D�det.�C��/

D .�11 C N�11 /.�11 C N�11 /C .�12 C N�21 /.�21 C N�12 /
D 2�11 N�11 C�12 N�12 C�21 N�21 ;

(11.25)

since �11 �
1
1 C�12 �21 D 0 as a consequence of G being null. Since G is an immersion,

the component 1-forms � i
j of G�1dG cannot all vanish at any point of M, and

therefore the last expression in (11.25) is positive definite and f is an immersion.
ut

For any immersed surface f WM2! H.3/, if U;z is a complex coordinate chart
in M, then there exists a first order SL.2;C/-frame along f in U adapted to z,
and it is unique up to multiplication by �I2. When f D GG� is the projection of
a holomorphic null immersion G W M ! SL.2;C/, then this first order frame is
determined explicitly in terms of the components of G.

Theorem 11.15. If G W M2! SL.2;C/ is a holomorphic null immersion, then its
projection f D GG� has constant mean curvature equal to one. Let

G�1dGD � D
�
�11 �12
�21 ��11

�
;

where the � i
j are holomorphic 1-forms on M, not all zero at any point, and such that

the quadratic differential

�11 �
1
1 C�12 �21 D 0;

at every point of M (these are symmetric products). If QU;z is any complex coordinate
chart in M, then

� i
j D gi

jdz;



11.5 Null immersions 363

where the gi
j are holomorphic functions on QU. The induced metric of f is given on

QU by

I D e2udzdNz, where eu D jg12jC jg21j, (11.26)

the Hopf quadratic differential is given on QU by

II2;0 D 1

2
he2udzdzD g21dg12�g12dg21

2g11
dz; (11.27)

and the hyperbolic Gauss map

gf WM! CP1;

of f , is given on QU by

gf D
� � PG1



if PG1 ¤ 0,

ŒG1� if PG1 D 0,
(11.28)

where G1 is the first column of G and PG1 is the derivative of G1 with respect to z.

Proof. Let U � QU be any non-empty, open, simply connected subset of QU. G null
implies that

gD
�

g11 g12
g21 �g11

�
W U! V � sl.2;C/;

where V is defined in Lemma 11.13. Because U is simply connected, the map g has
a holomorphic lift

.p;q/ W U! C2 n f0g;

whose projection (11.23) is

� ı .p;q/D g;

so that, on U,

g11 D�pq; g12 D p2; g21 D�q2: (11.29)

Hence, on U,

G�1dGD � D
��pq p2

�q2 pq

�
dz: (11.30)



364 11 CMC 1 Surfaces in H3

If we define the smooth maps u WU! R and a;b W U! C by

eu D jpj2Cjqj2 D jg12jC jg21j; aD e�u=2p; bD e�u=2q;

then jaj2Cjbj2 D 1, so we have a smooth map

K D
�

a �Nb
b Na

�
D e�u=2

�
p �Nq
q Np

�
W U! SU.2/: (11.31)

Consider the frame field

F D GK W U! SL.2;C/

along f on U. By an elementary calculation

˛ D F�1dFD K�1G�1.dGKCGdK/D K�1G�1dGKCK�1dK

D
�
0 eudz
0 0

�
C
� NadaC Nbdb �Nad NbC Nbd Na
�bdaCadb bd NbCad Na

�
:

Therefore,

˛11C N̨ 11 D NadaC NbdbCad NaCbd NbD 0;

because jaj2Cjbj2 D 1 on U. Hence, F is a first order frame along f on U. Then

˛12C N̨ 21 D eudz;

shows F is adapted to z, by Definition 11.8, and the induced metric of f is given on
U by

I D e2udzdNzD .jpj2Cjqj2/2dzdNz;

which implies (11.26). In addition,

 D N̨ 12 �˛21 D 2e�u.qdp�pdq/C eudNzD heudzCHeudNz
shows, since qdp�pdq is a holomorphic 1-form, that H D 1 and the Hopf quadratic
differential is

II2;0 D 1

2
he2udzdzD .qdp�pdq/dz:

Using (11.29), we find by an elementary calculation

qdp�pdqD g21dg12�g12dg21
2g11

;
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which proves (11.27). As for the hyperbolic Gauss map, by Lemma 11.10 it is given
on U as a map into CP1 by

gf D ŒF1�;

where F1 is the first column of the frame field F adapted to z. By (11.30), the first
column of � D G�1dG is

�1 D�q

�
p
q

�
dz;

so that

dG1 D G�1 D�qG

�
p
q

�
dz:

On the other hand, F DGK, where K is given by (11.31), so

F1 D e�u=2G

�
p
q

�
;

and therefore,

PG1 D dG1

dz
D�qG

�
p
q

�
D�qeu=2F1 W U! C2:

If q¤ 0, then ŒF1�D Œ PG1� 2 CP1. If qD 0 at a point of U, then at this point p¤ 0
and

F1 D e�u=2G

�
p
0

�
D e�u=2pG1:

The results in (11.28) now follow from these expressions for F1. ut
Corollary 11.16. Let p and q be holomorphic functions, with no common zeros, on
a simply connected domain U � C. Consider

� D
��pq p2

�q2 pq

�
dz; (11.32)

a holomorphic, sl.2;C/-valued 1-form, never zero, with det.�/ D 0, on U. Then
there exist holomorphic maps

G; QG WU! SL.2;C/;
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such that

G�1dGD � D d QG QG�1:

G is unique up to left multiplication by an element A 2 SL.2;C/. Its projection
f D GG� W U!H.3/ is a CMC 1 immersion with induced metric

If D

jpj2Cjqj2�2 dzdNzD k

�
p
q

�
k4dzdNz;

Hopf differential

II2;0f D .qdp�pdq/dz;

and hyperbolic Gauss map

gf D G

�
p
q

�
W U! CP1: (11.33)

The projection of AG is AfA�, which is congruent to f , so has the same induced
metric and Hopf differential as f , and its hyperbolic Gauss map is gAfA� D Agf .QG is unique up to right multiplication by an element B 2 SL.2;C/. Its projection
Qf D QG QG� W U!H.3/ is a CMC 1 immersion with induced metric

IQf D k QG�1
�

p
q

�
k4dzdNz; (11.34)

Hopf differential

II2;0Qf D II2;0f ; (11.35)

and hyperbolic Gauss map

gQf D
�

p
q

�
W U! CP1: (11.36)

The projection of QGB is

QfB D QGBB� QG�;

which has induced metric

IQfB D kB�1 QG�1
�

p
q

�
k4dzdNz;
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the same Hopf differential, and the same hyperbolic Gauss map as Qf . The projections
of QG and QGB have the same induced metric if and only if B 2 SU.2/ if and only if
the two projections are the same.

Proof. Since � is holomorphic, d� D 0 D �^� , so the maps G and QG exist and
are unique up to left (respectively right) multiplication by the Cartan–Darboux
Theorem. Moreover,

dGD G�; d QGD � QG
are bidegree .1;0/ forms, so G and QG must be holomorphic. It follows that G is a
holomorphic, null immersion. Since

Q� D QG�1d QGD QG�1� QG
is holomorphic, never zero, and det. Q�/D 0 on U, the map QG is a holomorphic, null
immersion. Hence, f and Qf are CMC 1 immersions by Theorem 11.15. The induced
metric, Hopf differential, and hyperbolic Gauss map of f are given in the proof of
that Theorem. Write (11.32) as

� D
�

p
q

�
�q p
�

dz:

If we define holomorphic functions P;Q WU! C by

�
P
Q

�
D QG�1

�
p
q

�
;

then it follows that 
�Q P
�D 
�q p

� QG:
Therefore,

QG�1d QGD Q� D QG�1
�

p
q

�
�q p
� QG dzD

�
P
Q

�
�Q P
�

dz:

This implies (11.34) and (11.36) (using (11.33)). Moreover,


�Q P
��dP

dQ

�
D 
�q p

� QG
�
� QG�1d QG QG�1

�
p
q

�
C QG�1

�
dp
dq

��

D�
�q p
�
�

�
p
q

�
C 
�q p

��dp
dq

�
D 
�q p

��dp
dq

�
;

which implies (11.35). The proof is concluded by applying the same argument to
QGB in place of QG, for any B 2 SL.2;C/. ut
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Remark 11.17. If � is a nowhere zero, holomorphic, sl.2;C/-valued form with
det.�/D 0 on the Riemann surface M, and if QG WM! SL.2;C/ satisfies d QG QG�1 D
� , then the metric of Qf D QG QG� is not determined by � , but rather by

Q� D QG�1d QGD QG�1d QG QG�1 QGD QG�1� QG:

This is to be expected, because the solution QG is determined only up to right
multiplication by a constant matrix B 2 SL.2;C/, and the projection

GB.GB/� D GBB�G�

is not, in general, isometric to Qf . Nevertheless, the theorem shows that the Hopf
differential and the hyperbolic Gauss map do not depend on B, as they are
completely determined by � .

11.6 Solutions

Suppose � is a holomorphic, sl.2;C/-valued 1-form with det.�/ D 0 on the
connected Riemann surface M. Let � W QM ! M be the universal cover of M. In
our applications, QM will be either the complex plane C or the Poincaré disk D. Let
� be the group of deck transformations, so � Š �1.M/, and M D � n QM, where we
regard � as acting from the left on QM. If g 2 � , then � ı gD � . The lift

	 D ���

is a holomorphic, sl.2;C/-valued 1-form, with det.	/D 0 on QM.

11.6.1 Left-invariant solutions

Let G W QM! SL.2;C/ be a solution of

G�1dGD 	:

Any other solution is given by AG, for some constant A 2 SL.2;C/. If g 2 � , then
Gı g W QM! SL.2;C/ satisfies

.Gı g/�1d.Gı g/D g�.G�1dG/D g�	 D g���� D .� ı g/�� D ��� D 	:

Therefore

Gı gD LG.g/G;
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for some LG.g/ 2 SL.2;C/, thus defining a map

LG W � ! SL.2;C/; g 7! LG.g/: (11.37)

The map LG is a group homomorphism. The projection

f D GG� W QM!H.3/

is a CMC 1 immersion. If g 2 � , then

f ı gD .Gı g/.Gı g/�D .LG.g/G/.LG.g/G/
� D LG.g/fLG.g/

�;

which is the isometric action of LG.g/ on f in H.3/. Then f descends to M if and
only if f ı gD f , for all g 2 � if and only if

f D LG.g/fLG.g/
�; for all g 2 � ,

if and only if the isometric action of LG.g/ on H.3/ fixes every point of f . QM/. Using
Problem 11.34, we conclude that f descends to M if and only if LG.� /D f˙I2g.

11.6.2 Right-invariant solutions

If G W QM! SL.2;C/ is a solution of dGG�1 D 	, then any other solution is given
by GB, for some B 2 SL.2;C/. If g 2 � , then Gı g W QM! SL.2;C/ satisfies

d.Gı g/.Gı g/�1D g�.dGG�1/D g�	 D g���� D .� ı g/�� D ��� D 	:

Therefore

Gı gD GRG.g/;

for some RG.g/ 2 SL.2;C/, thus defining a map

RG W � ! SL.2;C/; g 7! RG.g/:

The map RG is a group anti-homomorphism: RG.g1g2/ D RG.g2/RG.g1/, for any
g1;g2 2 � . The projection

f D GG� W QM!H.3/

is a CMC 1 immersion. If g 2 � , then

f ı gD .Gı g/.Gı g/�D .GRG.g//.GRG.g//
� D GRG.g/RG.g/

�G�;
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and this equals f D GG� if and only if

RG.g/RG.g/
� D I2:

Therefore, f descends to M if and only if

RG.� /� SU.2/:

Exercise 44. Prove that there exists C 2 SL.2;C/ such that the CMC 1 immersion

.GC/.GC/�

descends to M, if and only if

C�1RG.� /C � SU.2/:

Definition 11.18. The map RG W � ! SL.2;C/ is unitary if RG.� / � SU.2/. It is
unitarizable if there exists C 2 SL.2;C/ such that RGC is unitary; i.e.,

RGC.� /D C�1RG.� /C � SU.2/:

In conclusion, there exists a solution G W QM! SL.2;C/ of dGG�1 D Q	 such that
its projection f D GG� descends to M if and only if the map RG W � ! SL.2;C/ is
unitarizable.

11.6.3 How to solve dGG�1 D �

Assume in this subsection that M is simply connected. Let a;b;c W M ! C
be holomorphic functions, with no common zeros and satisfying a2 C bc D 0

identically, so

LD
�

a b
c �a

�
WM! sl.2;C/;

is holomorphic, never zero, and det.L/D 0 on M. To solve the linear system of ODE

G0 D LG

for G W M ! SL.2;C/, let

�
x
y

�
denote either column of G. Then the system to

solve is

x0 D axCby; y0 D cx�ay:
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If c¤ 0, then xD .y0Cay/=c and y must satisfy

y00� c0

c
y0C a0c�ac0

c
yD 0: (11.38)

If b¤ 0, then yD .x0�ax/=b and x must satisfy

x00� b0

b
x0C ab0�a0b

b
xD 0: (11.39)

Suppose y1;y2 WM! C are linearly independent solutions of (11.38). Let

QGD
�
1
c .y

0
1Cay1/ 1

c .y
0
2Cay2/

y1 y2

�
(11.40)

Then det QG is a nonzero constant (see Problem 11.36), so

GD 1p
det QG

QG WM! SL.2;C/

satisfies G0G�1 D L.

11.7 Spinor data

Recall from Chapter 8 that the data needed on a Riemann surface M to construct
a minimal immersion x W M ! R3 is the Weierstrass data, which comprises a
meromorphic function g and a holomorphic 1-form 
, both on M, whose zeros
balance the poles of g in the appropriate way. From Corollary 11.16 we see that the
analogous data needed to construct a CMC 1 immersion of M into H.3/ is a pair of
holomorphic spinor fields on M with no common zeros. A spinor field is a section of
a certain holomorphic line bundle over the Riemann surface. We begin with a brief
description of these. For more details see Conlon [53, 95–99] and Griffiths–Harris
[81, pp 66–70].

Definition 11.19. A holomorphic line bundle � W L! M over a Riemann surface
M is a complex manifold L of complex dimension 2 and a holomorphic mapping �
mapping L onto M such that

1. For each m 2 M, the fiber Lm D ��1fmg has the structure of a complex vector
space of dimension 1.

2. There is an open cover fU�g�2J of M, together with commutative diagrams

��1U�

'�! U� �C
� # # �1
U�

id! U�
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where '� is biholomorphic, for each � 2 J, and �1 is projection onto the first
factor.

3. For each � 2 J and m2U� , the restriction of '� to the fiber Lm maps this complex
vector space isomorphically onto the complex vector space fmg�C.

The open cover fU�g is called a trivializing cover of M for the line bundle and each
open set U� is called a trivializing neighborhood of M.

An example of a holomorphic line bundle is the trivial line bundle over M, which
is �1 WM�C!M, where �1 is projection onto the first factor.

Holomorphic line bundles � W L! M and Q� W QL! M are isomorphic, written
LŠ QL, if there exists a biholomorphic map ' W L! QL such that for each m 2 M, '
maps Lm isomorphically onto QLm. A holomorphic line bundle is called trivial if it is
isomorphic to the trivial line bundle.

A holomorphic section of the holomorphic line bundle � W L!M is a holomor-
phic map p W M ! L such that � ı p D idM. A holomorphic section of the trivial
bundle is just a holomorphic function f WM! C.

For a holomorphic line bundle � W L! M with trivializing open cover fU�g as
above, if U� \U� ¤ ;, consider

.U� \U� /�C
'�1
��! ��1.U� \U� /

'��! .U� \U� /�C:

This composition must have the form

'� ı'�1
� .m;�/D .m;g�� .m/�/;

where the functions

g�� W U� \U� !GL.1;C/D Cn f0g D C�

are holomorphic, never zero. They are called the transition functions of the
trivializing cover. They satisfy the cocycle property

g��.m/g�	.m/D g�	.m/;

for all m 2 U� \U� \U	 . The cocycle property implies g�� D 1=g�� and g�� D 1.
The set fU� ;g��g�;�2J is called a structure cocycle for � W L!M.

The structure cocycle gives all the data necessary to construct the line bundle, up
to isomorphism. For a detailed explanation of this see the above two references. For
our purposes, the structure cocycle is the most workable form of a holomorphic line
bundle. For example, if f WM! L is a holomorphic section of the line bundle, then
for the above structure cocycle we have

'� ı f.m/D .m; f� .m//;
for each m 2 U� , where f� W U� ! C must be a holomorphic function. From the
definition of the transition functions, we must have
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f� .m/D g�� .m/f� .m/; (11.41)

for any m 2U� \U� . Thus, in terms of the structure cocycle, a holomorphic section
of � W L!M is given by a collection of holomorphic functions

f� W U� ! C;

satisfying (11.41) on U� \U� .

Example 11.20. The canonical bundle K!M is given by the covering of complex
coordinate charts fU� ;z�g of M, with transition functions on U� \U� ¤ ;,

g�� D dz�
dz�

:

A holomorphic section of the canonical bundle defines a holomorphic 1-form ˛ on
M, and vice versa. In fact, if the section is given by the collection of holomorphic
functions

f� W U� ! C

then on U� \U� ¤ ;,

f�dz� D g�� f�dz� D dz�
dz�

f�dz� D f�dz�

shows that

˛ D f�dz�

is a well-defined holomorphic 1-form on all of M. Conversely, given a holomorphic
1-form ˛ on M, then on U� ,

˛ D f�dz�

for some holomorphic function f� on U� , and this collection of holomorphic
functions defines a holomorphic section of the canonical bundle.

Let L!M be a holomorphic line bundle with structure cocycle fU� ;g��g�;�2J ,
and let QL!M be a holomorphic line bundle with structure cocycle fU� ; Qg��g�;�2J .
Then LŠ QL if and only if there exist nowhere zero holomorphic functions

f� W U� ! C;

for each � 2 J, such that

g��.m/f� .m/D f� .m/Qg�� .m/; (11.42)
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for every m 2 U� \U� . In fact, if ' W L! QL is a bundle isomorphism, then for each
� 2 J,

Q'� ı' ı'�1
� W U� �C! U� �C

must have the form

Q'� ı' ı'�1
� .m;�/D .m; f� .m/�/; (11.43)

for every .m;�/ 2U� �C, where

f� W U� !GL.1;C/D C�

is holomorphic. One easily verifies that (11.42) must then hold. Conversely, given
the set of holomorphic maps f� , the bundle isomorphism ' is defined by (11.43)
and is well-defined by (11.42). In particular, L!M is isomorphic to the trivial line
bundle if and only if

g�� .m/f� .m/D f� .m/;

for every m 2U� \U� .
The most general isomorphism result allows for the structure cocycles to have

different indexing sets. Structure cocycles fU� ;g��g�;�2J and fVa;habga;b2A are
equivalent if both are contained in some structure cocycle. This is an equivalence
relation on the set of structure cocycles. The holomorphic line bundles defined
by two structure cocycles are isomorphic if and only if the structure cocycles are
equivalent. We will not need this result here. For a detailed discussion of it see
[53, p 99].

The product of the line bundles L and QL is the holomorphic line bundle, denoted
L QL, given by the structure cocycle

fU� ;g�� Qg��g�;�2J:

Example 11.21. Let fU� ;z� g be an atlas of complex coordinate charts on the
Riemann surface M. Suppose that on each U� we have a nowhere zero holomorphic
1-form !� . If U� \U� ¤ ;, there exists a holomorphic function g�� on U� \U� ,
such that

!�g�� D !� :

It is helpful to write this

g�� D !�=!� :
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Then fU� ;g��g is a structure cocycle defining a holomorphic line bundle isomorphic
to the canonical bundle. In fact,

!� D f�dz� ;

for some nowhere zero holomorphic function on U� , and

f� .m/g��.m/D dz�
dz�

.m/f� .m/;

for all m 2U� \U� .

Definition 11.22. A spinor bundle over a Riemann surface M is a holomorphic line
bundle S!M whose square is isomorphic to the canonical bundle; that is

SSŠ K:

A holomorphic spinor field on M is a holomorphic section of a spinor bundle.

If S! M is a spinor bundle with transition functions g�� relative to an atlas
fU� ;z� g, then SSŠ K implies that

g2�� .m/f� .m/D f� .m/
dz�
dz�

.m/

for every m 2 U� \ U� , for some nowhere zero holomorphic functions
ff� W U� ! Cg. Let

!� D dz�
f�
;

a nowhere zero holomorphic 1-form on U� . Then

g2�� D
!�

!�
;

where this quotient is explained in Example 11.21. Now d!� D 0 on U� . If we
assume U� is contractible, then there exists a holomorphic function w� W U� ! C
such that !� D dw� on U� . Then U� is a union of open neighborhoods on each of
which w� is a complex coordinate. In summary, given a spinor bundle S!M, there
exists a complex coordinate atlas fU� ;w� g on M relative to which the transition
functions g�� of S satisfy

g2�� D
dw�
dw�

on U� \U� ¤ ;.
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Example 11.23. Let f W M ! H.3/ be a CMC 1 immersion and regard M as the
Riemann surface with the complex structure coming from the induced metric. Let
fU� ;z� g be an atlas of complex charts on M with each U� being simply connected.
Let

F� D .F� i
j/ W U� ! SL.2;C/;

for i; jD 1;2, be the first order frame field along f adapted to z� . If

˛� D F�1
� dF�

on U� , then ˛�11C˛�11 D 0, by Definition 11.6, and

!� D ˛� 12C˛�21 D eu� dz� ;

for some smooth u� W U� ! R, by Definition 11.8. If U� \U� ¤ ;, then first order
frame fields transform by

F� D F�

�
a�� 0

0 a��

�
; (11.44)

where a�� W U� \U� ! U.1/ is smooth and ja�� j D 1. Then

a2��!� D !� ;

by (11.18) (where now bD 0), so

a2��e
u� dz� D eu� dz� D eu�

dz�
dz�

dz� ;

which implies that

dz�
dz�
D a2��e

u��u� :

If we let

g�� D a��e
.u��u� /=2;

then its square is the holomorphic function dz�
dz�

, so it is holomorphic. On U� \U� \
U	 ¤ ;, we have

g��g�	g	� D 1;

since

a��a	�a�	 D 1
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at every point, by (11.44). Therefore, this is a set of holomorphic transition functions
defining a holomorphic line bundle S!M and

dz� D g2��dz�

shows that S is a spinor bundle. Define functions

p� D eu� =2F�
2
1; q� D eu� =2F�

1
1:

Then fp�g and fq�g define holomorphic sections of S! M, that is, they define
holomorphic spinor fields on M, and they have no common zeros. In fact, they are
holomorphic functions, because

˛�
1
1 D

1

2

�
@u�
@z�

dz� � @u�
@Nz� dNz�

�
;

by (11.22), and

˛�
2
1 D

1

2
. N!� � �/D�1

2
h�eu� dz� ;

by Lemma 11.10, where now H D 1, imply that both dp� and dq� are multiples
of dz� . From our definition of g�� and the transformation rule for the fF�g, it follows
that

p� D g��p� ; q� D g��q� ;

so these define sections p and q, respectively, of S. They have no common zeros
because the first column of F� is never zero.

Lemma 11.24. Let p and q be holomorphic spinor fields with no common zeros on
a Riemann surface M. Let fU� ;z�g be an atlas of complex coordinate charts on M,
relative to which the transition functions fg��g of the spinor bundle satisfy

g2�� D
dz�
dz�

on U� \U� ¤ ;. Then there exists a holomorphic, nowhere zero sl.2;C/-valued
1-form � on M, with det.�/D 0, whose expression on U� ;dz� is

�� D
��p�q� p2�
�q2� p�q�

�
dz� ;

where p� ;q� W U� ! C are the local representations of p and q.

Proof. On U� , the form �� is holomorphic, nowhere zero, sl.2;C/-valued, and
det.�� /D 0. It is easily verified that �� D �� on U� \U� ¤ ;. ut
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11.8 Weierstrass and spinor data

If we begin with holomorphic spinor fields p and q with no common zeros on a
Riemann surface M, then they determine the holomorphic, sl.2;C/-valued 1-form
	 on M, with det.	/D 0, by

� D
��pq p2

�q2 pq
�
;

which determines CMC 1 immersions of QM, the universal cover of M, into H.3/,
as described in Corollary 11.16. These spinor data determine Weierstrass data as
follows. The quotient g D p=q is a meromorphic function on M and 
 D �q2 is
a holomorphic 1-form on M whose zeros balance the poles of g as required in
Theorem 8.8. These data define the nowhere zero, isotropic, abelian differential ˛
on M,

˛ D
0
@
1
2
.1�g2/

i
2
.1Cg2/

g

1
A
D

0
@

1
2
.p2�q2/

�i
2
.p2Cq2/

�pq

1
A :

The real part of the integral of ˛ (see (8.7)) defines a minimal immersion x W QM!R3,
with metric, Hopf differential, and Gauss map given by

Ix D .1Cjgj2/2
 N
; II2;0x D�dg
; g;

respectively, by Theorem 8.10.
Conversely, suppose we begin with the Weierstrass data given by a meromorphic

function g on M and a holomorphic 1-form 
 whose zeros balance the poles of g.
Suppose there exists a holomorphic spinor field q on M such that 
 D �q2. Then
p D gq is a holomorphic spinor field on M, since the zeros of q remove the poles
of g, and we obtain a holomorphic, sl.2;C/-valued 1-form on M with determinant
equal to zero,

� D
��pq p2

�q2 pq
�
D
�

g �g2

1 �g

�

:

Notice that supposing the existence of the spinor field q led us to this expression for
� , but in fact � is given in terms of g and 
. There exist holomorphic, null solutions
G; QG W QM ! SL.2;C/ of G�1dG D � D d QG QG�1, which give CMC 1 immersions
f D GG�; Qf D QG QG� W QM ! H.3/ whose induced metrics, Hopf differentials, and
hyperbolic Gauss maps are, by Corollary 11.16,

If D .1Cjgj2/2
 N
; II2;0f D�dg 
; gf D G

�
g
1

�
W QM! CP1;
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and

IQf D jj QG�1
�

g
1

�
jj4dzdNz; II2;0Qf D II2;0f ; gQf D

�
g
1

�
W QM! CP1;

respectively. Thus both have the same Hopf differential as x, while f and x have the
same induced metric while Qf and x have, essentially, the same Gauss map. Bryant
called the CMC 1 immersions f and Qf the cousins of the minimal immersion x.

11.9 Bryant spheres with smooth ends

A major goal in this subject is to construct complete Bryant surfaces with smooth
ends. An end is smooth if it extends smoothly as an immersion into H3 [ S21,
as is the case for any horosphere. In contrast, the isoparametric immersions in
Figures 6.5, 6.6, and 6.7 have nonsmooth ends.

Bryant [21] has proved the following analogue to Theorem 8.27 concerning
complete minimal surfaces in R3 with finite total curvature.

Theorem 11.25. If f W M ! H3 is a complete Bryant immersion with finite total
curvature, then the induced conformal structure on M is that of a compact Riemann
surface NM with a finite set of points p1; : : : ;pk removed. Moreover, f extends smoothly
to NM as a map into H3[S21.

If NM is the Riemann sphere, the immersion f WM!H3 is called a Bryant sphere.
Rather than go into these general results, we limit ourselves here to the construction
of some explicit examples of Bryant spheres using the theory developed in the
preceding sections. We begin with the compact Riemann surface S2 with two points
removed, which is C with one point removed. We shall also try to expose the
relationship between our construction of Bryant immersions in H3 and the Enneper–
Weierstrass construction of minimal immersions in R3.

Let M D C n f0g with the standard complex coordinate z. From Example 8.15,
the Weierstrass data of the catenoid are

gD 1=z; 
D dz:

As shown in Section 11.8, these Weierstrass data determine spinor data p and q,
which are holomorphic spinor fields, such that

� D
�

g �g2

1 �g

�

D

��pq p2

�q2 pq
�
; (11.45)

a holomorphic, isotropic, sl.2;C/-valued 1-form on M. Any nonzero complex
constant k defines a new set of spinor data given by kp and kq, which then define the
holomorphic, isotropic, sl.2;C/-valued 1-form

�k D k2�

on M.
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Remark 11.26. These spinor data determine the Weierstrass data of a conformal
associate of the catenoid (see Definition 8.12). If k D reit, where r > 0, and t are
real, then these conformal associates x.k/ of the catenoid x are just the associates of
x rescaled by r,

x.k/ D rx.t/;

where x.t/ is the associate of x defined by the Weierstrass data g and eit
 (see (8.23)).
In hyperbolic geometry, however, there is no notion of rescaling (triangles are
similar if and only if they are congruent), so one might expect interesting differences
in the conformal associates given by real constants k > 0. In the examples of this
section we shall see that this is the case.

The universal cover of M is

exp W C!M; exp.w/D ew D z;

whose group of deck transformations is

� D fgn W n 2 Zg; where gn.w/D wC2�in:

Let

	k D exp� �k D k2
�
1 �e�w

ew �1
�

dwD
�

a b
c �a

�
dw

where

aD k2; bD�k2e�w; cD k2ew;

so c is never zero on C. Now the derivatives with respect to w are a0 D 0 and c0 D c,
so (11.38) becomes

y00� y0� k2yD 0: (11.46)

The roots of its auxiliary polynomial are

.1˙
p
1C4k2/=2:

It will be convenient to let

mD�.1C
p
1C4k2/=2;

so that mC 1 and �m are the roots and k2 D m.mC 1/. The roots are distinct
if m ¤ �1=2, which we now assume. Two linearly independent solutions of our
ODE are

y1 D e.mC1/w; y2 D e�mw:
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From these we construct a basic solution Gm of dGD 	kG on C, satisfying

s
m.mC1/
2mC1

 
mC1

m emw m
mC1e�.mC1/w

e.mC1/w e�mw

!
D Gm

0
@
q

mC1
m 0

0
q

m
mC1

1
A ;

where

Gm D 1p
2mC1

�
.mC1/emw me�.mC1/w
me.mC1/w .mC1/e�mw

�
W C! SL.2;C/: (11.47)

Any other solution is given by GmB, for any constant B 2 SL.2;C/. From Subsec-
tion 11.6.2 we know that the projection GmB.GmB/� WC!H.3/ descends to M for
some B 2 SL.2;C/ if an only if the map RGm W � ! SL.2;C/ is unitarizable, as
defined in Definition 11.18. For which values of m is RGm unitarizable and for those
m for which values of B 2 SL.2;C/ is RGmB unitary? If gn 2 � , then

Gm ı gn.w/D 1p
2mC1

�
.mC1/em.wC2� in/ me�.mC1/.wC2� in/

me.mC1/.wC2� in/ .mC1/e�m.wC2� in/

�
D Gm.w/D

n
m;

where the monodromy matrix Dm of Gm is

Dm D
�

e2� im 0

0 e�2� im

�
2 SU.2/:

Lemma 11.27. Let m 2Cnf�1;�1=2;0g, let Dm be the above monodromy matrix,
and let B 2 SL.2;C/. Then RGmB is unitary, that is,

B�1DmB 2 SU.2/;

if and only if m is real and, either

m 2 1
2

Z; and B is arbitrary,

or

m … 1
2

Z; and BD
�

a 0

0 a�1
�

K;

for any 0¤ a 2 R and any K 2 SU.2/.

Proof. If B 2 SL.2;C/, then it has a unique polar decomposition BDHK, where H
is hermitian positive definite and K is unitary. Then

B�1DmBD K�1H�1DmHK 2 SU.2/
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if and only if

H�1DmH 2 SU.2/:

Therefore, it suffices to prove the Lemma for the case BD H is hermitian positive
definite. We leave this to Problem 11.43.

Definition 11.28. Let m be a nonzero real number satisfying m > �1=2. A two-
noid is any CMC 1 immersion f W M ! H.3/ given by f D GmB.GmB/�, for any
B 2 SL.2;C/ for which RGmB is unitary. The Catenoid cousins are the immersions
fm D GmG�

m WM!H.3/.

Suppose that m 2 R n f�1;�1=2;0g. Since our results depend only on k2 D
m.mC 1/, it is sufficient to consider only the values m > �1=2, m ¤ 0. For such
a value of m, the projection of Gm is

Qfm D GmG�
m W C!H.3/;

where .2mC1/Qfm.w/D
�
.m C1/2em.wCNw/ C m2e�.mC1/.wCNw/ .m C1/m.emwC.mC1/Nw C e�.mC1/w�mNw/

m.m C1/.e.mC1/wCmNw C e�mw�.mC1/Nw/ m2e.mC1/.wCNw/C .m C1/2e�m.wCNw/

�
;

which descends to

fm WM!H.3/; fm ı expD Qfm;
where

fm.z/D 1

2mC1

 
.mC1/2.zNz/mC m2

.zNz/mC1 m.mC1/..zNz/mNzC 1
.zNz/mz /

m.mC1/..zNz/mzC 1
.zNz/mz / m2.zNz/mC1C .mC1/2

.zNz/m

!
:

In terms of polar coordinates zD reit, with r > 0,

fm.z/D R.t/�m.r/R.t/
�;

where

R.t/D
�

e�it=2 0

0 eit=2

�
2 SU.2/

is a 1-parameter family of rotations, and

�m W RC! H.3/; �m.r/D
1

2mC1
�
.mC1/2r2mCm2r�2.mC1/ m.mC1/.r2mC1C r�.2mC1//

m.mC1/.r2mC1C r�.2mC1// .mC1/2r�2mCm2r2.mC1/
�
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Fig. 11.1 Embedded catenoid cousins with smooth ends. Left: fm with m D �0:3: Right: fm with
m D �0:08.

is a planar profile curve. Hence, fm is a surface of revolution. The profile curve is
embedded, so fm is embedded, if and only if �1=2 < m < 0. Figure 11.1 shows
two embedded catenoid cousins, fm WM!H.3/ with parameter mD�0:3 and mD
�0:08, respectively. Figures in this chapter illustrate s ı v�1 ı f W M! B3, where
s W H3! B3 is hyperbolic projection onto the Poincaré ball and v W H3! H.3/ is
the isometry (11.1).

If m > 0, then the profile curve is not embedded, so neither is fm. Figure 11.2
shows the case mD 0:03.

If m 2 1
2
Z and if B 2 SL.2;C/ is non-diagonal, then the immersion GmB.GmB/� W

C!H.3/ descends to a two-noid f WM!H.3/ which is neither equivalent to, nor
isometric to, a Catenoid cousin. It is not a surface of revolution. Figure 11.3 shows

Fig. 11.2 Left: fm with m D 0:03: surface of revolution with two ends. Right: a wedge has been
removed to show the self intersection inside.

this Bryant sphere for the case mD 2 and BD
�
1 3

0 1

�
.

Bohle and Peters [12] characterize when a Bryant surface has smooth ends.
They prove that there exist Bryant spheres with an arbitrary number of smooth ends.
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Fig. 11.3 Projection of G2B.G2B/� is a warped 2-noid.

Fig. 11.4 A Bohle-Peters six-noid. The ends are at the blue dots.

They construct such Bryant spheres from algebraic transformation of the catenoid
cousins fm, for positive integers m, as follows. Using the adjoint action of

A.s; t/D
�
1 0

�s 1

��
1 t
0 1

�
2 SL.2;C/

on sl.2;C/, they create the conformal transformation C.s; t/ W SL.2;C/! SL.2;C/,

C.s; t/

�
a b
c d

�
D 1

D

�
a 2t� .cC2s/t2Cb.st�1/2

cC s.2�bs/ d

�
;

where DD 1� ct�2stCbs.st�1/. They prove:

1. If st¤ 0, and if m is a positive integer, then the null immersion C.s; t/Gm projects
to a Bryant sphere with 2.mC1/ smooth ends. Figure 11.4 shows the case mD 2
and sD tD 0:2, which is a Bryant sphere with six smooth ends.
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2. If t D 0 and if m is a positive integer, then C.s;0/Gm projects to a Bryant sphere
with mC2 smooth ends. Figure 11.5 shows the case mD 9, sD 0:4, and tD 0.

So far we have considered only the case when the Riemann surface M is C with
one point removed. If more than one point is removed the situation becomes more
complicated on several fronts. The universal cover of such a Riemann surface is
no longer given in terms of elementary functions. Secondly, the ODE (11.46) will
generally have nonconstant coefficients and its solutions will not be elementary
functions. Despite these difficulties Bobenko, Pavlyukevich, and Springborn [10]
have constructed trinoids, which are complete Bryant immersions of M D C n
f0;1g!H.3/ with three smooth ends. The spinor data are of the form

pD .p0
z
C p1

z�1Cp3/
p

dz; qD .q0
z
C q1

z�1 Cq3/
p

dz;

for complex constants p0, p1, p3, q0, q1, and q3. In this case the solution of the ODE
will be in terms of hypergeometric functions. Among the solutions found in [10] is
a 3-parameter family ff�g�2X of embedded trinoids, where the parameter domain is

f.a;b;c/ W 0 < a< :4829; 0 < b<
1

2
;
1

2
�a�b< c<min.

1

2
�aCb;

1

2
Ca�b/g:

Fig. 11.5 A Bohle-Peters eleven-noid. The ends are at the blue dots.

If the parameters are equal, the trinoid is Z3-symmetric, otherwise it is not.
Figure 11.6 shows the Z3-symmetric trinoids with parameters all equal to 0:3 and
0:4, respectively.

Figure 11.7 shows nonsymmetric trinoids with parameters .0:3;0:3;0:2/ and
.0:4;0:4;0:32/, respectively.

All the computations have been implemented in a MATHEMATICA notebook
available on line. See [10] for the url and other details. We made the four embedded
trinoids here with minor modifications of routines in this notebook.
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Fig. 11.6 Left: Trinoid with a D b D c D 0:3. Right: Trinoid with a D b D c D 0:4.

Fig. 11.7 Left: Trinoid with a D b D 0:3, c D 0:2. Right: Trinoid with a D b D 0:4, c D 0:32.

Problems

11.29. Prove that if v 2 H.3/, then its square v2 2 H.3/, and the map T W H.3/!
H.3/, T.v/D v2, is a diffeomorphism.

11.30. Let � be the homomorphism (11.2).

1. If AD
�

x z
y w

�
2 SL.2;C/, find �.A/ 2 SOC.3;1/.

2. If aD ei� , and if AD
�

a 0
0 Na
�

, find �.A/.

3. If aD ei� , and if AD
�
0 �Na
a 0

�
, find �.A/.

11.31. Prove that if M is a connected Riemann surface and if K WM! SL.2;C/ is
a holomorphic map for which K.M/� SU.2/, then K is constant.
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11.32. Prove that the Killing form on sl.n;C/ is

K .X;Y/D 2ntrace.XY/:

11.33. Prove that the map LG defined in (11.37) is a group homomorphism.

11.34. Prove that if f W QM!H.3/ is an immersion and if A 2 SL.2;C/ fixes every
point of f . QM/, then AD 1, the identity transformation (so AD˙I2).

11.35. Prove that the map RG is a group anti-homomorphism:

RG.g1g2/D RG.g2/RG.g1/;

for all g1;g2 2 � .

11.36. Let QG.y1;y2/ be the matrix valued function in (11.40). Prove that det QG is a
non-zero constant by showing that its derivative is identically zero.

11.37. Prove that if x1;x2 are linearly independent solutions of (11.39), and if

QGD
�

x1 x2
1
b .x

0
1�ax1/

1
b .x

0
2�ax2/

�
;

then det QG is constant, non-zero, and

GD 1p
det QG

QG WM! SL.2;C/

satisfies G0G�1 D L.

11.38. Derive a method similar to that of Subsection 11.6.3 to find G W M !
SL.2;C/ satisfying G�1G0 D L.

11.39. Prove that if fU�g�2J is an open cover of M, and if g��.m/ D 1, for all
m 2U� \U� , for all �;� 2 J, then fU� ;g��g is a structure cocycle, which determines
a holomorphic line bundle isomorphic to the trivial bundle.

11.40. Prove that the product of a line bundle L!M with the trivial line bundle is
isomorphic to L.

11.41. Prove that if the line bundle L! M has structure cocycle fU� ;g��g, then
fU� ;1=g��g is a structure cocycle defining a line bundle QL with the property that L QL
is isomorphic to the trivial bundle. We write L�1 for QL.

11.42. Prove that any B 2 SL.2;C/ has a unique polar decomposition B D HK,
where H is hermitian and positive definite, and K 2 SU.2/.

11.43. Prove Lemma 11.27 for the case when B is hermitian positive definite.
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11.44. In Example 8.16 we found that the helicoid is the conjugate to the catenoid.
Find the cousins of the associates of the catenoid. In particular find the helicoid
cousin.

11.45. Find the basic solution G W C! SL.2;C/ for the case m D �1=2 of equal
roots of the auxiliary polynomial of the ODE (11.46). Find its monodromy matrix
D. Is G unitarizable?

11.46. If x WM! R3 is the minimal immersion generated by the Weierstrass data
g and 
 on M, and if k > 0 is constant, then kx WM! R3 is the minimal immersion
generated by the Weierstrass data g and k
. For the catenoid data g.z/ D 1=z and

D dz above, find the cousin of the data g and k
.

Fig. 11.8 Left Invariant
Catenoid cousin: surface of
revolution whose rotation
trajectories are ultracircles. It
has been cut off at the
horizontal plane to show the
profile curve.

11.47. For � given by (11.45), find the null immersion G WC! SL.2;C/ satisfying
G�1dG D � and the resulting Catenoid cousin f D GG� W C! H.3/. Prove that
it does not descend to C n f0g and that it is a surface of revolution for which the
trajectories of the rotation group are ultracircles (planar curves of constant positive
curvature less than 1 analogous to ultraspheres of Definition 6.12). Figure 11.8
shows one of the left-invariant solutions. It is a surface of revolution whose rotation
trajectories are ultracircles.



Chapter 12
Möbius Geometry

This chapter introduces conformal geometry and Liouville’s characterization of
conformal transformations of Euclidean space. Through stereographic projection
these are all globally defined conformal transformations of the sphere S3. The
Möbius group MRob is the group of all conformal transformations of S3. It is a ten
dimensional Lie group containing the group of isometries of each of the space forms
as a subgroup. Möbius space M is the homogeneous space consisting of the sphere
S3 acted upon by MRob. M has a conformal structure invariant under the action
of MRob. The reduction procedure is applied to Möbius frames. The space forms
are each equivariantly embedded into Möbius geometry. Conformally invariant
properties, such as Willmore immersion, or isothermic immersion, or Dupin immer-
sion, have characterizations in terms of the Möbius invariants. Oriented spheres in
Möbius space provide the appropriate geometric interpretation of the vectors of a
frame field.

Throughout this chapter we let �0;�1;�2;�3 denote the standard orthonormal
basis of R4. Unless otherwise indicated, the indices i; j range through f1;2;3g.

12.1 Local conformal diffeomorphisms

Definition 12.1 (Conformal diffeomorphism). A smooth map F W Mm; I ! Nn; QI
of Riemannian manifolds is conformal if F� QI D e2uI, for some smooth function
u WM! R. The positive function eu is the conformal factor.

Definition 12.2. A local conformal diffeomorphism of R3 is a conformal diffeo-
morphism yD y.x/ between open subsets U;V of R3. Thus,

dy � dyD e2udx � dx (12.1)

for some smooth function u W U! R and eu is the conformal factor.

© Springer International Publishing Switzerland 2016
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Geometrically, this condition on y means that its differential at any point x of U,
dyx W R3! R3, preserves angles and multiplies lengths by eu.x/.

Stereographic projection from a point in the sphere S3 onto Euclidean space R3

is conformal. Hyperbolic stereographic projection of hyperbolic space H3 onto the
unit ball in R3 is conformal. Composing with these projections and their inverses,
we obtain any local conformal transformation in Euclidean space or hyperbolic
space from a local conformal transformation in the sphere.

Example 12.3 (Isometries). If .a;A/2E.3/ is an isometry, then the diffeomorphism
.a;A/ W R3! R3 given by

yD .a;A/xD aCAx

is a conformal diffeomorphism. Here the conformal factor is 1 at every point. An
isometry is a composition of commuting isometries, translation by a, denoted Ta,
and the orthogonal transformation A 2O.4/.

Example 12.4 (Homotheties). If 0¤ t 2R, then multiplication by t,

ht W R3! R3; ht.x/D tx;

is a conformal diffeomorphism, called a homothety. It is orientation preserving if
and only if t > 0. If 0 < t < 1, it is called a contraction and it is called a dilation if
t > 1. The conformal factor is jtj.
Example 12.5 (Inversions). Inversion in the sphere of radius r > 0 with center at
the point m sends a point x¤m to the point y on the ray from m through x such
that jy�mjjx�mj D r2. The first condition says that y�m D t.x�m/, for some
t > 0, and then the second condition allows us to solve for t to obtain the formula
for the inversion

yDmC r2
x�m
jx�mj2 (12.2)

It is a conformal transformation R3 n fmg ! R3 with conformal factor r2=jx�mj2.
See Figure 12.1.

As in Example 4.46, let I denote inversion in the unit sphere centered at the
origin, so

yDI .x/D x=jxj2:

The inversion is not defined at the center of the sphere of inversion. We shall see
how to make sense out of the idea that the center is sent to the point at infinity.

Isometries and homotheties send spheres to spheres and planes to planes.

Proposition 12.6. Inversion in a sphere with center m and radius r > 0 sends any
sphere not passing through m to a sphere, and any sphere passing through m to a
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plane not passing through m. It sends any plane passing through m to itself, and any
plane not passing through m to a sphere passing through m. In summary, inversions
map the set of spheres and planes into the set of spheres and planes.

Proof. By Problem 12.54, it is sufficient to prove this proposition for the case of
inversion in the unit sphere centered at the origin. Let us see what happens to the
sphere with center m and radius r > 0, whose equation is

Fig. 12.1 x and y are
inversions of each other

−1 0 0.33 1 3

−1

0

1

m

yx

jx�mj2 D r2; (12.3)

when it is inverted in the unit sphere. A point x on this sphere is mapped to yD x
jxj2 ,

which is never the origin, and inverting again sends y back to x, so

xD y
jyj2 :

Substituting this into (12.3), we find that a point y in the image of the inverted sphere
must satisfy the equation

ˇ̌
ˇ̌ y
jyj2 �m

ˇ̌
ˇ̌2 D r2;

which expands to ˇ̌̌
ˇ y
jyj2

ˇ̌̌
ˇ
2

�2 y
jyj2 �mCjmj

2 D r2:

Multiplying through by jyj2, which is never zero, gives

1�2y �mCjyj2.jmj2� r2/D 0:
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If jmj2� r2 ¤ 0, that is, if the given sphere does not pass through the origin, then
we can complete the square to obtain the equation

ˇ̌
ˇ̌y� m
jmj2� r2

ˇ̌
ˇ̌2� r2

.jmj2� r2/2
D 0;

which is the sphere of radius r
jmj2Űr2

and center m
jmj2Űr2

. This is illustrated in the 2-
dimensional case in Figure 12.2. The rest of the proof will be left for Problem 12.56.

ut

Fig. 12.2 The red and green
circles are inversions of each
other through the blue circle.

Theorem 12.7 (J. Liouville, Note VI in [121]). Any local conformal transforma-
tion of R3 is either

1. a homothety followed by an isometry, or
2. an inversion in a unit sphere followed by a homothety followed by an isometry.

For a proof see do Carmo [31, pp 170–176] or Dubrovin, Novikov, Fomenko
[62, pp 138–141].

Corollary 12.8. A local conformal diffeomorphism of R3 sends the set of all
spheres and planes onto the set of all spheres and planes.

Definition 12.9. Let Conf.S3/ denote the set of all conformal diffeomorphisms of
S3 to itself. It is a group under composition of maps.

Corollary 12.10. Let S DSp be stereographic projection from a point p2 S3. Any
map f 2 Conf.S3/ is a composition of a finite number of maps of the form S �1 ı
T ıS , where T is a translation or an orthogonal transformation or a homothety or
inversion in the unit sphere centered at the origin, of R3.

Proof. For any f 2 Conf.S3/, the map S ı f ıS �1 is a local conformal transforma-
tion of R3. The result now follows from Liouville’s Theorem 12.7, Example 12.3
and Problem 12.54. ut

Our next goal is to find a linear representation of the group Conf.S3/. This is
done in Theorem 12.17 below.
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12.2 Möbius space

Let R4;1 denote R5 with a Lorentzian inner product. Let �0; : : : ;�4 denote the stan-
dard orthonormal basis of R4;1 given by the standard orthonormal basis �0; : : : ;�3
of the Euclidean space R4 and with h�4;�4i D �1. The Lorentzian inner products
h�a;�bi, for a;bD 0; : : : ;4, are the entries of the matrix

I4;1 D
�

I4 0

0 �1
�
: (12.4)

Write elements of R4;1 D R4 ˚R�4 as xC t�4, where x 2 R4 and t 2 R. The
Lorentzian inner product is then

hxC s�4;yC t�4i D x � y� st:

Write P.R4;1/ for the projective space on R4;1. We use the notation that if u is any
nonzero vector in R4;1, then Œu� denotes the point in P.R4;1/ determined by it. That
is, Œu� is the 1-dimensional subspace of R4;1 spanned by u.

Definition 12.11. Möbius space is the smooth quadric hypersurface of P.R4;1/

defined by

M D fŒu� 2 P.R4;1/ W hu;ui D 0g:

Points Œu�; Œv� 2 P.R4;1/ determine the vectors u;v 2 R4;1 only up to nonzero
multiples, but the condition that hu;ui is zero, or positive, or hu;vi D 0, is
independent of these multiples.

Proposition 12.12. The map

fC W S3!M ; fC.x/D ŒxC�4� (12.5)

with inverse

f �1C ŒxC t�4�D 1

t
x

is a smooth diffeomorphism.

Proof. Consider the standard coordinate chart .U4;'4/ on P.R4;1/, where the open
set

U4 D fŒxC t�4� 2 P.R4;1/ W t¤ 0g
contains M and has the coordinate map

'4 W U4! R4; '4ŒxC t�4�D 1

t
x:
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Then the local representation

'4 ı fC.x/D x

is smooth and f �1C is just the restriction of '4 to M , so it also is smooth. Notice that
'4.M /D S3. ut
Definition 12.13. The light cone of R4;1 is the smooth hypersurface

L D fu 2 R4;1 n f0g W hu;ui D 0g:
The projection� WR4;1nf0g!P.R4;1/ restricted to the light cone defines a principal
R�-bundle

� WL !M ; (12.6)

where R� D Rn f0g is the multiplicative group of real numbers.

Definition 12.14. A conformal structure on a manifold M is an open covering
f.Ua; Ia/ga2A , where Ia is a Riemannian metric on Ua, such that on any non-empty
intersection Ua\Ub, we have Ib D fabIa, for some smooth positive function fab on
Ua\Ub. Such a covering can be made maximal with respect to this property.

Proposition 12.15. Local sections of the principal R�-bundle (12.6) pull back the
Lorentzian inner product on R4;1 to a conformal structure on M .

Proof. A local section � W U �M ! L pulls back the Lorentzian inner product
on R4;1 to a smooth symmetric bilinear form on U. Any other local section on U is
given by Q� D t� , for some smooth function t W U! R�, and then

d Q� D �dtC td�;

so the induced metrics are related by

hd Q�;d Q�i D h�dtC td�;�dtC td�i D t2hd�;d�i;
since h�;�i D 0 on U, and thus also hd�;�i D 0 on U. Since these induced metrics
are all related by a positive factor, they are all positive definite if the induced metric
of a global section is positive definite. We have the global smooth section

�4 WM !L ; �4ŒxC t�4�D 1

t
xC�4 D '4ŒxC t�4�C�4; (12.7)

which pulls back the Lorentzian inner product to

hd�4;d�4i D d'4 � d'4:
This is positive definite since the dot product of R4 is positive definite and d'4 is a
linear isomorphism at any point of U4. ut
Proposition 12.16. The map fC of (12.5) is a conformal diffeomorphism.
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Proof. Consider the composition

�4 ı fC W S3!L ; �4 ı fC.x/D xC�4;

where �4 is the section (12.7). Then ��
4 h ; i is a Riemannian metric in the conformal

structure on M , and

f �C��
4 h ; i D h.dx;0/;.dx;0/i D dx � dx;

which is the standard Riemannian metric on S3 defining the conformal structure
on S3. ut

Orient R4;1 DR4˚R�4 by

�0^�1^�2^�3^�4 > 0: (12.8)

Time orientation of R4;1 is defined by the positive light cone

L C D fuD
4X
0

ua�a 2L W u4 > 0g:

The orthogonal group for the Lorentzian inner product is

O.R4;1/D fT 2 Hom.R4;1;R4;1/ W hTu;Tvi D hu;vi; 8 u;v 2R4;1g:

Its representation in the standard basis �0;�1; : : : ;�4 of R4;1 is

O.4;1/D fA 2GL.5;R/ W tAI4;1AD I4;1g;

where I4;1 is defined in (12.4). The group O.R4;1/ has four connected components.
The subgroup that preserves the orientation (12.8) of R4;1 is

SO.R4;1/D fT 2O.R4;1/ W det T D 1g;

which has two connected components (see [84, p. 346]). Then SO.4;1/ D fA 2
O.4;1/ W det A D 1g is its representation in the standard basis. Its connected
component of the identity is the subgroup preserving time orientation,

SOC.R4;1/D fT 2 SO.R4;1/ W TL C DL Cg;

and SOC.4;1/ is its representation in the standard basis. The action of SO.R4;1/ on
P.R4;1/ is

TŒu�D ŒTu�;

for any T 2 SO.R4;1/ and Œu� 2 P.R4;1/. This action sends M to itself, since it
preserves the inner product on R4;1.
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Theorem 12.17. The map

F W SO.R4;1/! Conf.S3/; F.T/D f �1C ıT ı fC

is a group isomorphism. Here fC W S3!M is the conformal diffeomorphism (12.5).

Proof. It is elementary to prove that F is a group monomorphism. It remains to
prove that any conformal diffeomorphism f 2 Conf.S3/ is given by F.T/ for some
T 2 SO.R4;1/. By Corollary 12.10 of Liouville’s Theorem 12.7, it suffices to show
that if L W R3 ! R3 is a local conformal transformation equal to a translation La,
or orthogonal transformation A 2O.3/, or homothety ht, or inversion I in the unit
sphere centered at the origin, then

S �1 ıLıS D f �1C ıT ı fC W S3! S3; (12.9)

for some T 2 SO.R4;1/, where S DSp is stereographic projection from some point
p 2 S3. In particular, this shows that the local conformal diffeomorphism on the left
side of (12.9) is defined and smooth on all of S3 and hence is an element of Conf.S3/.

In the following let S D S��0 be stereographic projection from the point
��0 2 S3, as described in Definition 5.22. Then R3 is the span of �1;�2;�3 in
R4 � R4;1. The proof is completed by verifying the following Exercises.

Exercise 45 (Translation La by a 2R3). Prove that

S �1 ıLa ıS D f �1C ıTa ı fC W S3! S3;

where the matrix of Ta in the standard basis is

0
B@
2�jaj2
2
�ta � jaj2

2

a I3 a
jaj2
2

ta 2Cjaj2
2

1
CA 2 SOC.4;1/: (12.10)

Exercise 46 (Orthogonal transformation A 2O.3/). Prove that

S �1 ıAıS D f �1C ıTA ı fC W S3! S3;

where the matrix of TA in the standard basis is

.det A/

0
@1 0 00 A 0
0 0 1

1
A 2 SO.4;1/: (12.11)

Exercise 47 (Homothety ht, for t 2R�). Prove that

S �1 ı ht ıS D f �1C ıTt ı fC;

where the matrix of Tt in the standard basis is
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0
B@
1Ct2

2t 0 1�t2

2t
0 I3 0
1�t2

2t 0 1Ct2

2t

1
CA 2 SOC.4;1/: (12.12)

Exercise 48 (Inversion I in the unit sphere). Prove that

S �1 ıI ıS D f �1C ıTI ı fC;

where the matrix of TI in the standard basis is
0
@1 0 0

0 �I3 0

0 0 �1

1
A 2 SO.4;1/: (12.13)

ut
Corollary 12.18. The Lie group SO.R4;1/ is generated by elements of the four
types described in equations (12.10) through (12.13).

12.3 Möbius frames

The group Conf.S3/ acts transitively on S3, so the action of SO.R4;1/ on M is
transitive, by Theorem 12.17. For any chosen origin p 2M , we have a principal
bundle map

� W SO.R4;1/!M ; �.T/D Tp: (12.14)

In order to do calculations for this action, we want to represent the group in
some convenient basis of R4;1. One problem with using the standard basis for this
purpose is that Œ�a� …M , for any of the standard basis vectors �a. This complicates
the expression for the map (12.14). We consider bases of R4;1 that contain null
vectors.

Definition 12.19. A Möbius frame of R4;1 is an oriented basis Y0;Y1; : : : ;Y4 (so
Y0^ : : :^Y4 > 0), such that

hYa;Ybi D gab;

where the gab, for a;bD 0; : : : ;4, are the entries of

gD
0
@ 0 0 �1
0 I3 0

�1 0 0

1
A :
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In particular, Y0;Y4 2L . The frame is time oriented if, in addition,

Y0;Y4 2L C:

We choose and fix the time oriented Möbius frame of R4;1

ı0 D 1

2
.�4C�0/; ı4 D �4� �0; ıi D �i; iD 1;2;3: (12.15)

The Lorentzian inner product of uDP4
0 uaıa with vDP4

0 v
bıb is then

hu;vi D �.u0v4Cu4v0/C
3X
1

uivi:

The positive light cone in this Möbius frame is

L C D fuD
4X
0

uaıa W �2u0u4C
3X
1

.ui/2 D 0; u0C2u4 > 0g:

The group SO.R4;1/ is represented in the standard frame by SO.4;1/, and in this
Möbius frame by

MRobD fY 2 SL.5;R/ W tYgY D gg: (12.16)

The isomorphism between these two representations is given as follows. Let

LD
0
@1=2 0 �10 I3 0

1=2 0 1

1
A ; L�1 D

0
@ 1 0 1

0 I3 0

�1=2 0 1=2

1
A ; (12.17)

be the matrix in the standard basis of R4;1 of the change of basis transformation
L�a D ıa, for aD 0; : : : ;4. Then

F W SO.4;1/!MRob; F .A/D L�1AL (12.18)

is the desired isomorphism. An element T 2 SO.R4;1/ is represented by the matrix
Y 2MRob that satisfies

Tıa D
4X
0

Yb
a ıb;

for aD 0; : : : ;4. A matrix Y is in MRob if and only if its columns,

Ya D
4X
0

Yb
a ıb;
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for aD 0; : : : ;4, constitute a Möbius frame of R4;1. Conversely, if Y0; : : : ;Y4 is any
Möbius frame, and if YaDPYb

a ıb, then the matrix Y D .Yb
a /2MRob. The connected

component of the identity of this matrix group is

MRobC D fY 2MRob W Y0; Y4 2L Cg Š SOC.4;1/;

which is the representation in the fixed Möbius frame of the group SOC.R4;1/.
A matrix Y is in MRobC if and only if its columns, in the Möbius frame (12.15),
constitute a time oriented Möbius frame of R4;1, and conversely.

Remark 12.20. If T 2 SO.R4;1/, then TL D L and L C connected imply that
either TL C DL C or TL C D�L C DL �. From this it follows that if Y 2MRob,
then either both Y0 and Y4 are in L C, or neither is in L C.

In what follows, whenever a 5� 1 column vector is identified with an element
of R4;1, it is understood that this is done with the fixed Möbius frame (12.15). The
Lie algebra of MRob is identified with the Lie algebra of its connected component
MRobC, which is

mRobD fX 2 sl.5;R/ W tXgCgXD 0g Š o.4;1/:

Explicitly, a 5�5 matrix X is in mRob iff for i; jD 1;2;3

Xi
j D�Xj

i ; X04 D 0D X40 ; Xi
4 D X0i ; X4j D Xj

0; X44 D�X00 : (12.19)

The Maurer–Cartan form of MRob is the mRob-valued 1-form on MRob,

! D Y�1dY D

0
B@
!00 !

0
j 0

!i
0 !

i
j !0i

0 !
j
0 �!00

1
CA ; (12.20)

where i; j D 1;2;3, and !i
j D �!j

i . In terms of the columns of Y 2 MRob, equa-
tion (12.20) says

dYa D
4X
0

Yb!
b
a ; a;bD 0;1; : : : ;4: (12.21)

It expresses the derivative of column a of Y, which is the map Ya WMRob! R4;1, as
a linear combination of the Möbius frame of R4;1 given by all five columns, where
the coefficients are 1-forms on MRob. The exterior differential of equation (12.20)
gives the structure equations of MRob,

d!a
b D�

4X
cD0

!a
c^!c

b; (12.22)

for a;bD 0;1; : : : ;4.
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In terms of our fixed Möbius frame, ı0; : : : ;ı4 defined in (12.15), Möbius space
M of Definition 12.11 is

M D
(
Œu�D Œ

4X
0

uaıa� 2 P.R4;1/ W 0D�2u0u4C
3X
1

.ui/2

)
:

In this Möbius frame, the diffeomorphism fC W S3!M defined in (12.5) has the
expression

fC.
3X
0

xi�i/D
"
.1C x0/ı0C

3X
1

xiıiC 1� x0

2
ı4

#
; (12.23)

and its inverse mapping f �1C WM ! S3 is

f �1C

"
4X
0

uaıa

#
D 1

u0C2u4

 
.u0�2u4/�0C2

3X
1

ui�i

!
:

Note that if Œ
P4

0 uaıa� 2M , then 2u0u4 DP.ui/2 > 0, so u0C2u4 ¤ 0.
The projective action of SO.R4;1/ on M becomes, in our Möbius frame

representation, the matrix group action

MRob�M !M ; .Y; Œu�/ 7! YŒu�D ŒYu�;

where Yu is matrix multiplication of Y 2MRob with the 5� 1 coefficient matrix of
the vector u DP4

0 uaıa. By Theorem 12.17, this action is transitive, which means
that the orbit of any given point of M is all of M . Choose Œı0� to be the origin
of M . If Y 2 MRobC, then Yı0 D Y0 2 L C is the first column of Y relative to
the basis (12.15). Transitivity of the action of MRobC on M means that any vector
Y0 2 L C can be completed to a time oriented Möbius frame Y0;Y1;Y2;Y3;Y4

of R4;1. In a vector space with positive definite inner product, this completion is done
by using the Gram-Schmidt orthogonalization process. A similar process exists in
the present case. See Problem 12.59.

The transitivity of the action of MRobC on M implies transitivity of the action of
MRob on M , which means that the map

� WMRob!M ; �.Y/D YŒı0�D ŒY0� (12.24)

is surjective and its restriction to MRobC is surjective. The set of elements of MRob
that fix Œı0� is called the isotropy subgroup of MRob at Œı0�. We denote it

G0 D fK.r;A;y/ W r¤ 0; y 2R3; A 2 SO.3/g; (12.25)



12.3 Möbius frames 401

where we introduce the notation

K.r;A;y/D
0
@
1
r

tyA 1
2
rjyj2

0 A ry
0 0 r

1
A 2MRob; (12.26)

for any real number r ¤ 0, vector y 2 R3, and matrix A 2 SO.3/. If K.r;A;y/ and
K.s;B;z/ in G0, then

K.r;A;y/K.s;B;z/D K.rs;AB;yC r�1Az/; (12.27)

from which it follows that

K.r;A;y/�1 D K.r�1;A�1;�rA�1y/: (12.28)

Then M ŠMRob=G0 and (12.24) is a principal G0-bundle over M . The isotropy
subgroup of MRobC at Œı0� is the connected component of the identity of G0,

G0C D fK.r;A;y/ 2 G0 W r > 0g;

and we also have M ŠMRobC=G0C.
The Lie algebra mRob has a direct sum decomposition as vector spaces

mRobD g0Cm0; (12.29)

(see (12.19) for the structure of mRob) where g0 is the Lie algebra of G0, and of G0C,

g0 D f

0
B@

X00 X0j 0

0 Xi
j X0i

0 0 �X00

1
CA W Xi

jCXj
i D 0; i; jD 1;2;3g;

and m0 is the complementary subspace

m0 D fX D
0
@0 0 0x 0 0
0 tx 0

1
A W x 2R3g:

We identify m0 with R3 by

m0 3 X$ x 2 R3: (12.30)

Unlike the situation with Euclidean, spherical or hyperbolic geometry, however, the
subspace m0 cannot be chosen to be invariant under the adjoint action of G0 or
of G0C. That is, in general K�1XK …m0. We have
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K

0
@0 0 0x 0 0
0 tx 0

1
AK�1 D

0
@ 0 0 0

rAx 0 0

0 rtxtA 0

1
A mod g0:

In terms of the identification (12.30), the adjoint action of G0 on mRob=g0 Šm0 is

G0�R3! R3; K.r;A;y/xD rAx: (12.31)

Definition 12.21. A Möbius frame field on an open subset U �M is a smooth
local section

Y W U!MRob (12.32)

of the principal G0-bundle (12.24). This means that the columns Ya of Y are smooth
maps

Ya W U! R4;1; aD 0;1;2;3;4;

which form a Möbius frame at each point of U and such that � ıY0 D ŒY0� is the
identity map of U. A time oriented Möbius frame field on U is a smooth local section
Y W U!MRobC.

A Möbius frame field (12.32) pulls back the Maurer–Cartan form (12.20) to U.
We continue to denote these pulled back forms by the same letters, Y�1dY D ! D
.!a

b/, so

dYa D
4X
0

Yb!
b
a ;

where a;bD 0;1;2;3;4, and the !b
a are now 1-forms on U satisfying the structure

equations (12.22). Let

� D t.!10 ;!
2
0 ;!

3
0 /

denote the m0-component of ! (using the identification (12.30)). Any other Möbius
frame field on U is given by

QY D YK.r;A;y/; (12.33)

where

K.r;A;y/ W U! G0

is a smooth map. Let Q! D QY�1d QY and let Q� denote its m0-component. Then

Q! D K�1Y�1.dYKCYdK/D K�1!KCK�1dK
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shows that Q� is the m0-component of the adjoint action of K�1 on � . Then

Q� D 1

r
A�1�; (12.34)

by (12.31). From

t Q� Q� D 1

r2
t��; (12.35)

it follows that the collection of symmetric bilinear forms t�� on U, for all open sets
U �M on which there is a Möbius frame field Y W U!MRob, defines a conformal
structure on M . Actually, this is the conformal structure induced by local sections
of � WL !M introduced in Proposition 12.15. For, if Y0 is the first column of the
Möbius frame field Y W U!MRob, then Y0 W U!L is a local section and

hdY0;dY0i D h!00Y0C
3X
1

!i
0Yi;!

0
0Y0C

3X
1

!
j
0Yji D

3X
1

!i
0!

i
0 D t��: (12.36)

For any change of frame field (12.33), the 3-forms

Q!10^ Q!20^ Q!30 D
1

r3
!10^!20^!30 ;

so they define an orientation on M only if we restrict to local time oriented Möbius
frame fields on M .

12.4 Möbius frames along a surface

An immersion f WM!M of a surface pulls back the conformal structure (12.35)
of Möbius space to a conformal structure on M, which in turn induces a complex
structure on M, by Problem 12.57.

Definition 12.22. An immersion

f WM!M

of a Riemann surface M is conformal if it induces the given complex structure on
M. In more detail, the conformality of f WM!M means that if .V; I/ belongs to
the conformal structure of M , and if .U;z/ is a complex coordinate chart of M with
U � f �1V , then f �I D e2udzdNz, for some smooth function u W U! R.

Definition 12.23. A Möbius frame field along f on an open subset U � M is a
smooth map

Y W U!MRob;



404 12 Möbius Geometry

such that � ı Y D ŒY0� D f on U. In other words, if the columns of Y are Ya, for
aD 0; : : : ;4, then the smooth maps

Y0;Y1;Y2;Y3;Y4 W U! R4;1 (12.37)

constitute a Möbius frame at each point of U, and f D ŒY0�. A lift of f is a smooth
map F WU!L �R4;1 such that f D ŒF�. Conversely, a set of smooth maps (12.37)
forming a Möbius frame at each point of U, such that Y0 is a lift of f , determines a
Möbius frame field

Y D .Y0; : : : ;Y4/ WU!MRob

along f . If Y W U!MRobC, then Y is a time oriented Möbius frame field along f on
U. A lift F W U!L C of f is a time oriented lift of f .

We now apply the reduction scheme of Chapter 3 to time oriented Möbius frames
along a conformal immersion f WM!M . If Y WU �M!MRobC is a time oriented
Möbius frame field along f , then any other on U is given by QY D YK.r;A;y/, where
K.r;A;y/ WU! G0C �MRobC is a smooth map into

G0C D f
0
@
1
r

tyA r
2
jyj2

0 A ry
0 0 r

1
A W r > 0; A 2 SO.3/; y 2R3g:

The notation K.r;A;y/ is defined in (12.26). The vector space direct sum mRob D
g0 Cm0 of (12.29) decomposes the Maurer–Cartan form ! D Y�1dY into ! D
!m0C!g0 , where

!m0 D
0
@0 0 0� 0 0

0 t� 0

1
A ; � D

0
@!

1
0

!20
!30

1
A :

If Q! D QY�1d QY , then as shown in (12.34) we have Q� D 1
r A�1� .

Definition 12.24. A first order Möbius frame field along f is a time oriented
Möbius frame field Y W U �M!MRobC along f for which

!30 D 0 and !10^!20 > 0; (12.38)

where positivity of the 2-form is relative to the orientation of the Riemann
surface M.

Lemma 12.25. Let f W M!M be a conformal immersion of a Riemann surface
M. Given a point m 2 M, there exists a first order Möbius frame field along f on
some neighborhood U of m.
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Proof. There exists a lift F W U!L C on some neighborhood U of m. Using the
standard orthonormal basis �0; : : : ;�4 of R4;1, we have F DP4

0Fa�a for smooth
functions Fa W U! R for which F4 > 0 on U. Since 1

F4
F is also a time oriented lift

of f , we may assume F4D 1 on U, in which case FD xC�4, where x WU! S3 �R4

is a smooth immersion. We know there exists a first order frame field e WU! SO.4/
along x, possibly after shrinking U. Then xD e0 and dxD �1e1C�2e2, for smooth
1-forms �1 and �2 on U. If we let Y4 D 1

2
.�xC�4/, then

Y D .F;e1;e2;e3;Y4/ W U!MRobC

is a smooth time oriented first order Möbius frame field along f . ut
Let Y W U ! MRobC be first order along f . Taking the exterior differential of

!30 D 0 and using the structure equations (12.22) of MRob, we find that

!31^!10 C!32^!20 D 0;
which implies, by Cartan’s Lemma, that,

!3i D
2X

jD1
hij!

j
0; hij D hji; i; jD 1;2;

for some smooth functions hij W U ! R. Let S D .hij/ W U ! S , where S is the
space of real 2�2 symmetric matrices, and let

hD 1

2
.h11�h22/� ih12 D L.S/; H D 1

2
.h11Ch22/D 1

2
traceS; (12.39)

where L is the Hopf transform defined in (4.15) of Exercise 9. Then

!31 � i!32 D h.!10C i!20/CH.!10 � i!20/ (12.40)

and this equation determines h W U! C and H W U! R.

Exercise 49. Prove that, if Y WU!MRobC is first order along f , then any other first
order frame field along f on U is given by

QY D YK.r;A;y/; (12.41)

where K.r;A;y/ W U! G1 � G0C is any smooth map into the subgroup

G1 D f
0
@1=r tyA rjyj2=2
0 A ry
0 0 r

1
A W r > 0; AD

�
a 0
0 1

�
; a 2 SO.2/; y 2 R3g:

Hint: Be sure to apply both conditions in (12.38).
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As a shorthand we shall write

G1 D fK.r;eit;y/ W r > 0; t 2 R; y 2R3g;

where aD
�

cos t �sin t
sin t cos t

�
. Its Lie algebra is

g1 D f
0
@s tx 0

0 X x
0 0 �s

1
A W x 2 R3; X D

0
@ 0 t 0
�t 0 0
0 0 0

1
A ; s; t 2 Rg:

A complementary subspace is

m1 D f

0
BBBBB@

0 0 0 0 0

0 0 0 s 0
0 0 0 t 0
0 �s �t 0 0
0 0 0 0 0

1
CCCCCA
W s; t 2Rg:

Write (12.40) for QY of (12.41) as

Q!31 � i Q!32 D Qh. Q!10 C i Q!20/C QH. Q!10 � i Q!20/:

Then

Q!10 C i Q!20 D
1

r
e�it.!10 C i!20/;

Q!31 � i Q!32 D re2ith. Q!10 C i Q!20/C r.H� y3/. Q!10 � i Q!20/;

which shows that the coefficients transform by (see Problem 12.63)

QhD re2ith; QH D r.H� y3/: (12.42)

Definition 12.26. The conformal area element of a conformal immersion f WM!
M is the smooth 2-form˝ on M, defined by ˝ D˝Y D jhj2!10 ^!20 on U, for any
first order frame field Y W U!MRobC. See Problem 12.64.

Definition 12.27. An umbilic point of a conformal immersion f WM!M is a point
m 2M for which˝.m/ D 0.

The next frame reduction involves the action of G1 on C � R coming
from (12.42), which for K.r;eit;y/ 2 G1 is

K.r;eit;y/.h;H/D .re2ith;r.H� y3//: (12.43)
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This action on the C factor has two orbits of distinct types, f0g and C n f0g, while
the action on the R factor is transitive. Since hD 0 exactly at the umbilic points of f
in U, by Lemma 12.64, the orbit type of the action on C depends on whether a point
is umbilic. The action on R requires no assumptions on f . Following Bryant in [20],
at this stage we make an intermediate reduction by choosing y3 D H in (12.42).

Definition 12.28. A � -frame along f is a first order Möbius frame field Y W U!
MRobC along f for which the coefficient H in (12.40) is identically zero on U. It is
characterized by

!30 D 0; !31 � i!32 D h.!10C i!20/; !10^!20 > 0;

for some smooth function h W U! C.

Exercise 50. Prove that if Y W U ! MRobC is a � -frame along f , then any other
� -frame on U is given by QY D YK.r;A;y/, where K W U! G� ,

G� D fK.r;eit;y/ 2 G1 W y3 D 0g:

We have just observed that any first order frame field can be reduced to a � -frame.
If Y W U!MRobC is a � -frame field, we take the exterior derivative of !31 � i!32 D
h.!10C i!20/ and apply the structure equations to get

.dhCh.!00 �2i!21//^'C!03 ^ N' D 0;

where ' D !10 C i!20 . It follows that

dhCh.!00 �2i!21/D h1'Ch2 N'; !03 D h2'C Nh2 N'; (12.44)

for some smooth functions h1;h2 W U! C. The exterior differential of !03 D h2'CNh2 N', combined with the structure equations, leads to

dh2Ch2.2!
0
0C i!12/�

h

2
.!01 C i!02/D P'CW N'; (12.45)

for some smooth functions, called the � -invariants of Y,

P W U! C; W W U! R:

Definition 12.29. The Willmore function of f W M !M relative to the � -frame
Y W U!MRob is the real valued � -invariant W W U! R defined in (12.45). As we
shall see in Section 13.6, this could also be called the conformal mean curvature of
f relative to Y, or the Bryant function of f relative to Y, as he was the first to identify
its importance in [20]

Lemma 12.30. If Y W U !MRob is a � -frame along the conformal immersion f W
M!M , with Willmore function W W U! R, and if QY D YK.r;eit;y/ is any other
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� -frame on U, where K.r;eit;y/ W U! G� , then its Willmore function

QW D r3W W U! R:

Hence W1=3Y0 W U! L [f0g � R4;1 is independent of the choice of � -frame Y,
so defines a smooth map on all of M, which we call the conformal mean curvature
vector field of f .

Proof. This is a long, elementary calculation of the type we have done several times.
It is simplified considerably by carrying out an arbitrary change of � -frame in two
steps, using

K.r;eit;y/D K.1;1;y/K.r;eit;0/;

for any r > 0, t 2R, and y 2 R2. Then

QY D OYK.r;eit;0/; OY D YK.1;1;y/

are � -frames with Willmore functions

QW D r3 OW; OW DW;

by much simpler calculations. ut

12.4.1 Second order frame fields

We now consider the umbilic free case, which allows additional frame reductions.

Definition 12.31. A second order Möbius frame field along f is a first order frame
field Y W U!MRobC along f for which hD 1 and H D 0, that is

!30 D 0; !10 ^!20 > 0 (first order),

!31 � i!32 D !10 C i!20 (second order).
(12.46)

Lemma 12.32. Given any nonumbilic point m0 of f in M, there exists a neighbor-
hood U0 of m0 on which there is a second order Möbius frame field QY along f .

Proof. There exists a � -frame field Y W U !MRobC on some neighborhood U of
m0. Intersecting U with the open set of nonumbilic points, we may assume that
U contains no umbilic points. Then the function h W U ! C in (12.40) is never
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zero, since the umbilic points in U are precisely the zeros of h, and we have a
polar representation h D reit on U, where r D jhj > 0. If U0 � U is the connected
component containing m0 of

h�1.Cn fsh.m0/ W s	 0g/;

then there is a smooth function t W U0 ! R such that h D reit on U0. Using the
shorthand introduced in Exercise 49, we let QY D YK.1=r;e�it=2;0/ W U0!MRobC.
By (12.42) we have QhD 1 and QH D 0, which means that QY is a second order Möbius
frame field along f on U0. ut

Let Y W U!MRobC be second order along f . Differentiating the second equation
of (12.46), we get (12.44) for the case hD 1, which is

!00 �2i!21 D h1'Ch2 N'; !03 D h2'C Nh2 N'; (12.47)

where h1;h2 W U! C are smooth functions. Any other second order frame field on
U is given by

QY D YK W U!MRobC; (12.48)

where K W U! G2 is a smooth map into the subgroup G2 of G� ,

G2 D

8̂̂
<
ˆ̂:

0
BB@
1 
ty 0 1

2
jyj2

0 
I2 0 y
0 0 1 0

0 0 0 1

1
CCA W 
 D˙1; yD t.y1;y2/ 2 R2

9>>=
>>;
;

which is the isotropy subgroup of G1 of the action (12.43) at .1;0/ 2 C�R. Its Lie
algebra is

g2 D f
0
@0

tx 0
0 0 x
0 0 0

1
A W xD

0
@s

t
0

1
A 2 R2 � R3g:

A complementary subspace is

m2 D f

0
BBBBB@

r 0 0 s 0

0 0 t 0 0

0 �t 0 0 0

0 0 0 0 s
0 0 0 0 �r

1
CCCCCA
W r;s; t 2 Rg:
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Under the change of second order frame field (12.48), we have

Q' D 
'; Q!03 D !03 C
1

2
.y'C Ny N'/;

Q!00 D !00 �
1

2
.Ny'C y N'/; Q!21 D !21 �

i

2
.Ny'� y N'/;

where yD y1C iy2 and ' D !10 C i!20 . Then

Qh1 D 
.h1� 3
2
Ny/; Qh2 D 
.h2C 1

2
y/:

Following Bryant [20], we choose to make Q!03 D 0 for this final reduction. This is
accomplished by setting yD�2h2.

Definition 12.33 (Central frames). A third order Möbius frame field along f is a
second order frame field Y WM!MRobC along f for which

!30 D 0; !10 ^!20 > 0 (first order)

!31 � i!32 D !10 C i!20 (second order)

!03 D 0 (third order).

These are called central frame fields along f .

Lemma 12.34. Given a nonumbilic point of f in M, there is a neighborhood U
of this point on which there exists a central frame field Y D .Y0; : : : ;Y4/. If U is
connected, the only central frame fields on U are

Y D .Y0;
Y1;
Y2;Y3;Y4/; (12.49)

where 
 D˙1.

Proof. Existence was verified above. If Y W U ! MRobC is third order, then a
change (12.48) is also third order if and only if y D 0. If U is connected, such a
frame change is given by (12.49). ut

The isotropy subgroup of G2 at h2 D 0 is

G3 D f
0
@1 0 0

0 
I2 0
0 0 I2

1
Ag W 
 D˙1g;

whose Lie algebra g3 D 0. The frame reduction ends here.
Let Y W U !MRobC be a central frame field along f W M!M . Then !03 D 0

in (12.47) implies !00 �2i!21 is a multiple of ', which we write as

!00 �2i!21 D�2i.q1� iq2/' (12.50)
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for some smooth functions q1;q2 W U! R. This is equivalent to

!21 D q1!
1
0 Cq2!

2
0 ; !00 D�2.q2!10 �q1!

2
0 /; (12.51)

which is Bryant’s notation in [20]. Taking the exterior differential of !03 D 0, we
get (12.45) for the case hD 1 and h2 D 0 on U, which we rewrite in the form

!01 D p1!
1
0 Cp2!

2
0 ; !02 D�p2!

1
0 Cp3!

2
0 ; (12.52)

for smooth functions p1;p2;p3 W U! R. In the form of (12.45) this is,

!01 C i!02 D
1

2
.p1Cp3�2ip2/'C 1

2
.p1�p3/ N' D�2P'�2W N': (12.53)

The functions q1, q2, p1, p2, and p3 are the third order Möbius invariants of f as
defined in [20]. Differentiating (12.50) and (12.53), and using

d' D .!00 � i!21/^' D�
i

2
.q1C iq2/'^ N';

we get the structure equations of a central frame field,

d.q2C iq1/^' D�1
2
.p1Cp3C1Cq21Cq22C ip2/'^ N'; (12.54)

and

d.p1Cp3�2ip2/^'Cd.p1�p3/^ N'
D .4p2q1�3p3q2�p1q2C i.4p2q2C3p1q1Cp3q1//'^ N':

(12.55)

Remark 12.35. A central frame field Y W U!MRobC is a � -frame with � -invariant
PD� 1

4
.p1Cp3�2ip2/ and Willmore function

W D 1

4
.p3�p1/;

by (12.53).

Exercise 51. Prove that under the frame change (12.49), the third order invariants
transform by

Qq1 D 
q1; Qq2 D 
q2; Qp1 D p1; Qp2 D p2; Qp3 D p3:

Hint: Differentiate QY0 D Y0 and QY4 D Y4 and then compare the coefficients of Y0,
Y1, and Y2.
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Let Uf be the set of umbilic points of a conformal immersion f WM!M , which
we assume is not totally umbilic. Each point of MnUf has a neighborhood on which
there is a central frame field. At any point, the two possible central frame fields have
the same vector Y4.

Definition 12.36. The conformal dual map of a conformal immersion f WM!M ,
assumed not totally umbilic, is the smooth map

Of WM nUf !M ; Of D ŒY4�;

where Y4 WM nUf !L C is the last vector in any central frame field.

12.5 Space forms in Möbius geometry

Möbius geometry consists of the sphere S3 with its group of orientation preserving
conformal diffeomorphisms. Since any orientation preserving isometry of S3 is
conformal, we see that spherical geometry is naturally a subgeometry of Möbius
geometry. Stereographic projection S W S3 n fpg ! R3 is a conformal diffeomor-
phism that lifts any Euclidean isometry to a conformal transformation that extends
to all of S3. In this way Euclidean geometry is a subgeometry of Möbius geometry.
Hyperbolic geometry realized as the Poincaré Ball is conformally diffeomorphic
to an open subset of Euclidean space and S lifts any hyperbolic isometry to a
conformal transformation that extends to all of S3. In this way Hyperbolic geometry
is a subgeometry of Möbius geometry.

We need explicit expressions for these inclusions in order to do calculations.
For this we choose stereographic projection S D S��0 W S3 n f��0g ! R3 of
Definition 5.22,

S .x0�0C
3X
1

xi�i/D
P3

1 xi�i

1C x0
; S �1.y/D 1

1Cjyj2 ..1�jyj
2/�0C2y/;

where y DP3
1 yi�i 2 R3. Using the standard orthonormal basis �0; : : : ;�4 of R4;1,

where h�4;�4i D �1, we identify the subspaces with the spans

R3 D spanf�1;�2;�3g � R4 D spanf�0;�1;�2;�3g; R3;1 D spanf�1;�2;�3;�4g:
As in (7.16), let

S0 D R3; SC D S3 � R4; S� DH3 � R3;1;

with their groups of isometries denoted by

G0 D E.3/; GC DO.4/; G� DOC.3;1/;
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and Lie algebras

g0 D E .3/; gC D o.4/; g� D o.3;1/;

respectively. For each 
 2 f0;C;�g, we shall define a conformal embedding

f
 W S
!M ;

onto an open subset of M , where fC W S3 !M is the diffeomorphism defined
in (12.5), and a Lie group monomorphism

F
 WG
!MRob;

which is equivariant with f
 in the sense that

F
.A/f
.x/D f
.Ax/;

for any x 2 S
 and any A 2G
. Actually, the maps f
 determine the monomorphisms
F
, since for any T 2G
, the locally defined

F
.T/D f
 ıT ı f �1



extends to a conformal diffeomorphism on all of S3. The images of the Lie algebras
are the Lie subalgebras

dF
g
 D fX 2mRob W X00 D 0; X0i D�
Xi
0; iD 1;2;3g:

12.5.1 Spherical geometry

The diffeomorphism fC W S3!M of (12.23) is, for xDP3
0 xi�i 2 S3,

fC.x/D ŒxC�4�D Œ.1C x0/ı0C
3X
1

xiıiC .1� x0/

2
ı4�; (12.56)

where ı0 D 1
2
.�4C �0/;ıi D �i;ı4 D �4� �0 is the Möbius frame (12.15). Writing

elements of R4 as 4�1 column vectors whose entries are the coefficients relative to
the standard basis, and elements of R4;1 as 5� 1 column vectors whose entries are
the coefficients relative to the Möbius frame, we have

fC.x/D L�1
�

x
1

�
;

where the matrix L is defined in (12.17).
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The group of isometries of S3 is O.4/ acting on S3 by its standard linear action
on R4, as described in Chapter 5. It is naturally included in SO.4;1/ by

O.4/ ,! SO.4;1/; e 7! det.e/

�
e 0
0 1

�
:

Following this with the group isomorphism

F W SO.4;1/!MRob; F .A/D L�1AL

as defined in (12.18), we can define

FC WO.4/!MRob;

FC.e/D det.e/L�1
�

e 0
0 1

�
LD det.e/

0
BB@
1Ce00
2

e0j 1� e00
ei
0

2
ei

j �ei
0

1�e00
4
� e0j

2

1Ce00
2

1
CCA ;

(12.57)

a Lie group monomorphism equivariant with the embedding fC and the actions of
O.4/ on S3 and of MRob on M . Equivariance means that, if e 2O.4/ and if x 2 S3,
then fC.ex/D FC.e/fC.x/, which follows from

FC.e/fC.x/D det.e/L�1
�

e 0
0 1

�
LL�1

�
x
1

�
D L�1

�
ex
1

�
D fC.ex/:

The derivative at the identity of the Lie group monomorphism FC induces the Lie
algebra monomorphism

dFC W o.4/!mRob; dFCX D

0
B@
0 X0j 0
Xi
0

2
Xi

j X0i

0
X

j
0

2
0

1
CA (12.58)

where, because X is skew-symmetric, X0j D�Xj
0 and Xi

j D�Xj
i .

A frame field e WU� S3!O.4/ followed by the monomorphism (12.57) defines
a map FC ı e W U!MRob. Because fC is an embedding, there exists a frame field
Y W fC.U/!MRob such that Y ı fC D FC ı e. If ! D Y�1dY, then the Riemannian
metric

P3
1.!

i
0/
2 on fC.U/ is in the conformal class of M . If 
D e�1de, then

f �C! D dFC
;

so f �C!i
0 D dFC
i

0 D 
i
0

2
and

f �C
3X
1

.!i
0/
2 D 1

4

3X
1

.
i
0/
2



12.5 Space forms in Möbius geometry 415

shows that fC is conformal, since
P3

1.

i
0/
2 is the standard Riemannian metric on

U � S3 and
P3

1.!
i
0/
2 is a metric in the conformal structure of M , as shown

in (12.35) and (12.36).

Exercise 52. Prove that if e W U ! SO.4/ is a first order frame field on an open
set U � M along an immersion x W M2 ! S3, then Y D FC ı e W U !MRobC is a
first order frame field along f D fC ıx WM!M . Prove that the umbilic points of x
coincide with the umbilic points of f .

12.5.2 Euclidean geometry

Using the Möbius frame (12.15) ı0D �4C�0
2

, ıiD �i, ı4D �4��0 of R4;1, we embed
Euclidean space into Möbius space M with the map

f0 D fC ıS �1 W R3!M ; f0.x/D Œı0CxC jxj
2

2
ı4�; (12.59)

where S DS��0 is stereographic projection. The image of this map is M n fŒı4�g.
Being the composition of conformal maps, this map is conformal, which means that
it pulls back any metric of the conformal structure of M to a positive multiple of
the Euclidean metric on R3.

We map the Euclidean group E.3/ into the Möbius group MRob, defined in (12.16)
relative to the fixed Möbius frame (12.15), by applying the isomorphism F
in (12.18) to the conformal transformation S �1 ı .x;e/ ıS of S3. Using (12.10)
and (12.11), we calculate this composition to be

F0 W E.3/!MRob; F0.x;e/D det.e/

0
B@
1 0 0

x e 0
jxj2
2

txe 1

1
CA ; (12.60)

where eD .e1;e2;e3/ and txe denotes the row vector .x � e1;x � e2;x � e3/.
The Lie group monomorphism F0 induces a Lie algebra monomorphism of the

Lie algebras

dF0 W E .3/!mRob; dF0.x;X/D
0
@0 0 0x X 0

0 tx 0

1
A (12.61)

Exercise 53. Prove that if .x;e/ WU! EC.3/ is a first order frame field on an open
set U �M along the immersion x WM2!R3, then Y D F0 ı .x;e/ WU!MRobC is a
first order frame field along f D f0 ı x WM!M . Prove that the umbilic points of x
coincide with the umbilic points of f .
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12.5.3 Hyperbolic geometry

Our inclusion R3;1 � R4;1 gives a natural embedding

f� WH3!M ; f�.x/D Œ�0Cx�;

where

H3 D fxD
4X
1

xi�i 2 R3;1 W hx;xi D
3X
1

.xi/2� .x4/2 D�1; x4 
 1g:

In the Möbius frame (12.15) this embedding is

f�.
4X
1

xi�i/D Œ�0C
4X
1

xi�i�D Œ.x4C1/ı0C
3X
1

xiıiC x4�1
2

ı4�: (12.62)

That is, for any x 2H3, using the matrix L defined in (12.17), we have

f�.x/D L�1
�
1

x

�
:

Recall Definition 6.15 of the hyperbolic stereographic projection of hyperbolic
space onto the open ball B3 � R3,

s WH3! B3 � R3; s.x/D
3X
1

xi

1C x4
�i; xD

4X
1

xi�i:

We have

f� D f0 ı sD fC ıS �1 ı s; (12.63)

(see Problem 12.68). Thus, f� is a composition of conformal maps, so is itself
conformal. Its image is an open hemisphere in M described as follows.

Exercise 54. Consider the open subset

M� D fŒ
4X
0

xa�a� 2M W x0 ¤ 0; x4

x0

 1g

D fŒ
4X
0

uaıa� 2M W u0�2u4 ¤ 0; u0C2u4

u0�2u4

 1g:
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Prove that f�.H3/DM� and the inverse mapping f �1� WM�!H3 is

f �1� Œ

4X
0

uaıa�D 1

u0�2u4
.2

3X
1

ui�iC .u0C2u4/�4/

in the Möbius frame, and

f �1� Œ

4X
0

xa�a�D 1

x0

4X
1

xi�i

in the standard frame. The sphere at infinity (6.18) S21 of H3 is

fŒ
4X
1

ni�i� 2 P.R3;1/ W
3X
1

.ni/2� .n4/2 D 0g D fŒ
4X
0

ua�a� 2M W u0 D 0g:

Using the conformal diffeomorphism s1 W S21! @B3 defined in (6.41), prove that
the map

f 1� D f0 ı s1 W S21!M

is the inclusion f 1� Œ
P4

1 ni�i�D ŒP4
1 ni�i�2M , which is a conformal immersion with

image

f 1� .S21/D @M�:

For any unit speed geodesic �.t/ in H3, prove that

lim
t!1 f� ı�.t/D f 1� Œ�.0/C P�.0/�: (12.64)

Remark 12.37. The preceding exercise displays nicely a difference between the
conformal geometry of Euclidean space and the conformal geometry of Hyperbolic
space. If �.t/ is any smooth divergent curve in R3, such as any geodesic, then
f0 ı�.t/! Œı4� 2M . In this sense there is only one point at infinity of R3. Contrast
this with the situation in Hyperbolic space where, for any divergent curve �.t/, the
image curve f� ı �.t/ converges to a point in @M�, as t!1. If � and � are unit
speed geodesics in H3 such that Œ�.0/C P�.0/�¤ Œ�.0/C P�.0/� 2 S21, then f� ı�.t/
converges to a point in @M� distinct from the point to which f� ı�.t/ converges as
t!1. In this sense there is a whole S2 of points at infinity of H3, a fact illustrated
quite clearly by the Poincaré ball model.

The group of isometries of H3 is the Lie group OC.3;1/ defined in (6.4), acting
on H3 by its standard linear action on R3;1, as described in Section 6.1. There is a
natural inclusion

OC.3;1/� SO.4;1/; e 7! det .e/

�
1 0

0 e

�
:
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Following this with the group isomorphism F W SO.4;1/!MRob of (12.18), we
can define the Lie group monomorphism

F� WOC.3;1/!MRob;

F�.e/D L�1det.e/

�
1 0

0 e

�
LD det .e/

0
BB@

e44C1
2

e4j e44�1
ei
4

2
ei

j ei
4

e44�1
4

e4j
2

e44C1
2

1
CCA :

(12.65)

The Lie group monomorphism (12.65) induces the Lie algebra monomorphism

dF� W o.3;1/!mRob; dF�X D

0
B@
0 Xj

4 0
Xi
4

2
Xi

j Xi
4

0
X4j
2
0

1
CA ; (12.66)

where X4j D Xj
4 and Xi

j D�Xj
i , for i; jD 1;2;3.

Remark 12.38. The Poincaré ball model of hyperbolic space shows geometrically
how any isometry of hyperbolic space gives rise to a conformal transformation of the
sphere. Indeed, the isometries of the Poincaré ball model B3 � R3 are generated by
inversions in spheres that intersect the unit sphere @B3 orthogonally. This includes
also reflection in any plane passing through the origin. See, for example, Greenberg
[78] for the two-dimensional case.

Exercise 55. Prove that if e WU! SOC.3;1/ is a first order frame field on an open
set U � M along an immersion x W M2 ! H3, then Y D F� ı e W U !MRobC is a
first order frame field along f D f� ı x WM!M . Prove that the umbilic points of x
coincide with the umbilic points of f .

12.6 Spheres in Möbius space

Recall Definition 5.4 of the oriented sphere Sr.m/ D fy 2 S3 W y �mD cosrg in S3

with center m 2 S3, signed radius r 2 R, and unit normal n.y/ D m�cos r y
sin r . Then

Exercise 19 parametrizes the set Q̇ of all nonpoint oriented spheres in S3 by the
identification

Q̇ D fSr.m/ Wm 2 S3; 0 < r < �g Š S3� .0;�/:

Definition 12.39. The space of oriented spheres in M is

S3;1 D fS 2 R4;1 W hS;Si D 1g: (12.67)
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Fig. 12.3 The light cone L
and set of oriented spheres
S3;1 in the �0�4-subspace
of R4;1.

← S3,1

← light cone

x0

x4

Figure 12.3 illustrates the light cone L with S3;1 in spanf�0;�4g � R4;1. A point
SD xC t�4 2 S3;1 � R4˚R�4 determines the subset

S? D fŒu� 2M W hu;Si D 0g D fŒyC�4� 2M W y 2 S3; y � xD tg;

so S?D fCSr.m/, where rD cot�1 t 2 .0;�/ and mD sinr x2 S3. Our name for S3;1

comes from identifying it with Q̇ by the following diffeomorphism � W Q̇ ! S3;1.

Exercise 56. Prove that the map

� W Q̇ D S3� .0;�/! S3;1; �.Sr.m//D 1

sinr
mC cotr �4

is smooth with smooth inverse

� W S3;1! Q̇ ; � .xC t�4/D Sr.sinr x/;

where rD cot�1 t 2 .0;�/. Prove, in addition, that

fC.Sr.m//D . 1

sinr
mC cotr �4/

?:

The action of SO.R4;1/ on R4;1 sends S3;1 to itself, so induces a group of
isometries on S3;1 with its induced Lorentzian metric. This action sends oriented
spheres of M to oriented spheres of M , since if S 2 S3;1 and T 2 SO.R4;1/, then

T.S?/D fTŒu� 2M W 0D hu;Si D hTu;TSig D .TS/?:
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Proposition 12.40. If S2 S3;1, then the oriented sphere S?�M is a totally umbilic
immersed surface. Conversely, if f W M!M is a totally umbilic immersion of a
connected surface M, then f .M/ is an open subset of S?, for some S 2 S3;1.

Proof. By the transitivity of the action of MRobC on S3;1, it is sufficient to consider
the case of ı3 2 S3;1. Then

ı?
3 D fŒxC�4� W x 2 S2 D S3\ �?

3 � R4g:

For a point in S2, there is a first order frame field eD .x;e1;e2;�3/ W U! SO.4/ on
some neighborhood U of the point, so dxD �1e1C�2e2 and d�3 D 0. Then

Y0 D xC�4; Y1 D e1; Y2 D e2; Y3 D ı3; Y4 D 1

2
.�xC�4/

is a time oriented first order Möbius frame field on U for which !31 D 0 D !32 at
every point of U. Hence, this is a � -frame and ı?

3 is totally umbilic. Conversely, if
f WM!M is totally umbilic, then for any � -frame Y W U �M!MRobC, we have
!31 D 0D !32 , and thus !03 D 0 as well, by the structure equations. With respect to
this frame field,

!30 D 0; !31 D 0; !32 D 0; !03 D 0

on U. Regard these as left invariant forms defining a distribution on MRobC. It
satisfies the Frobenius condition, and therefore defines a Lie subalgebra, h � mRob.
The maximal integral submanifold through the identity is the Lie subgroup H D
fY 2 MRobC W Yı3 D ı3g. Every other integral submanifold is a left coset of H.
The set of all � frames along f must lie in one of these integral submanifolds.
Thus, for any point m0 2 U, the coset Y.m0/H must contain all � frames on f , so
f .M/� Y.m0/HŒı0�. But HŒı0�D ı?

3 . ut
A point x2 S3 and a unit tangent vector n2 TxS3D x?�R4 determine the pencil

of oriented tangent spheres

fSr.cosr xC sinr n/ W 0 < r < �g:

Then � of this pencil is the curve in S3;1,

fnC cotr.xC�4/ W 0 < r < �g:

These observations lead to the following definition.

Definition 12.41. The pencil of oriented spheres through a point Œu� 2M deter-
mined by an oriented sphere S 2 S3;1 passing through Œu� is the curve

fSC tu W t 2 Rg � S3;1: (12.68)
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An oriented sphere S2 S3;1 passes through a point Œu�2M if and only if Œu� 2 S?
if and only if hS;ui D 0. Thus, if S passes through Œu� 2M , then every oriented
sphere in the pencil (12.68) passes through Œu�.

For an immersion x W M2 ! S3 with unit normal vector field n, the oriented
tangent sphere at a point p 2 M, oriented by n.p/, of radius r 2 .0;�/, is
Sr.cosr x.p/Csinr n.p//. Its characterizing features are that it passes through x.p/,
is oriented by the unit normal n.p/ at x.p/, and is tangent to x.M/ at x.p/, that is
dxp �n.p/D 0. Then

�Sr.cosr x.p/C sinr n.p//D n.p/C cotr .x.p/C�4/

is an oriented sphere in S3;1. It passes through fC ı x.p/D Œx.p/C�4�, since

hn.p/C cotr .x.p/C�4/;x.p/C�4i D 0;

it lies in the pencil of oriented spheres through Œx.p/C�4� determined by the oriented
sphere n.p/ 2 S3;1, and it has the property that

hd.xC�4/p;n.p/C cotr .x.p/C�4/i D 0:

These observations lead to the following definitions.

Definition 12.42. A tangent sphere of a conformal immersion f WM!M at p 2M
is an oriented sphere S 2 S3;1 such that, if F W U �M!L is any lift of f about p,
then

hF.p/;Si D 0; and hdFp;Si D 0:

The pencil of oriented tangent spheres of f at p 2 M determined by the oriented
tangent sphere S at p is

fSC tF.p/ W t 2Rg:

A tangent sphere map along f on U�M is a smooth map S WU! S3;1 such that S.p/
is an oriented tangent sphere of f at each point p 2 U. A smooth pencil of oriented
tangent spheres along f is the set of pencils determined by a smooth tangent sphere
map along f .

Exercise 57. Prove that, if Y WU!MRob is first order along f , and if t WU!R, then
Y3C tY0 W U! S3;1 is an oriented tangent sphere map along f . Prove that any two
first order frame fields Y; QY W U! S3;1 along f induce the same pencil of oriented
tangent spheres along f on U.

Remark 12.43. The pencil of oriented tangent spheres of f at p determined by the
oriented tangent sphere �S 2 S3;1 is disjoint from the pencil determined by S.
The following Lemma shows that these are the only two pencils of oriented
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tangent spheres of f at p. Thus, if there exists a smooth pencil of oriented tangent
spheres along f , determined by the smooth tangent sphere map S W M! S3;1, and
if M is connected, then the only other smooth pencil is the one determined by
�S WM! S3;1.

Lemma 12.44. If F W U ! L C is a lift of the immersion f W M ! M on a
neighborhood U of p 2 M, and if S;T 2 S3;1 are tangent spheres of f at p, then
T D˙SC tF.p/, for some t 2 R.

Proof. F DP4
0Fa�a W U!L C has F4 > 0 on U. Dividing by F4, we may assume

F4 D 1 on U. Then F D xC �4, where x W U! S3 � R4, so dx 2 x? � R4. There
exists an orthonormal basis x.p/;e1;e2;e3 of R4 such that dxp D �1e1C �2e2. Let
Y D 1

2
.�x.p/C�4/, so hY;Yi D 0 and hY;Fi D�1. Then F.p/;e1;e2;e3;Y is a basis

of R4;1 for which the null vectors F.p/ and Y are orthogonal to e1;e2;e3.
If SD s0F.p/C s1e1C s2e2C s3e3C s4Y 2 S3;1 is a tangent sphere of f at p, then

s1 D s2 D s4 D 0, and s3 D˙1. In the same way, any other tangent sphere T 2 S3;1

has the expansion T D t0FC t3e3, where t3 D˙1. Substituting e3 D 1
s3
.S� s0F.p//

into the expansion of T, we get T D˙SC tF.p/, for some t 2 R. ut
Remark 12.45. If follows from the Lemma that there are exactly two pencils of
oriented tangent spheres at any point of an immersion f W M ! M : the one
determined by Y3.m/ of any first order frame field at the point, at its opposite,
�Y3.m/.

Definition 12.46. A smooth tangent sphere map S W M ! S3;1 along a smooth
immersion f W M!M induces the orientation of the Riemann surface M, if the
pencil of oriented tangent spheres it determines at each point is the same as that
determined by the first order frame fields.

Definition 12.47. An oriented curvature sphere of an immersion f WM!M at a
point p 2 M is an oriented tangent sphere OS to f at p such that, if S W U ! S3;1 is
an oriented tangent sphere map on a neighborhood U of p and S.p/D OS, then dSp

mod f .p/ has rank less than two. Here the expression mod f .p/ means modulo the
1-dimensional subspace f .p/ of R4;1.

If dSp mod f .p/ has rank less than two for some tangent sphere map S, then any
other such map has the same property. In fact, it is given by T D SC tF, where F is a
local lift of f to L C and t WU!R satisfies t.p/D 0, so dTp D dSpCdtpF.p/� dSp

mod F.p/.
This definition is consistent with our notion of curvature sphere of an immersion

x WM! S3.

Proposition 12.48. If x WM! S3 is a smooth immersion oriented by the unit nor-
mal vector field n, then any oriented curvature sphere of the conformal immersion
f D fC ıx WM!M at a point p 2M is the image under fC W S3!M of an oriented
curvature sphere of x at p.
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Proof. For fixed r 2 .0;�/, an oriented tangent sphere map along x is Sr.cosr xC
sinr n/ WM! Q̇ . Then

SD �Sr.cosr xC sinr n/D nC cotr .xC�4/ WM! S3;1 � R4;1

is an oriented tangent sphere map along f D fC ı x and

dSD dnC cotr dx mod xC�4

has rank less than two at p 2M precisely when dnCcot r dx has rank less than two
at p, which is the condition that Sr.cosr xC sinr n/ at p is an oriented curvature
sphere of x at p. ut

12.7 Canal and Dupin immersions

Definition 12.49. An immersion f WM2!M is canal if one of its curvature sphere
maps is smooth and has rank less than two at every point of M. The immersion is
Dupin if both curvature sphere maps are smooth and each has rank less than two at
every point of M.

Lemma 12.50 (Canal and Dupin criteria). An umbilic free immersion f W M2!
M is canal if and only if its third order invariants satisfy q1q2D 0 on M. It is Dupin
if and only if q1 D 0D q2 on M.

Proof. Let Y W U ! MRobC be a central frame field along f . Then the curvature
sphere maps are Y3C 
Y0, where 
 D˙1, and

d.Y3C 
Y0/D 
!00Y0C .�!10 C 
!10 /Y1C .!20 C 
!20/Y2:

For 
D 1, this has rank less than two if and only if !00 ^!20 D 0 if and only if q2D 0
on M, by (12.51). For 
 D�1, it has rank less than two if and only if q1 D 0. ut

Here are some results about Dupin immersions. For more results about canal
immersions see Musso and Nicolodi [126].

Theorem 12.51 (Dupin immersions). If f W M2 !M is an umbilic free Dupin
immersion of a connected Riemann surface M, then, up to Möbius transformation,
f .M/ is an open submanifold of the standard embedding into M of an isoparametric
immersion in R3, or S3, or H3.

Proof. This is a special case of Proposition 3.11. Let Y W U!MRobC be a central
frame field along f on a connected open subset U of M. Then q1 D 0D q2 on U, by
Lemma 12.50, so !00 D 0D !21 on U. Then p1Cp3C1D 0D p2 on U, by (12.54),
so p1 � p3 is constant on U, by (12.55). Set p1 � p3 D 2C, a real constant. Then
p1 D� 12 CC and p3 D� 12 �C are constant on U, so Y W U!MRobC is an integral
submanifold of the 2-dimensional distribution on MRobC defined by the equations
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!00 D !21 D !30 D !03 D 0; !31 D !10 ; !32 D�!20 ;

!01 D .�
1

2
CC/!10 ; !02 D .�

1

2
�C/!20 :

For any constant C 2 R, these equations define a 2-dimensional, abelian, Lie
subalgebra hC of mRob. If HC is its connected Lie subgroup of MRob, then the
maximal integral submanifolds of this distribution are the right cosets of HC. Hence,
Y.U/� Y.m0/HC, for any given point m0 2 U, so f .U/� Y.m0/HCŒı0�. Any point
m 2M can be reached by a chain of open subsets Ui, for iD 1; : : : ;k, such that U1 D
U, Ui\UiC1¤;, m 2Uk, and there exists a central frame field Y.i/ WUi!MRob. By
Lemma 12.34, the invariants of two frame fields with overlapping domains must be
the same so their images must be in the same coset of HC. In particular, f .Uk/ �
Y.m0/HCŒı0�. We conclude that f .M/ � Y.m0/HCŒı0�, which up to the Möbius
transformation Y.m0/ is HCŒı0�. This one-parameter family of immersions comes
from the isoparametric immersions in space forms. See Problems 12.74, 12.75,
and 12.76 for details. ut
Remark 12.52. If Y W M!MRob is a central frame field along a Dupin conformal
immersion f WM!M , with invariant C, then the Dupin conformal immersion with
invariant�C is the same map f W NM!M with the Riemann surface M replaced by
its complex conjugate NM. A central frame field along it is QY D .Y0;Y2;Y1;�Y3;Y4/.
The central frame field along a Dupin immersion has been used by Musso and
Nicolodi [127] as a tool for studying the Darboux transform of Dupin immersions.
This transform has been used also by H. Bernstein [3] to find many new isothermic
immersions of tori. Figure 12.4 shows one of her non-special, non-canal, isothermic
tori, opened to exhibit the self-intersections. See Section 14.4 for the meaning of
special isothermic immersion.

One consequence of the preceding proof is that the Möbius invariants of a
Dupin immersion are all constant. Are there any other immersions of surfaces
into M whose Möbius invariants are all constant? It turns out that there are and
we have already encountered them as the Bonnet cylinders of Proposition 10.14.
These immersions are known as spiral cylinders. See Sulanke [158] and additional
references in that paper.

Corollary 12.53 (Spiral cylinders). Let f WM!M be an umbilic free conformal
immersion of a connected Riemann surface. If the conformal invariants of f are all
constant, then, up to Möbius transformation, either f is a Dupin immersion or f .M/
is contained in the image of

f0 ı xn W RC�R!M ; (12.69)

for some real constant n > 0, where xn W RC �R! R3 is a Bonnet cylinder of
Proposition 10.14, shown in Figure 10.2.
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Fig. 12.4 A non-special,
non-canal, isothermic torus of
Bernstein.

Proof. In the preceding proof we saw that if the Möbius invariants q1 and q2 are
zero, then the remaining three invariants are constant and then we classified this
case. Suppose then that all invariants are constant and that q1 or q2 is not zero, say
q2 ¤ 0. We may assume q2 > 0, by Exercise 51. Then

p2 D 0D q1; p1 D�3p3; p3 D 1

2
.1Cq22/; (12.70)

by (12.54) and (12.55). Then (12.69), for nD 2
q2

, is the unique conformal immersion,
up to Möbius transformation, whose invariants satisfy (12.70). See Problem 12.77
for more details. The case q1 > 0 is considered in Problem 12.78. ut

In the standard classification of Dupin immersions in R3 – see, for example, [40]
– a limit spindle cyclide is a circular cylinder inverted in any sphere whose center
lies inside the cylinder. Inversion of the cylinder x2C y2 D 1 in the unit sphere is
shown on the left in Figure 12.5. It has been opened to show how all the circles
forming it meet at one point.

The limit horn cyclide is a circular cylinder inverted in a sphere whose center lies
outside of the cylinder. Inversion of the cylinder .x�2/2Cy2 D 1 in the unit sphere
is shown on the right side in Figure 12.5. See Problem 12.75.

In the standard classification, a spindle cyclide is the projection into the Poincaré
ball of a circular hyperboloid whose axis passes through the center, together with
its inversion in the unit sphere, as shown in Figure 12.6. A horn cyclide is a circular
hyperboloid whose axis does not pass through the center of the Poincaré ball,
together with its reflection in the unit boundary sphere, as shown in Figure 12.7.
See Problem 12.76.



426 12 Möbius Geometry

Fig. 12.5 Limit spindle
cyclide on left, limit horn
cyclide on right.

Fig. 12.6 Spindle cyclide:
circular hyperboloid and its
reflection in unit sphere

Problems

12.54. Let Im denote inversion in the unit sphere centered at the point m 2 R3, so
I DI0. Prove that inversion in the sphere with center m and radius r > 0 given by
the formula (12.2) is the composition of a translation, a homothety, and an inversion.

12.55. Prove that inversion in the unit sphere centered at m is a composition of
translations and inversion in the unit sphere centered at the origin.

12.56. Prove the following.

1. If jmj D r, then the inversion of the sphere jx�mj2 D r2 in the unit sphere is a
plane. Find a normal vector and a point of the plane.

2. Prove that the inversion in the unit sphere of a plane not containing the origin is
a sphere that passes through the origin. Find the center and radius of the sphere
in terms of the data of the plane (point on it and a normal vector). It should be
clear that the inversion in the unit sphere of a plane passing through the origin is
the same plane with the origin removed.
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Fig. 12.7 Horn cyclide:
Off-center circular
hyperboloid and its reflection

12.57. Prove that a conformal structure on a surface M induces a complex structure
on M such that for any complex coordinate chart .U;z/ in M, the pair .U;dzdNz/
belongs to the conformal structure. Prove also that a complex structure on a surface
defines a conformal structure on it.

12.58. Prove (12.18) and prove that tLI4;1L D g, where L is defined in (12.17).
Calculate the matrices in MRob of translations Ta 2 SO.4;1/ in (12.10), orthogonal
transformations TA 2 SO.4;1/ in (12.11), homotheties Tt 2 SO.4;1/ in (12.12), and
the inversion TI 2 SO.4;1/ in (12.13).

12.59. Prove that a vector Y0DP4
0 uaıa 2L C can be completed to a time oriented

Möbius frame Y0;Y1; : : : ;Y4 of R4;1.

12.60. Prove (12.27) and (12.28).

12.61. Prove that m0 is not invariant under the adjoint action of G0.

12.62. Follow the procedure of Section 3.1 to prove Lemma 12.25.

12.63. Prove (12.42).

12.64. For a first order frame field Y WU!MRobC along the immersion f WM!M ,
define the 2-form

˝Y D jhj2!10^!20
on U, where h is defined in (12.39). Prove that ˝Y is independent of the first order
frame field Y along f .
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12.65. Prove that FCSO.4/�MRobC.

12.66. Prove that the map F0 defined in (12.60) is a Lie group monomorphism that
is equivariant with the map (12.59) in the sense that for any .x;e/ 2 E.3/ and any
y 2R3, we have f0..x;e/y/D F0.x;e/f0.y/.

12.67. Prove that F0EC.3/�MRobC.

12.68. Prove (12.63).

12.69. Prove that F� is equivariant with f� in the sense that, if e 2OC.3;1/ and if
x 2H3, then f�.ex/D F�.e/f�.x/.

12.70. Prove that F�SOC.3;1/�MRobC.

12.71. Prove that S3;1 is a smooth 4-dimensional submanifold of R4;1 for which the
induced metric has signature .3;1/.

12.72. Prove that the action of SOC.R4;1/ on S3;1 is transitive.

12.73. Let Y W U � M ! MRobC be a time oriented � -frame field along an
immersion f WM!M . Let h W U! C be the smooth function of Definition 12.28.
Prove that Y3˙ jhjY0 W U ! S3;1 are independent of the choice of � -frame field
along f . Prove that these globally defined maps Y3˙jhjY0 WM! S3;1 are curvature
sphere maps of f . Note that these maps are smooth away from the umbilic points of
f , and on any open set of umbilic points.

12.74 (Circular tori). The isoparametric immersions in S3 were determined in
Theorem 5.15 to be the circular tori S1.r/�S1.s/� S3, where rD cos˛ and sD sin˛
for any constant 0 < ˛ < �=2. As discussed in Example 5.12, these are given by
immersions

x W R2! S3; x.x;y/D t.r cos
x

r
;r sin

x

r
;scos

y

s
;ssin

y

s
/

Prove that f D fC ı x W R2 !M is a conformal Dupin immersion with invariant
CD p1�p3

2
D�cos2˛.

12.75 (Circular cylinder). The isoparametric immersions in R3 were determined
in Proposition 4.39 to be, up to congruence, the circular cylinders of radius R > 0,

x W R2! R3; x.x;y/D t.Rcosx;Rsin x;y/

with second order frame field .x;e/, where e1 D 1
R xx, e2D xyD �3, and e3D e1�e2.

Prove that f D f0 ı x W R2 !M is a conformal Dupin immersion with invariant
CD 1.

12.76 (Circular hyperboloid). The isoparametric immersions in H3 were found
in Problem 6.49 to be, up to congruence, the circular hyperboloids S1. a

s / �
H1. 1s / � H3 � R2 �R1;1, where a is any constant 0 < a < 1 and s D p1�a2.
A parametrization with principal curvatures a and 1=a is given by x W R2 ! H3,
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where

x.x;y/D 1

s
.acos.

sy

a
/�1Casin.

sy

a
/�2C sinh.sx/�3C cosh.sx/�4/;

with unit normal vector field

e3 D�1
s
.cos.

sy

a
/�1C sin.

sy

a
/�2Casinh.sx/�3Cacosh.sx/�4/:

Prove that f D f� ı x W R2 !M is a conformal Dupin immersion with invariant
CD p1�p3

2
D aCa�1

a�a�1 2 .�1;�1/.
12.77. Verify that the Möbius invariants of the immersion in (12.69) are given
by (12.70) with q2 D 2

n . See also Problem 13.53 in the next chapter.

12.78. Classify the umbilic free conformal immersions f WM!M of a connected
Riemann surface M for which the conformal invariants are all constant and q1 > 0.



Chapter 13
Complex Structure and Möbius Geometry

This chapter takes up the Möbius invariant conformal structure on Möbius space.
It induces a conformal structure on any immersed surface, which in turn induces
a complex structure on the surface. Möbius geometry is the study of properties
of conformal immersions of Riemann surfaces into Möbius space M that remain
invariant under the action of MRob. Each complex coordinate chart on an immersed
surface has a unique Möbius frame field adapted to it, whose first order invariant
we call k and whose second order invariant we call b. These are smooth, complex
valued functions on the domain of the frame field. These frames are used to derive
the structure equations for k and b, the conformal area, the conformal Gauss map,
and the conformal area element. The equivariant embeddings of the space forms into
Möbius space are conformal. Relative to a complex coordinate, the Hopf invariant,
conformal factor, and mean curvature of an immersed surface in a space form
determine the Möbius invariants k and b of the immersion into M obtained by
applying the embedding of the space form into M to the given immersed surface.
This gives a formula for the conformal area element showing that the Willmore
energy is conformally invariant.

13.1 Conformal immersions

In this chapter we exploit the complex structure induced on a surface M by an
immersion f WM!M , as described at the beginning of Section 12.4. If M is a given
Riemann surface, then the immersion is conformal if the given complex structure
is the same as that induced by the immersion, by Definition 12.22. The inner
product on R4;1 is extended to be bilinear over C on the complexification R4;1˝C.
The following exercise gives an important criterion for when the immersion of a
Riemann surface is conformal.
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Let f W M!M be an immersion of a Riemann surface M. The map f is con-
formal if and only if any point of M is contained in some complex coordinate chart
.U;zD xC iy/ of M for which there exists a lift F W U!L of f satisfying

hdF;dFi D e2udzdNz; (13.1)

for some smooth u W U! R. This condition is equivalent to

hFz;FNzi> 0 and hFz;Fzi D 0;

where Fz D 1
2
. @F
@x � i @F

@y / and FNz D 1
2
. @F
@x C i @F

@y /.

Example 13.1. Let M D C, the complex plane with its complex coordinate
zD xC iy. Let f WC!M be the map defined by the time oriented lift

F W C!L C; F.z/D Y0 D ı0C xı1C yı2C jzj
2

2
ı4: (13.2)

Then

Fz D 1

2
.ı1� iı2CNzı4/; FNz D 1

2
.ı1C iı2C zı4/;

and then

hdF;dFi D 2hFz;FNzidzdNzD dzdNz

shows that f is conformal. If z¤ 0, then

f .z/D Œ 1jzj2 ı0C x

jzj2 ı1C y

jzj2 ı2C 1
2

ı4�! Œı4� as z!1

shows that f can be extended to a continuous map on the Riemann sphere
OCD C[f1g. Using the complex coordinate wD 1=z on OCnf0g, where w.1/D 0,

one can show that f is a conformal immersion OC!M .
A time oriented Möbius frame field Y along f on C is given by

Y0 D F; Y1 D ı1C xı4; Y2 D ı2C yı4; Y3 D ı3; Y4 D ı4;

in the Möbius frame (12.15). In general, dYa DP4
0Yb!

b
a , for aD 0; : : : ;4, where

the !b
a are the 1-forms on MDC obtained by pulling back the Maurer–Cartan forms

of MRob by the frame field Y W C!MRob. We calculate

dY0 DY1dxCY2dyD
4X
0

!a
0Ya;
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which implies that

!10 D dx; !20 D dy; !30 D 0D !00 ; (13.3)

and we calculate

dY1 D ı4dx; dY2 D ı4dy; dY3 D 0D dY4; (13.4)

which imply that

!01 D !02 D !03 D !13 D !23 D 0: (13.5)

The forms in (13.5) can be read from (13.4) by inspection, or be found by

!0a D�hdYa;Y4i; !i
a D hdYa;Yii; !4a D�hdYa;Y0i;

where aD 0;1; : : : ;4 and iD 1;2;3. Observe that !10 C i!20 D dz in this example.

13.2 Adapted frames

For a conformal immersion f W M!M (see Definition 12.22) we want to make
frame reductions relative to a fixed local complex coordinate in the Riemann
surface M. After the second reduction, which is unique for time oriented frames, we
will then see how the second order frame and the invariants change with a change
of local complex coordinate. Adapting the frame to a given coordinate system is a
major innovation in the subject introduced by F. Burstall, F. Pedit, and U. Pinkall
in [26].

Let .U;zD xC iy/ be a complex coordinate chart of M. Let

Y D .Y0; : : : ;Y4/ WU!MRob

be a Möbius frame field along f on U. Then

dYa D
4X
0

!b
a Yb;

for a D 0; : : : ;4, where !b
a denote the pull backs of the Maurer–Cartan forms

by Y. Under the decomposition mRob D g0 Cm0 of (12.29), the entries of the
m0-component of ! are !i

0, for iD 1;2;3. We set

!i
0 D pidzC NpidNz; iD 1;2;3; (13.6)
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where pi W U! C are smooth functions. Let

pD t.p1;p2;p3/ W U! C3:

Then the m0-component of ! is

� D t.!10 ;!
2
0 ;!

3
0 /D pdzC NpdNz;

so

t�� D tppdz2C tNp NpdNz2C2 tp NpdzdNz:

The condition that f be a conformal immersion requires that t�� be a smooth positive
multiple of dzdNz on U, which requires

tppD 0D tNp Np; tp Np > 0:

Therefore, p takes values in the set I of isotropic vectors in C3, which is the
complex quadric cone

I D f0¤ zD .zj/ 2 C3 W tzzD
3X
1

.zj/2 D 0g:

Notice that tzzD z � z is the dot product of R3 extended to C3 to be bilinear over C.
Any other frame field along f on U is given by QY D YK.r;A;y/, for

K.r;A;y/D
0
@
1
r

tyA r
2
jyj2

0 A ry
0 0 r

1
A W U! G0; (13.7)

r ¤ 0, A 2 SO.3/, and y 2 R3, defined in (12.25) and (12.26). Set QY�1d QY D Q!.
Denote the quantities in (13.6) for QY with the same letters marked with a tilde. From
the change of frame formula (12.34), it follows that

QpD 1

r
A�1p: (13.8)

Exercise 58. Prove that the action of R��SO.3/ on I given by .r;A/pD rAp is
transitive. To be specific, prove that this action sends the point t.1;�i;0/ 2I to any
point p 2I . Prove that the isotropy subgroup at t.1;�i;0/ is

f.
;
�

I2 0
0 1

�
/ W 
 D˙1g:
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Hint: If p 2 C3, then p D u1C iu2, where u1;u2 2 R3 are the real and imaginary
parts of p. Then p 2 I if and only if u1 and u2 are orthogonal and of the same
length r > 0. If

e1 D 1

r
u1; e2 D�1

r
u2; e3 D e1� e2 2 R3;

then AD .e1;e2;e3/ 2 SO.3/ and rAt.1;�i;0/D p.

Exercise 59. Prove that if p W U ! I � C3 is a smooth map, then there exists a
unique smooth map .r;A/ W U! RC�SO.3/ such that

1

r
A�1pD 1

2
.�1� i�2/;

at every point of U, where �1;�2;�3 is the standard basis of C3.

It follows from (13.8) and Exercise 59 that there exists a smooth map (13.7) such
that QpD 1

2
.�1� i�2/ at every point of U. That is,

Q!10 D
1

2
.dzCdNz/D dx; Q!20 D�

i

2
.dz�dNz/D dy; Q!30 D 0:

Definition 13.2. A Möbius frame field Y WU!MRob is of first order relative to the
local complex coordinate z in U if

!10 C i!20 D dz and !30 D 0 (13.9)

hold on U.

Remark 13.3. If Y W U!MRob is first order relative to a complex coordinate z on
U, then Y is a first order Möbius frame field along f according to Definition 12.24.

By Exercise 59, for any complex coordinate chart .U;z/ in M, there exists a
Möbius frame field Y W U ! MRob which is first order relative to z. Then (13.9)
holds and its differential, combined with the structure equations (12.22), gives

.!00 C i!12/^dzD 0; .!31 � i!32/^dzC .!31C i!32/^dNzD 0:

From this we conclude that

!00 C i!12 D ldz; some smooth l W U! C;

!31 � i!32 D kdzC sdNz; some smooth k W U! C and s W U! R:
(13.10)

The next step is to see how the functions l, k, and s transform under a change of first
order Möbius frame field.
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Let Y W U ! MRob be a first order Möbius frame field along f relative to the
complex coordinate chart U;z. By Exercise 58, any other first order frame field
QY W U!MRob along f is given by

QY D YK;

where K W U! G1 is a smooth map into the subgroup of G0,

G1 D fK.
;E
;y/ 2G0 W 
 D˙1; E
 D
0
@
 0 00 
 0

0 0 1

1
A ; y 2 R3g; (13.11)

whose Lie algebra is the subalgebra g1 of g0,

g1 D f
0
@0

tX 0

0 0 X
0 0 0

1
A W X 2R3g:

To calculate how the functions l, k, and s in (13.10) transform under this change of
frame, we will use the complementary subspace m1 to g1 in g0,

m1 D f
0
@X00 0 0

0 Xi
j 0

0 0 �X00

1
A W Xi

jCXj
i D 0; i; jD 1;2;3g:

This gives vector space direct sums g0 D g1Cm1 and

mRobD g0Cm0 D g1Cm1Cm0:

The .m0Cm1/-component of ! D Y�1dY is

!m0Cm1 D
0
@!

0
0 0 0

� 
 0

0 t� �!00

1
A ;

where we set, for this calculation,

� D t.!10 ; !
2
0 ; 0/; 
D .!i

j /;

where i; jD 1;2;3. We calculate

Q!m0Cm1 D .K�1!m0Cm1K/m0Cm1

D
0
@!

0
0 � ty� 0 0


E
� E
.
C� ty�yt�/E
 0

0 
t�E
 �!00 C t�y

1
A ;
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from which, writing tyD .y1;y2;y3/, we find

Q!00 C i Q!12 D !00 C i!12 � .y1� iy2/dz;

Q!31 � i Q!32 D 
.!31 � i!32 � y3dNz/:
(13.12)

Substituting (13.10) into (13.12), with quantities relative to QY denoted by the same
letters with a tilde, we get

QlD l� .y1� iy2/; QkD 
k; QsD 
.s� y3/: (13.13)

We draw two important conclusions from these calculations. The first of these is that
if we allow only time oriented Möbius frame fields along f , then 
 D 1 in (13.13)
and

k W U! C (13.14)

is independent of the choice of first order time oriented Möbius frame field relative
to z. The second conclusion is that there exists a unique time oriented frame field
QY W U!MRobC along f for which Ql and Qs are identically zero on U.

Definition 13.4. The first order Möbius invariant relative to a complex coordinate
.U;z/ of a conformal immersion f W M !M is the smooth function k W U ! C
defined in (13.10) for any time oriented Möbius frame field that is first order relative
to z.

Definition 13.5 (Adapted frames). A Möbius frame field Y W U !MRob along a
conformal immersion f WM!M is adapted to a complex coordinate chart .U;z/ if
it is time oriented and ! D Y�1dY satisfies

!10 C i!20 D dz; !30 D 0; !00 D 0D !12 ; !31 � i!32 D kdz; (13.15)

for some smooth k WU!C, which must be the first order invariant of f relative to z.
Differentiating equations (13.15) and using (12.22), we get

!03 D kNzdzC kNzdNz; !01 � i!02 D�bdz� jkj
2

2
dNz; (13.16)

for some smooth function

b W U! C;

which is the second order Möbius invariant of f relative to z.

Theorem 13.6. Let f W M!M be a conformal immersion of a Riemann surface
M and let U;z be a complex coordinate chart in M. There exists a unique Möbius
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frame field Y W U!MRobC along f adapted to z. The invariants k and b relative to
z satisfy the structure equations

bNz D 1

2
.jkj2/zC kkNz; (13.17)

=.kNzNzC 1
2
Nbk/D 0; (13.18)

on U, where =.p/ indicates the imaginary part of a complex number p.

Proof. By the calculations above, there exists a unique frame field Y W U!MRobC
adapted to z. All the entries of ! D Y�1dY are given in (13.15) and (13.16). Then
d! D�!^! implies (13.17) and (13.18). ut
Remark 13.7. If Y W U !MRobC is the frame field adapted to z on U, then QY D
YK.�1;E�1;0/ D .�Y0;�Y1;�Y2;Y3;�Y4/, where E�1 is defined in (13.11), is
a time reversing frame field on U satisfying (13.15) and (13.16) for the functions
QkD�k and QbD b, which also satisfy the structure equations (13.17) and (13.18).

Theorem 13.8 (Existence and Uniqueness). Let M be a Riemann surface and let
U;z be a local complex chart for which U � M is simply connected. If k W U! C
and b W U ! C are smooth functions satisfying the structure equations (13.17)
and (13.18), then there exists a conformal immersion f W U !M , unique up to
time oriented Möbius transformation, whose time oriented first order invariant is k
and whose second order invariant is b.

Theorem 13.9. Let f W M!M be a conformal immersion of a Riemann surface
M. If Y WU!MRobC is the frame field adapted to a complex coordinate chart .U;z/
of M, then Y is a � -frame field along f with Willmore function

W D kNzNzC 1
2

kNb W U! R; (13.19)

where k and b are the invariants of f relative to z.

Proof. If Y W U ! MRobC is the frame field adapted to z, then (see Definition
12.28) Y is a � -frame along f , with h D k, the first order invariant relative to z,
' D !10 C i!20 D dz, and

!00 D 0D !12 ; !31 � i!32 D kdz;

!03 D kNzdzC kNzdNz; !01 � i!02 D�bdz� jkj
2

2
dNz;

where b W U ! C is the second order invariant of f relative to z. Thus, h2 D kNz
in (12.44), and so (12.45) becomes

dkNzC k

2
.NbdNzC jkj

2

2
dz/D PdzCWdNz;
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which implies that (13.19) gives the Willmore function relative to Y, and

PD kNzzC 1
4

kjkj2 W U! C

is the other � -invariant of Y. ut
Note that W in (13.19) is real valued because of the structure equation (13.18).

13.3 Dependence on z

We want to determine transformation rules relating the invariants relative to two
different complex coordinates.

Theorem 13.10. For a conformal immersion f WM!M , let z and w be complex
coordinates on a domain U �M. Let k and b be the invariants of f relative to z and
let Ok and Ob be the invariants relative to w. Then w is a holomorphic function of z on
U, w0 D dw

dz is a nowhere zero holomorphic function on U, and

OkD kjw0j
.w0/2

; (13.20)

ObD b�Sz.w/

.w0/2
; (13.21)

where

Sz.w/D
�

w00

w0

�0
� 1
2

�
w00

w0

�2

is the Schwarzian derivative of w with respect to z on U.

Proof. The nowhere zero holomorphic function w0 D dw
dz on U has a well-defined

polar representation

w0 D reit; (13.22)

where r WU!RC and eit WU! S1�C are smooth. Although the argument function
t W U ! R is multivalued, defined only up to adding integer multiples of 2� , the
functions cos t, sin t and the real 1-form dt are well-defined and smooth on U. Then

AD
0
@ cos t sin t 0
�sin t cos t 0
0 0 1

1
A W U! SO.3/
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is a smooth map, and we use the holomorphic function

yD y1� iy2 D w00

.w0/2
(13.23)

to define the smooth map

yD t.y1;y2;0/ W U! R3:

Let Y D .Y0; : : : ;Y4/ WU!MRobC be the time oriented Möbius frame field along f
adapted to z. We claim that

QY D YK.r�1;A;rAy/D Y

0
@r rty 1

2
rjyj2

0 A Ay
0 0 1

r

1
A W U!MRobC (13.24)

is the time oriented Möbius frame field along f adapted to w. The columns of QY are

QY0 D rY0;

QY1� i QY2 D e�it.Y1� iY2/C ryY0;

QY3 D Y3;

QY4 D 1

r
Y4C r

2
jyj2Y0C Ny

2
e�it.Y1� iY2/C y

2
eit.Y1C iY2/:

(13.25)

To establish this claim, we make the long, but elementary, calculation

˛ D QY�1d QY D K�1!KCK�1dK:

Using Definition 13.5 and this calculation, we get

˛10C i˛20 D reit.!10 C i!20/D w0dzD dw;

˛30 D !30 D 0;

˛00 D d logr� y1˛10 � y2˛20 D ..logr/w� 1
2

y/dwC ..logr/ Nw� 1
2
Ny/d Nw;

˛01 � i˛02 D
1

w0 .!
0
1 � i!02/C

1

2
.y/2dwCdy

˛31 � i˛32 D e�it.!31 � i!32/D e�itk dzD rk

.w0/2
dw;

˛03 D
1

r
!03 C

y

2
eit.!31 C i!32/C

Ny
2

e�it.!31 � i!32/:
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Then ˛10 C i˛20 D dw and ˛30 D 0 imply that QY is a first order frame field relative
to w. The expression for ˛31 � i˛32 then verifies (13.20). We claim ˛00 D 0, because
w0 D reit holomorphic implies

0D .w0/Nz D ..logr/NzC itNz/w0;

so w0 never zero and logr and dt real imply

0D ..logr/NzC itNz/D .logr/z� itz:

Thus

0D 1

2
..logr/z� itz/dzD ..logr/z� 1

2
.logrC it/z/dz

D ..logr/z� 1
2
.logw0/z/dzD ..logr/z� 1

2

w00

w0 /dz

D . .logr/z
w0 � 1

2

w00

.w0/2
/dwD ..logr/w� 1

2
y/dw

shows that ˛00 D 0 on U. It follows that ˛12 D 0 as well, since we know already that
QY is first order relative to w, which implies that ˛00 C i˛12 D ldw, for some smooth

function l W U! C, and therefore lD 0 if ˛00 D 0. By Definition 13.5, QY is the time
oriented frame field adapted to w on U. Substituting (13.16) into the formula for
˛01 � i˛02 , we get

˛01 � i˛02 D�
1

w0 .bdzC jkj
2

2
dNz/C 1

2
.y/2dwC y0

w0 dw

D .� b

.w0/2
C 1
2
.y/2C y0

w0 /dw� jkj
2

2.w0/2
d Nw:

Then �Ob is the coefficient of dw, by (13.16) for QY, so

ObD b

.w0/2
� 1
2
.

w00

.w0/2
/2� 1

w0 .
1

w0 .
w00

w0 //
0 D 1

.w0/2
.bC 1

2
.
w00

w0 /
2� .w00

w0 /
0/;

which verifies (13.21). ut
Remark 13.11. The frame change (13.24) is found in two steps. The frame

OY D YK.r�1;A;0/

is a first order frame field relative to w, provided that (13.22) is used to determine r
and t. Then

QY D OYK.1; I3;y/

is the frame field adapted to w, provided that y is given by (13.23). The frame
change (13.24) follows from the product formula (12.27).
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Corollary 13.12. The smooth map Y3 WU! R4;1 and the smooth 2-form

˝ D i

2
jkj2dz^dNz

are independent of the choice of local complex coordinate chart .U;z/ in M, and
thus are smooth and well-defined on all of M.

Proof. These statements follow from (13.25) and (13.20), respectively. ut

13.3.1 Calculating the Invariants

Let Y WU!MRobC be the time oriented Möbius frame field adapted to the complex
coordinate chart .U;z/ in M. From (12.21) and (13.16) we have

dY0 D 1

2
.Y1� iY2/dzC 1

2
.Y1C iY2/dNz;

d.Y1� iY2/D .�bY0C kY3/dzC .�jkj
2

2
Y0CY4/dNz;

dY3 D .kNzY0� k

2
.Y1C iY2//dzC .kNzY0�

Nk
2
.Y1� iY2//dNz;

dY4 D .�b

2
.Y1C iY2/� jkj

2

4
.Y1� iY2/C kNzY3/dz

C .�
Nb
2
.Y1� iY2/� jkj

2

4
.Y1C iY2/C kNzY3/dNz:

(13.26)

Comparing the first equation in (13.26) with

dY0 D Y0zdzCY0NzdNz;

we conclude that

Y0z D 1

2
.Y1� iY2/; Y0Nz D 1

2
.Y1C iY2/: (13.27)

Therefore,

hdY0;dY0i D dzdNz;

which is equivalent to

hY0z;Y0zi D 0 and hY0z;Y0Nzi D 1

2
:
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Differentiating the first equation in (13.27), and using the second equation
in (13.26), we conclude that

Y0zz D 1

2
.�bY0C kY3/; Y0zNz D 1

2
.�jkj

2

2
Y0CY4/; (13.28)

from which we can calculate

bD 4hY0zz;Y0zNzi:

Combining this last equation with (13.28) determines kY3 D 2Y0zz C bY0. The
invariant k is determined by

det.Y0;Y0z;Y0Nz;Y0zz;Y0zNz/D ik

8
det.Y0;Y1;Y2;Y3;Y4/D ik

8
:

We summarize these calculations as follows.

Theorem 13.13 (Calculation of the invariants). Let f W U!M be a conformal
immersion and let z be a complex coordinate on U. If F W U!L C � R4;1 is a lift
of f for which

hFz;Fzi D 0 and hFz;FNzi D 1

2
;

then the Möbius frame field Y W U!MRobC adapted to z has Y0 D F and Y3 and
the Möbius invariants k and b of f relative to z are determined by the equations

bD 4hFzz;FzNzi; kY3 D 2FzzCbF; (13.29)

and

kD�8idet.F;Fz;FNz;Fzz;FzNz/: (13.30)

Let us try these calculations on some examples.

Example 13.14 (Round Riemann sphere). This is Example 13.1 revisited. A time
oriented lift of f W C!M is given by F D ı0C xı1C yı2C 1

2
jzj2ı4 in (13.2),

where zD xC iy. Then

Fz D 1

2
.Fx� iFy/D 1

2
.ı1� iı2CNzı4/

and

hFz;Fzi D 0; hFz;FNzi D 1

2
;
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so F W C!L C is the desired time oriented lift. We calculate

Fzz D 0; FzNz D 1

2
ı4

to conclude that b D 0 D k by (13.29). We can also see from equations (13.3)
and (13.5) that the time oriented Möbius frame field Y given in Example 13.1 is
adapted to z and bD kD 0.

Example 13.15 (Cylinders). Consider the regular plane curve

� W J � R! CD R2; � .x/D �1.x/ı1C�2.x/ı2;

where R2 � R4;1 is the ı1ı2-plane, J is a connected interval containing 0, and x is
arclength parameter. Then

P� D T; R� D PTD �N;

where T and N are the oriented unit tangent and principal normal vectors and � W
J! R is the curvature. Let f W J�R!M be given by the lift

F W J�R!L C; F.x;y/D ı0C� .x/� yı3C j� j
2C y2

2
ı4;

where zD xC iy is the complex coordinate on J�R. Then

Fz D 1

2
.Fx� iFy/D 1

2
.TC iı3C .� �T� iy/ı4/;

from which we calculate hFz;Fzi D 0 and hFz;FNzi D 1=2, so f is a conformal
immersion. From the calculation

Fzz D �

4
.NC .� �N/ı4/; FzNz D �

4
.NC .� �N/ı4/C 1

2
ı4;

we conclude from Theorem 13.13 that

bD 4hFzz;FzNzi D �2=4;

kY3 D 2FzzC 1
4

F D 1

4
.ı0C2�NC� � yı3C .2�� �NC j� j

2C y2

2
/ı4/:

Calculate hkY3;kY3i D �2=4 to conclude that kD˙�=2. We use (13.30) to establish
that k.x;y/D �.x/=2 at every point .x;y/ 2 J�R.

Example 13.16 (Cones). Recall the cones in Euclidean space described in Example
4.28, parametrized by the smooth immersion

x W J�R! R3; x.x;y/D e�y� .x/;
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where � W J ! S2 is the profile curve with arclength parameter x in the interval
J � R. Then zD xC iy is a complex coordinate for the induced complex structure.
Using the conformal embedding (12.59), we consider the conformal immersion

f D f0 ı x W J�R!M ; f .x;y/D Œı0CxC jxj
2

2
ı4�;

expressed in the Möbius frame (12.15), with lift

F W J�R!L C; F.x;y/D eyı0C� .x/C e�y

2
ı4;

which satisfies the conditions of Theorem 13.13, as can be verified from the
calculation

Fz D 1

2
. P� � ieyı0C i

e�y

2
ı4/:

Using the Frenet-Serret equation (4.46) R� D�� C�� � P� , we find

Fzz D 1

4
.�� C�� � P� � eyı0� e�y

2
ı4/

FzNz D 1

4
.�� C�� � P� C eyı0C e�y

2
ı4/:

By (13.29) we find

bD 4hFzz;FzNzi D 2C�2
4

kY3 D 2FzzCbFD �2ey

4
ı0C �

2

4
� C �

2
� � P� C e�y�2

8
ı4;

(13.31)

so

k2 D hkY3;kY3i D �2

4
: (13.32)

13.4 Curvature spheres

Proposition 13.17. If .U;z/ is a complex coordinate chart on the Riemann surface
M, then the curvature spheres at each point of U for the conformal immersion f W
M!M are

Y3˙jkjY0 W U! S3;1;

where Y W U!MRobC is the Möbius frame field adapted to z and k W U! C is the
first order Möbius invariant of f relative to z.
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Remark 13.18. If F W U!L C is a lift of f satisfying hFz;Fzi D 0 and hFz;FNzi D
1=2, then Theorem 13.13 tells us that F D Y0. It also tells us how to compute Y3

and jkj in terms of F.

Proof. For any smooth function r W U! R, the smooth map

SD Y3C rY0 W U! S3;1 � R4;1

is an oriented tangent sphere map, since dY0 D !10Y1C!20Y2, so hY0;Si D 0 D
hdY0;Si on U, as required by Definition 12.42. Then

dSD .!03 Cdr/Y0C
2X
1

.!i
3C r!i

0/Yi �
2X
1

.!i
3C r!i

0/Yi mod Y0

on U, by (13.15), so dS mod Y0 has rank less than two at a point p2U if and only if

0D .!13 C r!10/^ .!23C r!20/D !13 ^!23 C r.!13 ^!20C!10 ^!23/C r2!10 ^!20 :

By (13.15), !13 � i!23 D�k.!10 C i!20/ on U, so !13 ^!23 D�jkj2!10 ^!20 and

0D .!13 � i!23/^ .!10C i!20/D !13 ^!10 C!23 ^!20C i.!13 ^!20 �!23 ^!10/:

As the real and imaginary parts must be zero, we get

.!13 C r!10/^ .!23C r!20/D .�jkj2C r2/!10 ^!20 ;

which shows that dS mod Y0 has rank less than two at a point in U if and only if
r2 D jkj2 at this point. The result follows from Definition 12.47. ut
Exercise 60 (Independence from z). The curvature spheres at a point p 2 M for
a conformal immersion f W M !M are independent of the choice of complex
coordinate about the point. Verify that, if U;z and U;w are complex coordinate
charts about p, if Y; OY W U!MRob are the Möbius frame fields adapted to z and w,
respectively, and if k and Ok are the respective first order invariants relative to z and
w, then

Y3˙jkjY0 D OY3˙jOkj OY0:

Example 13.19 (Circular Tori of Example 12.74 revisited). Fix ˛ to satisfy 0< ˛ <
�=2 and let r D cos˛, sD sin˛. If C.R/ denotes the circle in R2 of radius R > 0,
center at the origin, then the torus C.r/�C.s/� S3 is parameterized by

x.x;y/D t.r cos
x

r
;r sin

x

r
;scos

y

s
;ssin

y

s
/;
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where x.x;y/ is defined on R2 and is periodic of period 2�r in x and of period 2�s
in y. Then dx � dx D dx2C dy2 shows that z D xC iy is a complex coordinate in
R2 for the complex structure induced by x. Composing x with the diffeomorphism
fC W S3!M of (12.23) defines an immersion f W R2 ! M for which a lift
F W R2!L C in the Möbius frame (12.15) is

F.x;y/D t.1C r cos
x

r
;r sin

x

r
;scos

y

s
;ssin

y

s
;
1� r cos x

r

2
/: (13.33)

Then

Fz D 1

2
t.�sin

x

r
;cos

x

r
; isin

y

s
;�icos

y

s
;
1

2
sin

x

r
/;

from which we see that hFz;Fzi D 0 and hFz;FNzi D 1=2, so that F is the lift of f
required by Theorem 13.13. From

Fzz D 1

4
t.�1

r
cos

x

r
;�1

r
sin

x

r
;
1

s
cos

y

s
;
1

s
sin

y

s
;
1

2r
cos

x

r
/;

FzNz D 1

4
t.�1

r
cos

x

r
;�1

r
sin

x

r
;�1

s
cos

y

s
;�1

s
sin

y

s
;
1

2r
cos

x

r
/;

we use (13.29) to calculate

bD 4hFzz;FzNzi D 1

4

s2� r2

r2s2
D� cos2˛

sin2 2˛
;

which is constant on R2, and kY3 D 2FzzCbFD

1

4r2s2
t.�r cos

x

r
C s2� r2;�r sin

x

r
;scos

y

s
;ssin

y

s
;

r cos x
r C s2� r2

2
/;

so

k2 D hkY3;kY3i D 1

4r2s2
:

Using (13.30) at zD 0, we get kD� 1
2rs D�csc2˛, also constant on R2. As ˛ goes

through the range 0< ˛ <�=2 the constant Möbius invariants go through the ranges
�1< k	�1 and�1< b<1. For ˛D �=4, the Clifford torus, kD�1 and bD 0
relative to z.

Relative to the complex coordinate z, the curvature spheres of f are

S˙ D Y3˙ 1

2rs
F;
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by Proposition 13.17 and Remark 13.18. These are

SC D rC cos x
r

s
ı0C sin x

r

s
ı1C r� cos x

r

2s
ı4

and

S� D� s

r
ı0�

cos y
s

r
ı2�

sin y
s

r
ı3� s

2r
ı4:

Definition 13.20 (Lines of curvature). A principal vector for a conformal immer-
sion f WM!M is a tangent vector on which the symmetric bilinear form =.k dzdz/
is zero, where k is the first order Möbius invariant relative to a complex chart U;z
in M. A smooth curve � W J!M is a line of curvature if ��=.k dzdz/D 0 on J.

The transformation formula (13.20) shows that for complex coordinate charts
.U;z/ and .U;w/ on M, we have

OkdwdwD jw0jkdzdz;

which shows that the zeros of the symmetric bilinear form=.k dzdz/ are independent
of the choice of complex coordinate chart .U;z/.

For the cylinder f W J�R!M in Example 13.15,

kdzdzDD ��.x/
2

.dx2�dy2C2idxdy/;

whose imaginary part is ��.x/dxdy. The .x;y/ coordinate curves are the lines of
curvature on M D J�R.

Lemma 13.21 (Principal vectors). If f WM!M is a conformal immersion with
Möbius frame field Y W U �M!MRobC satisfying !30 D 0 on U, then the principal
vectors on U are the zeros of the symmetric bilinear form

=..!10 C i!20/.!
3
1 � i!32//D !20!31 �!10!32 :

Proof. Let z be a complex coordinate on U. By Problem 13.43, the entries of Y�1dY
satisfy !10 C i!20 D euCivdz and !31 � i!32 D pdzC qdNz, for some smooth functions
u;v W U! R and p;q WU!C. The first order invariant relative to z is kD eivp, and
eivq is real valued. Thus,

=..!10 C i!20/.!
3
1 � i!32//D=.eueiv.pdzCqdNz//D eu=.kdzdzC eivqdzdNz/

D eu=.kdzdz/;

since eivqdzdNz is real valued. ut
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13.5 Complex structure and space forms

Recall the notation introduced in Section 12.5 for the simply connected space forms
S
 , their groups of isometries G
 , the conformal embeddings f
 W S
!M , and the
group monomorphisms F
 W G
!MRob.

Theorem 13.22 (Möbius invariants from space form invariants). If x WM! S

is an immersion of an oriented surface M, with mean curvature H and Gaussian
curvature K, and if .U;z/ is a complex coordinate chart in M relative to which the
conformal factor is eu and the Hopf invariant is h, then the composition

f
 ı x WM!M

is a conformal immersion whose first and second order Möbius invariants relative
to z are

kD heu and bD 2uzz�2u2zCHhe2u: (13.34)

The proof will be given for each case of 
 2 f0;C;�g in the next three
subsections.

13.5.1 Surfaces in Euclidean space

Proof. Let

x WM! R3

be an immersion of an oriented surface M. Let .U;z/ be a complex coordinate chart
for the complex structure induced on M by the metric dx �dx. Let .x;e/ WU!EC.3/
be the frame field along x adapted to z and let

.�;
/D .x;e/�1d.x;e/D .e�1dx;e�1de/

denote the pull back to M by .x;e/ of the Maurer–Cartan form of EC.3/. Then
�3 D 0 and

�1C i�2 D eudz; (13.35)

for some smooth function u W U! R. Then

QYD F0 ı .x;e/ W U!MRob
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is an oriented Möbius frame field along the conformal immersion f0 ı x WM!M ,
where f0 W R3!M is the conformal embedding (12.59). By (12.61), QY pulls back
the Maurer–Cartan form of MRobC to

ˇ D QY�1d QY D dF0.�;
/D
0
@0 0 0� 
 0

0 t� 0

1
A ; (13.36)

so

ˇ30 D �3 D 0; ˇ10C iˇ20 D �1C i�2 D eudz:

If K.eu; I;0/ is defined as in (12.26), then

QYK.eu; I;0/D .e�u QY0; QYi;e
u QY4/

is a first order Möbius frame field along f relative to z (see Definition 13.2), as we
verify by computing

! D . QYK/�1d. QYK/D
0
@�du 0 0

e�u� 
 0

0 e�u t� du

1
A ;

from which we see that (13.9) holds: !30 D 0 and !10C i!20 D dz. In addition, we see
that !00 D�du and !12 D 
12. From (13.35) (see (7.28)) we have


12 D iuzdz� iuNzdNz;
and

!00 C i!12 D�du�uzdzCuNzdNzD�2uzdz; (13.37)

so in (13.10) lD�2uz W U! C, and

!31 � i!32 D 
31� i
32 D heudzCHeudNz; (13.38)

where the last equation comes from (7.23), H is the mean curvature of x, and h is the
Hopf invariant of x relative to z (see Definition 7.24). Comparing this with (13.10),
we see that the first order Möbius invariant of f relative to z is

kD heu:

Comparing (13.37) and (13.38) with (13.10), we see from (13.13) that if we let

y1� iy2 D�2uz; y3 D Heu; yD t.y1;y2;y3/; (13.39)
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then the Möbius frame field

Y D QYK.eu; I;0/K.1; I;y/D QYK.eu; I;e�uy/ W U!MRobC

is adapted to z. We calculate ˛ D Y�1dY to verify that ˛00 C i˛12 D 0 and that ˛31 �
i˛32 D heudz as expected, and also that

˛01 D dy1� y1duC 1
2
jyj2!10 C
12y2C
13y3� y1.y1!10 C y2!20/;

˛02 D dy2� y2duC 1
2
jyj2!20 C
21y1C
23y3� y2.y1!10 C y2!20/:

From this we find

˛01 � i˛02 D .�2uzzC2u2z �Hhe2u/dz� 1
2
.4uzNzCH2e2u/dNz:

Comparing this with (13.16), we see that the second order Möbius invariant b of
f is the coefficient of �dz, thus confirming (13.34) and completing the proof of
Theorem 13.22 when 
 D 0. ut
Remark 13.23 (Hopf quadratic differential and lines of curvature). The Hopf quad-
ratic differential of x W M! R3 relative to the complex coordinate z on U � M is
II2;0 D 1

2
he2u dzdz, which by (13.34) is expressed in terms of the first order Möbius

invariant k of f0 ı x WM!M by

II2;0 D 1

2
keu dzdz: (13.40)

By Lemma 7.25, the principal vectors of x W M ! R3 are the solutions of
=.II2;0/D 0. Compare this with Definition 13.20, which defines the principal
vectors of f WM!M to be the solutions of =.k dzdz/D 0, for any complex chart
U;z. It follows then from (13.40) that the principal vectors of x WM! R3 coincide
with those of f0 ıx WM!M . It follows that principal vectors and lines of curvature
are preserved by conformal transformations of S0.

Example 13.24 (Cones revisited). Let us compare the values of k and b relative to
z calculated for the cones in Example 13.16 to the values given by Theorem 13.22.
In Example 4.28 we began with the cones x.x;y/ D e�y� .x/, where x is arclength
parameter and �.x/ is the curvature of the curve � W J! S2. The frame field .x;e/ W
M�R! EC.3/ given by

eD . P� ;�� ;� � P� /

is adapted to the complex coordinate z D xC iy. The Hopf invariant h and mean
curvature H are given by h D �.x/ey=2 D H. The conformal factor is eu D e�y,
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so u D �y and uz D i=2. For the conformal immersion f D f0 ı x W J �R!M ,
Theorem 13.22 gives the invariants relative to z to be

kD heu D �

2
; bD 2uzz�2u2zCHhe2u D 2C�2

4
;

which agree with the calculations in Example 13.16. Moreover,

Y3 D �ey

2
ı0C �

2
� C� � P� C �e�y

4
ı4;

by (13.31), where we used the lift F.x;y/ D eyı0 C � .x/C e�y

2
ı4 of f required

by Theorem 13.13. The oriented curvature spheres of f W R2 !M (see Defini-
tion 12.47) are given by Proposition 13.17 and Remark 13.18 to be S˙ D Y3˙ �

2
F,

which are (in the Möbius frame (12.15))

SC D �eyı0C�� C� � P� C �e�y

2
ı4; S� D � � P� 2 S3;1:

Using Problem 13.48, one easily checks that these are the images under f0 of the
curvature spheres (4.48) found in Example 4.28.

13.5.2 Surfaces in S3

Proof. Let x WM! S3 be an immersion of an oriented surface M. Let

eD .e0;e1;e2;e3/ W U �M! SOC.4/

be an oriented frame field along x. Denote the pull-back by e of the Maurer–Cartan
form of SO.4/ by


D e�1deD
 
0 
0j

i
0 


i
j

!
;

where 
0j D�
j
0 and 
i

j D�
j
i, as in (5.5) and i; jD 1;2;3. Then

de0 D
3X
1


i
0ei; dei D 
0i e0C

3X
1



j
iej; (13.41)

Let z be a local complex coordinate in U �M for the complex structure induced by
the metric I D dx �dx on M. Suppose that the frame field e WU! SOC.4/ is adapted
to z, (see Definition 7.22). Then


30 D 0; 
10C i
20 D eudz;
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for some smooth function u W U! R, so that eu is the conformal factor of x relative
to z. A time oriented Möbius frame field QY along

f D fC ı x WM!M ; f D Œ.1C x0/ı0C xiıiC .1� x0/

2
ı4�

is given by

QY D FC ı e W U!MRobC:

Then, by (12.58)

ˇ D QY�1d QY D dFC.e�1de/D

0
B@
0 
0j 0

i
0

2

i

j �
i
0

0 � 

0
j

2
0

1
CA :

Taking into account equations (13.41), and using K. eu

2
; I;0/ defined in (12.26), we

find that the time oriented Möbius frame field along f ,

OY D QYK.
eu

2
; I;0/D .2e�u QY0; QYi;

eu

2
QY4/;

is of first order relative to z, by the computation

! D . QYK/�1d. QYK/D

0
B@
�du eu

2

0j 0

e�u
i
0 
i

j � eu

2

i
0

0 �e�u
0j du

1
CA ; (13.42)

from which we see that !30 D 0 and !10 C i!20 D dz, (see equations (13.9) of
Definition 13.2). In addition, we see that !00 D �du and !12 D 
12. Recalling from
equation (7.28) that 
12 D i.uzdz�uNzdNz/, we have

!00 C i!12 D�2uzdz (13.43)

and, by (7.23),

!31 � i!32 D 
31� i
32 D heu dzCHeu dNz; (13.44)

where H is the mean curvature of x and h is the Hopf invariant of x relative to z,
defined in (7.24). It follows from (13.10) and (13.14) that the first order Möbius
invariant of f relative to z is

kD heu;
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and the coefficients l D �2uz and s D Heu. Comparing (13.43) and (13.44)
with (13.10), we see from (13.13) that if we let

y1� iy2 D�2uz; y3 D Heu; yD t.y1;y2;y3/;

then the time oriented Möbius frame field

Y D QYK.
eu

2
; I;0/K.1; I;y/D QYK.

eu

2
; I;2e�uy/

is the Möbius frame field adapted to z. Using ! in (13.42), we calculate

˛ D Y�1dY D K.1; I;y/�1!K.1; I;y/CK.1; I;y/�1dK.1; I;y/

D
0
@1 �

ty jyj2=2
0 I �y
0 0 1

1
A
0
B@
�du eu
0j =2 0

e�u
i
0 
i

j �eu
i
0=2

0 �e�u
0j du

1
CA
0
@1

ty jyj2=2
0 I y
0 0 1

1
A

C
0
@0 dty 0

0 0 dy
0 0 0

1
AD

0
B@
�du� e�uyi
i

0 dty� .duC e�uyi
i
0/

ty� yi
i
jC 1

2
.eu� e�ujyj2/
0j 0

e�u
i
0 
i

jC e�u.yj
i
0C yi
0j / ?

0 ? ?

1
CA ;

where the omitted entries are determined by the fact that ˛ is mRob-valued. Since

30 D 0, 
10C i
20 D eudz, and 
12 D i.uzdz�uNzdNz/, we have

yi
i
0 D�eudu; y2
10� y1
20 D�ieu.uzdz�uNzdNz/:

It is now easily verified that ˛00 C i˛12 D 0 and ˛31 � i˛32 D heudz and thus Y is the
Möbius frame field adapted to z, as expected. Finally, we calculate

˛01 � i˛02 D�.2uzz�2u2zCHhe2u/dz� 1
2
.4uzNzC .1CH2/e2u/dNz:

Comparing this with (13.16), we see that the second order Möbius invariant b of
f is the coefficient of �dz, thus confirming (13.34) and completing the proof of
Theorem 13.22 when 
 DC. ut

The Hopf quadratic differential of x WM! S3 in terms of the complex coordinate
z is II2;0 D 1

2
he2u dzdz. In terms of the first order Möbius invariant k it is

II2;0 D 1

2
keu dzdz

just as in the Euclidean case. Lines of curvature are the solutions of the differential
equation =.II2;0/D 0.
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Example 13.25 (Circular Tori of Example 13.19 revisited). The conformal
immersions f W R2 !M of Example 13.19 are the compositions fC ı x, where
xD x.˛/ W R2! S3, for fixed 0 < ˛ < �=2, are the circular tori of Example 5.12. In
Example 7.38 we found that relative to the induced complex coordinate zD xC iy
on R2, the conformal factor is eu D 1 and the Hopf invariant and mean curvature of
x are

hD� 1

2rs
; H D r2� s2

2rs
;

where r D cos˛ and s D sin˛. Using this data in Theorem 13.22, we find the
conformal invariants of f relative to z are

kD heu D� 1

2rs
; bD 2uzz�2u2zCHhe2u D s2� r2

4r2s2
;

in agreement with the values found in Example 13.19.

13.5.3 Surfaces in H3

Proof. Let x WM! H3 be an immersion of an oriented surface M. Let

eD .e1; : : : ;e4/ W U �M! SOC.3;1/

be an oriented frame field along xD e4. Denote the pull-back of the Maurer–Cartan
form (6.10) of SOC.3;1/ by


D e�1deD
 

i

j 

i
4


4j 0

!
2 o.3;1/;

where 
4j D 
j
4 and 
i

j D�
j
i, i; jD 1;2;3. Then

dxD de4 D
3X
1


i
4ei; dei D 
4i e4C

3X
1



j
iej:

Let z be a local complex coordinate in U � M for the complex structure induced
by the metric I D hdx;dxi on M. Suppose that e W U! SOC.1;3/ is the frame field
adapted to z, (see Definition 7.22). Then


34 D 0; 
14C i
24 D eudz;
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for some smooth function u W U! R, so that eu is the conformal factor of x relative
to z. Let

f D f� ı x WM!M ; f D Œ.x4C1/ı0C
3X
1

xiıiC .x
4�1/
2

ı4�

be the conformal immersion obtained by composing the map f� in (12.62) with x.
A time oriented Möbius frame field QY along f is obtained by composing the map
F� of (12.65) with e,

QY D F� ı e W U!MRobC:

By (12.66),

ˇ D QY�1d QY D dFC.e�1de/D

0
B@
0 
4j 0

i
4

2

i

j 

i
4

0

4j
2
0

1
CA :

The rest of the proof of the 
D� case is almost identical to the spherical geometry
case. Its completion is left to the following Exercise. ut
Exercise 61. Using the proof for the 
 DC case as a guide, complete the present
proof.

The Hopf quadratic differential of x WM!H3 in terms of the complex coordinate
z is II2;0 D 1

2
he2u dzdz. In terms of the first order Möbius invariant k it is

II2;0 D 1

2
keu dzdz

just as in the Euclidean and spherical cases. Lines of curvature are the solutions of
the differential equation =.II2;0/D 0.

13.6 Conformal area and Willmore functionals

Let f W M !M be a conformal immersion of a Riemann surface M. Recall the
conformal area element ˝ of Definition 12.26. It is defined locally by ˝Y , for any
first order frame Y W U!MRob along f . If .U;z/ is any complex coordinate chart in
M, then the Möbius frame field Y W U!MRob adapted to z is first order with hD k
and !10 ^!20 D i

2
dz^dNz, so by Problem 12.64,

˝Y D i

2
jkj2dz^dNz: (13.45)
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Corollary 13.26 (Conformal area element). If x WM! S� is an immersion of an
oriented surface, and if .U;z/ is any complex coordinate chart in M for the complex
structure induced on M by x, then the conformal area element of f
 ı x WM!M is

˝ D i

2
jkj2dz^dNzD .H2�KC 
1/dA; (13.46)

where dAD i
2
e2udz^dNz is the area element, H is the mean curvature, and K is the

Gaussian curvature of x.

Proof. Since f
 is conformal, the complex structure induced on M by x is the same
as the complex structure induced on M by f
 ı x. If U;z is a complex chart in M,
and Y W U!MRobC is the frame field along f
 ı x adapted to z, then the conformal
area element ˝ is given on U by (13.45). The first order Möbius invariant k of
f
 ı x relative to z satisfies k D heu, by (13.34) of Theorem 13.22, where h is the
Hopf invariant and eu is the conformal factor of x relative to z. This, with the Gauss
equation (7.31),

jhj2 D 
1CH2�K;

implies (13.46). ut
Remark 13.27 (Willmore functional in each space form). The integrand of the
Willmore functional (4.74) of an immersion x WM! R3 is the right side of (13.46)
for the case 
 D 0. This equation indicates that the Willmore functional for
immersions x WM! S� should beZ

M
.H2�KC 
1/dA;

where H is the mean curvature, K is the Gaussian curvature, and dA is the area
element of x. These functionals are then invariant under conformal transformations
from S� to Sı , for any 
;ı 2 f0;C;�g. For example, if H, K, and dA are the mean
curvature, Gaussian curvature, and area element on M, for an immersion x WM!
S3 nf��0g, and if QH, QK, and d QA denote the same quantities for the immersion S ıx W
M ! R3, where S W S3 n f��0g ! R3 is stereographic projection from ��0 (see
Definition 5.22), then

.H2�KC1/dAD . QH2� QK/d QA;

since both sides of this equation equal i
2
jkj2dz^dNz for any complex coordinate chart

.U;z/ for the immersion fC ı xD f0 ıS ı x WM!M .

Definition 13.28. An admissible variation of an immersion f W M2 !M is any
smooth map F W M � .�
;
/!M , for some 
 > 0, with compact support, such
that for each t 2 .�
;
/, the map

ft WM!M ; ft.m/DF .m; t/
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is an immersion. The support of F is the closure in M of the set of points m 2 M
where ft.m/¤ f .m/, for some t. The variation vector field of an admissible variation
is the vector field along f given by

d

dt

ˇ̌̌
ˇ
0

ft WM! TM :

Definition 13.29. A conformal immersion f W M !M of a connected Riemann
surface M is Willmore if f is a critical point of the conformal area functional; that
is, the first variation of the conformal area

d

dt

ˇ̌
ˇ̌
0

Z
S
˝t D

Z
S

d

dt

ˇ̌
ˇ̌
0

˝t

is zero for any admissible variation of f with compact support S �M.

Proposition 13.30. A conformal immersion f W M!M of a connected Riemann
surface M is Willmore if and only if its Willmore function W of Definition 12.29 (see
also Theorem 13.9) is identically zero for any � -frame along f .

Proof. See Bryant [20]. ut
Example 13.31. Recall the circular tori discussed in Example 13.19. Since

Ok Nw NwC
Ok
2

NObD 1

2
.r2� s2/D cos2˛

is zero if and only if ˛ D �=4, the Clifford torus is the only circular torus that is
conformally minimal.

Proposition 13.32 ([20], Theorem C). If f WM!M is a Willmore immersion of
a connected Riemann surface M, then either f is totally umbilic or the set Uf of
umbilic points of f is a closed subset of M without interior points.

Proof. Let k and b be the invariants of f relative to a complex coordinate chart U;z.
Then the Willmore condition (13.19) can be written as

�
k
kNz

�
Nz
D
�
0 1

� 1
2
Nb 0
��

k
kNz

�
:

This implies that the map

kD
�

k
kNz

�
WU! C2

is of analytic type (Chern [43, p.32]), which means that either k is identically zero
on U, in which case we say n.m/D1 for every m 2 U, or for each point m 2 U,
there exists a unique whole number n.m/ such that

kD .z� z.m//n.m/v;
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where v W U! C2 is a smooth map with v.m/¤ 0. In this latter case, the zeros of k
must be isolated in U, and each zero m 2 U has a well-defined multiplicity n.m/. If
k is identically zero on any open subset of U, then it must be identically zero on U,
and this will be true for this function relative to any complex coordinate chart, since
M is connected. Consequently, f is totally umbilic in this case. If f is not totally
umbilic, then for any chart .U;z/, the map k must have isolated zeros. If there were
an open set V of umbilic points in U, then k would be identically zero on V , which
would imply that kNz is also identically zero on V , and this is impossible. ut

13.7 Conformal Gauss map

By Corollary 13.12 the vector Y3 of the Möbius frame field along f adapted to z is
independent of the choice of local complex coordinate z in M. This vector field is
therefore globally defined on M.

Definition 13.33. The conformal Gauss map of the conformal immersion
f WM!M is the smooth map

n WM! S3;1 D fv 2 R4;1 W hv;vi D 1g
defined on any complex chart .U;z/ by n D Y3, where .Y0;Y1;Y2;Y3;Y4/ is the
Möbius frame field adapted to .U;z/.

Remark 13.34. The conformal Gauss map was introduced and studied by Bryant
in [20], who proved the following theorem. The study and result was extended to
surfaces in n-dimensional Möbius space M n, for any n 
 3, by M. Rigoli in [139].
Further results were obtained for surfaces in M 4 by E. Musso in [123].

Theorem 13.35. The conformal Gauss map n WM! S3;1 of the conformal immer-
sion f WM!M has rank less than two at each umbilic point of f and is a conformal
immersion on the complement of the set of umbilic points. It is harmonic if and only
if f is Willmore.

Proof. If Y is the Möbius frame field adapted to a complex chart .U;z/ in M, then
nD Y3 on U. By (13.26),

Y3z D kNzY0� k

2
.Y1C iY2/

is a null vector at every point, and

hdY3;dY3i D 2hY3z;Y3NzidzdNzD jkj2dzdNz
shows that the Gauss map is singular where kD 0 and conformal at any point where
k¤ 0. The umbilic points in U are the zeros of k. The Laplace-Beltrami operator of
the metric dzdNz, applied to Y3 W U! R4;1, is 4Y3zNz. By (13.26),
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Y3zNz DWY0� 1
2
jkj2Y3;

where W WU!R is the Willmore function (13.19) relative to Y. The map Y3 WM!
S3;1 � R4;1 is harmonic, by definition, if the tangential component of the Laplace-
Beltrami operator (of the metric dzdNz) of it,

4Y3zNz�h4Y3zNz;Y3i D 4WY0;

vanishes. Thus, the conformal Gauss map is harmonic if and only if f is Willmore.
ut

Theorem 13.36 (Willmore associates). Let M be a simply connected Riemann
surface with complex coordinate z. Let b and k be smooth, complex valued functions
on M satisfying

bNz D 1

2
.jkj2/zC kkNz; 2kNzNzC NbkD 0: (13.47)

Up to Möbius transformation, there exists a unique Willmore immersion f WM!M
whose Möbius invariants relative to z are b and k. Given solutions b and k of these
equations, let t be any real constant and let

OkD eitk:

Then b and Ok are solutions to (13.47). The corresponding conformal immersions
ft W M !M constitute a family, parameterized by the circle S1, of distinct (that
is, not Möbius congruent) conformal Willmore immersions called the associates of
f D f0.

Proof. If k and b satisfy (13.47), then so also do eitk and b, for any real constant t.
Now everything follows from Theorem 13.8. ut

13.8 Relating the invariants

To gain insight into to how the Möbius invariants behave near umbilic points, we
will express them in terms of the invariants relative to a complex coordinate chart
.U;z/ in M.

Proposition 13.37 (Möbius invariants related to k and b). Let Y WU!MRobC be
the frame field adapted to the complex coordinate chart .U;z/ in M for a conformal
immersion f W M ! M . If m0 2 U is a nonumbilic point of f , then there is a
neighborhood U0 � U of m0 on which there is a central frame field QY, whose third
order Möbius invariants defined in (12.50) and (12.53) on U0 are related to the
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invariants k and b relative to z by

q1� iq2 D i

2
p

kjkj .k
�1kzC3k�1kNz/;

p1Cp3�2ip2 D� 4

jkj2k2Q; p1�p3 D� 4

jkj3W;

(13.48)

where

QD kkzNzC 1
4

k2jkj2� kzkNz W U! C (13.49)

and

W D kNzNzC 1
2

kNb W U! R;

is the Willmore function of Definition 12.29.

Proof. The choice of square root in the first equation determines the right side up
to sign, which corresponds to the choice of time oriented central frame determining
the left side up to sign, by Exercise 51. The frame field Y adapted to z is a time
oriented � -frame along f . If ! D Y�1dY, then

!00 D 0D !12 ; !30 D 0; !10 C i!20 D dz;

!31 � i!32 D kdz; !03 D kNzdzC kNzdNz; !01 � i!02 D�bdz� jkj
2

2
dNz:

For the following calculation it is convenient to let

t� D .!10 ;!20 /; t�D .!31 ;!32 /; t
D .!01 ;!02 /:

Since k WU!C is never zero on U �M nUf , we know k.m0/D r0eit0 , where r0 > 0
and 0	 t0 < 2� . Let U0 be the connected component containing m0 of the set

k�1.Cn freit0 W r 	 0g/� U:

Then log.k/ is defined on U0, and there are well defined smooth functions
r; t WU0! R such that r > 0 and � logkD logrC2it; that is,

re2it D 1=k

on U0. Thus jkj D 1=r > 0 and

p
kD r�1=2e�it W U0! C (13.50)
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is smooth. Define a smooth map K D K.1;a;y/ W U0! G� , where

yD
�

y1

y2

�
2 R2; y1C iy2 D�2k�1kNz; aD

�
cos t �sin t
sin t cos t

�
: (13.51)

Then

QY D YK D Y

0
BB@

r�1 tya 0 r
2
jyj2

0 a 0 ry
0 0 1 0

0 0 0 r

1
CCA W U0!MRobC; (13.52)

is a central frame field along f on U0. To verify this, we compute:

K�1dK D

0
BB@

r �rty 0 r
2
jyj2

0 a�1 0 �a�1y
0 0 1 0

0 0 0 r�1

1
CCAd

0
BB@

r�1 tya 0 r
2
jyj2

0 a 0 ry
0 0 1 0

0 0 0 r

1
CCA

D

0
BB@
�r�1dr r.dty/a 0 0

0 a�1da 0 ra�1dy
0 0 0 0

0 0 0 r�1dr

1
CCA

and

K�1!K D K�1

0
BB@
0 t
 !03 0

� 0 �� 


0 t� 0 !03
0 t� 0 0

1
CCAK:

Thus

Q! D QY�1d QY D K�1!KCK�1dK D

0
BB@
Q!00 tQ
 Q!03 0
Q� Q̋ � Q� Q

0 t Q� 0 Q!03
0 t Q� 0 � Q!00

1
CCA ;

where

Q!00 D�r�1dr� ty�; Q� D r�1a�1�; Q!03 D r!03 C rty�;

t Q�D t�a; tQ
D r.t
� .tya/tyC 1
2
jyj2t�Cd ty/a;

�
0 Q!12
Q!21 0

�
D Q̋ D a�1.� ty�yt�/aC

�
0 �1
1 0

�
dt:

(13.53)
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Then

Q' D Q!10 C i Q!20 D r�1e�it.!10 C i!20/D r�1e�itdzD
p

kjkjdz;

since r�1e�it Dpkjkj by (13.50), and

Q!31 � i Q!32 D eit.!31 � i!32/D eitkdzD r�1e�itdzD Q';

so QY is a second order frame field. Moreover,

ty�D y1!31 C y2!32 D
1

2
..y1C iy2/.!31 � i!32/C .y1� iy2/.!31 C i!32//

D�.kNzdzC kNzdNz/;

if y1C iy2 is given by (13.51), and thus

Q!03 D r.!03 C ty�/D 0;

so QY is a third order frame field. From (13.53),

tQ
D r.!01 � ty�y1C 1
2
jyj2!10 Cdy1; !02 � ty�y2C 1

2
jyj2!20 Cdy2/a:

Using (13.51) in this, we get

r�1eit. Q!01 C i Q!02/

D !01 C i!02 � ty�.y1C iy2/C 1
2
jyj2.!10 C i!20/Cd.y1C iy2/

D�NbdNz� jkj
2

2
dz�2kNz

k
.
kNz
Nk dzC kNz

k
dNz/C2jkNz

k
j2dz�2d.

kNz
k
/

D� 2
k2
.kkzNzC 1

4
k2jkj2� kzkNz/dz� 2

k
.
1

2
kNbC kNzNz/dNz;

so

Q!01 C i Q!02 D
�2

k2jkj2Q Q'C �2jkj3W NQ': (13.54)

This with (12.53) confirms the last two equations in (13.48). The last equation
in (13.53) is

�
0 �1
1 0

�
Q!21 D a�1

�
0 y2!10 � y1!20

y1!20 � y2!10 0

�
aC

�
0 �1
1 0

�
dt;
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so, since SO.2/ is abelian,

Q!21 D y1!20 � y2!10 Cdt:

Thus, using �r�1dr�2idtD k�1dk, (13.53), and finally (13.51), we get

Q!00 �2i Q!21 D�r�1dr� y1!10 � y2!20 �2i.y1!20 � y2!10/�2idt

D�r�1dr�2idt� .y1�2iy2/!10 � .y2C2iy1/!20

D k�1dk� .y1�2iy2/
dzCdNz
2
� .y2C2iy1/

dz�dNz
2i

D k�1dk� 3
2
.y1� iy2/dzC 1

2
.y1C iy2/dNzD k�1dkC3k�1kNzdz� k�1kNzdNz

D .k�1kzC3k�1kNz/dzD 1p
kjkj .k

�1kzC3k�1kNz/ Q';

so

Q!00 �2i Q!21 D
1p
kjkj .k

�1kzC3k�1kNz/ Q':

This with (12.50) confirms the first equation in (13.48). ut
If w is another complex coordinate on U0, and if Ok is the first order invariant

relative to w, then (13.20) says OkD kjw0j=.w0/2, where w0 D dw
dz . By (13.48),

OQ
jOkj2 Ok2 D�

1

4
.p1Cp3�2ip2/D Q

jkj2k2 ;

where OQ is defined by (13.49) for Ok. Hence, the quartic differentials

OQdwdwdwdwD Qdzdzdzdz

are independent of complex coordinate, so define a global quartic differential.

Definition 13.38. The Bryant quartic differential of a conformal immersion f W
M!M is the smooth quartic differential Q on the Riemann surface M defined
in any complex coordinate chart .U;z/ by

Q D .k.kzNzC 1
4

kjkj2/� kzkNz/dzdzdzdz;

where k is the first order Möbius invariant of f relative to z.
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Remark 13.39. For the central frame field QY W U0!MRobC defined in (13.52),

QY4 D r.Y4C 1
2
jyj2Y0C .Y1;Y2/y/

D 1

jkj3 .jkj
2Y4C2jkNzj2Y0� NkkNz.Y1� iY2/� kkNz.Y1C iY2//;

by (13.51). Thus, the dual map Of WMnUf !M of Definition 12.36 is given on U0 by

Of D Œ QY4�D Œjkj3 QY4�

D Œjkj2Y4C2jkNzj2Y0� NkkNz.Y1� iY2/� kkNz.Y1C iY2/�:
(13.55)

Then

d QY4 D Q!01 QY1C Q!02 QY2; (13.56)

so by (13.54)

hd QY4;d QY4i D . Q!01 C i Q!02/. Q!01 � i Q!02/

D 4jkj2
�
.
jQj2
jkj4 C

jWj2
jkj2 / Q'

NQ'C Q NW
k2jkj Q' Q'C

NQW
Nk2jkj

NQ' NQ'
�
:

Theorem 13.40 (Bryant [20]). Let f W M ! M be a Willmore immersion of a
connected Riemann surface M. Let Uf � M be its set of umbilic points. If f is not
totally umbilic, then its conformal dual map Of W M nUf !M extends smoothly to
all of M. If the quartic differential Q of f is identically zero on M, then Of is constant
on M.

Proof. If .U;z/ is any complex coordinate chart in M, then Of is given on U0DUnUf

by (13.55). If f is not totally umbilic, then by Proposition 13.32,Uf is a closed subset
of M without interior points, and for any point m2U, there is a neighborhood V �U
of m on which

kD .z� z.m//ng1; kNz D .z� z.m//ng2;

where g1;g2 W V ! C are smooth functions, not both zero at any point of V , and
n is a nonnegative integer. We may replace z by z� z.m/ and thereby assume that
z.m/D 0. On V ,

jkj2 D jzj2njg1j2; jkNzj2 D jzj2njg2j2; NkkNz D jzj2n Ng1g2;
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so after factoring out jzj2n in (13.55), Of is given on V n fmg by

Œ QY4�D Œg21Y4C2jg2j2Y0� Ng1g2.Y1� iY2/�g1 Ng2.Y1C iY2/�;

which is smooth on all of V . Hence Of extends smoothly to U, for any chart .U;z/,
and thus it extends smoothly to M.

If Q and W are identically zero on U, for any complex coordinate chart .U;z/,
then by (13.56) and (13.54) the map QY4 is constant on U. Hence, Q identically zero
on M implies Of is constant on M. ut

Problems

13.41. Prove that the sum zCw of isotropic vectors is again isotropic if and only if
they are orthogonal, meaning tzwD 0.

13.42. Suppose f WM!M is a conformal immersion and that .U;z/ is a complex
coordinate chart in M. Prove that if Y W U ! MRobC is a time oriented frame
satisfying

!10 C i!20 D eudz and !30 D 0
on U, where u W U! R, then

!31 � i!32 D kdzC sdNz;
where k is the first order invariant of f relative to z and s W U! R.

13.43. Suppose f WM!M is a conformal immersion and that .U;z/ is a complex
coordinate chart in M. Prove that if Y W U!MRobC is a time oriented frame field
satisfying !30 D 0 on U, then

!10 C i!20 D euCivdz; !31 � i!32 D pdzCqdNz;
for some smooth functions u;v W U! R and p;q W U! C. Prove that the first order
invariant of f relative to z is

kD eivp;

and eivq is real valued on U.

13.44. Prove that if k and b are the conformal invariants relative to a complex chart
.U;z/ of a conformal immersion f W M !M , and if Ok and Ob are the conformal
invariants relative to a complex chart .U;w/, then

Ok Nw NwC 1
2
OkNObD 1

jw0j3 .kNzNzC 1
2

kNb/;
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where w0 D dw
dz . This shows that the Willmore function (13.19) relative to .U;z/

transforms under a change of complex coordinate as expected from Lemma 12.30.

13.45. Find the Möbius invariants k and b relative to zD xC iy for the cylinder of
Example 13.15 over the circle of radius R> 0, � .x/D R.cos x

R ı1C sin x
R ı2/.

13.46. Fine the Möbius invariants k and b relative to z D xC iy for the cone of
Example ex:17:cone in the case when the profile curve is the circle on S2

� .x/D .lcos.
x

l
/; lsin.

x

l
/;
p
1� l2/;

where lD cos˛, for some fixed angle 0 < ˛ < �=2.

13.47. The circular torus for given ˛ has constant Möbius invariants k and b relative
to z calculated in Example 13.19. Change the complex coordinate to wD ikz, and
denote the invariants relative to w by Ok and Ob. Use Theorem 13.10 to find Ok and Ob.

13.48. Using the decomposition f0 D fC ıS �1 together with Proposition 5.23 and
Exercise 56, prove that the map from oriented spheres and planes in R3 to S3;1

defined by f0 WR3!M is

f0.SR.c//D 1

R
.ı0C cC jcj

2�R2

2
ı4/; f0.˘h.n//D nChı4 2 S3;1:

13.49. Prove that the oriented curvature spheres of the circular torus x.˛/ relative
to e3 found in Example 5.12 correspond, under the conformal diffeomorphism fC W
S3!M to the points S˙ 2 S3;1 found above in Example 13.19.

13.50. If H, K, and dA are the mean curvature, Gaussian curvature, and area
element on M for an immersion x WM! H3, and if QH, QK, and d QA denote the same
quantities for the immersion sıx WM! R3, where s WH3! B3 � R3 is hyperbolic
stereographic projection (see Definition 6.15), prove that

.H2�K�1/dAD . QH2� QK/d QA:

13.51 (Clifford torus associates). Find the associates of the Clifford torus
f W R2!M defined by the lift (13.33) for the case � D �=4. Relative to zD xC iy
its invariants are k D �1 and b D 0. For any real constant t, its associate ft has
invariants OkD�eit and ObD 0, relative to z.

13.52. Use the change of coordinate formula (13.20) to prove directly that the
Bryant quartic differential Q of Definition 13.38 is independent of the choice of
complex coordinate chart in M, and thus is smooth and well-defined on all of M.

13.53 (Spiral cylinder). Use Theorem 13.22 and Proposition 13.37 to verify that
the Möbius invariants of the immersion in (12.69) are given by (12.70) with q2D 2

n .



Chapter 14
Isothermic Immersions into Möbius Space

The theory of isothermic surfaces in conformal geometry was intensely studied at
the turn of the 20th century by L. Bianchi [6, 7], P. Calapso [27, 28], Darboux
[55–57], and R. Rothe [142]. The modern theory of integrable systems and loop
groups has renewed interest in this theory. The methods of integrable systems theory
made their first appearance in the study of isothermic surfaces with Cieśliński,
Goldstein, and Sym’s zero-curvature formulation of the Gauss–Codazzi equations
of an isothermic surface [51, 52]. This work was taken up by Burstall, Hertrich-
Jeromin, Pedit, and Pinkall [25], who described the integrable system of isothermic
surfaces in the context of Möbius geometry as an example of the curved flat system
of Ferus and Pedit [69]. An equivalent description was given by Brück, Park,
and Terng in [19]. This approach provided a coherent framework for discussing
the classical transformations of isothermic surfaces. For recent accounts of the
transformation theory of isothermic surfaces, we refer the reader to Hertrich-
Jeromin’s book [86] and Burstall’s monograph [24]. In the latter reference, the
Darboux transformation is described using the loop group formulation according to
the general theory of Bäcklund transformations due to Terng and Uhlenbeck [159].

This chapter presents the classical theory in terms of the Möbius invariants k and
b relative to a complex coordinate.

14.1 Isothermic immersions

Let f WM!M be a conformal immersion of a Riemann surface M. Let .U;z/ be
a complex coordinate chart in M. Recall Definition 13.5 of the Möbius frame field
Y W U!MRobC adapted to z together with the first order invariant k W U! C and
the second order invariant b W U! C of f relative to z.

© Springer International Publishing Switzerland 2016
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Definition 14.1. A complex coordinate chart .U;z/ in M is called principal for f if
the first order invariant k of f relative to z is real valued on U. In this case we call k
the Calapso potential for f relative to z.

Definition 14.2. The conformal immersion f WM!M is isothermic if there exists
an atlas fU˛;z˛g˛2A on M of principal complex coordinate charts for f .

Remark 14.3. By this definition a totally umbilic immersion f W M ! M is
isothermic because k is identically zero, therefore real valued, for any complex chart
.U;z/ in M.

Recall the conformal embeddings f
 W S
 ! M , 
 2 f0;C;�g, defined in
Section 12.5.

Lemma 14.4. If x W M ! S
 is an isothermic immersion, then the composition
f D f
 ı x WM!M is a conformal isothermic immersion.

Proof. Let .U;z/ be a principal chart in M for the complex structure coming from
the metric I induced on M by the isothermic immersion x. Let eu be the conformal
factor and let h be the Hopf invariant of x relative to z. Then the first order Möbius
invariant k of f D f
 ı x is k D heu, by (13.34) in Theorem 13.22. Since h is real
valued, k is real valued. An atlas of principal charts in M for x is therefore also an
atlas of principal charts for f . ut
Proposition 14.5 (Isothermic criterion). A conformal immersion f W M!M is
isothermic if and only if for any complex coordinate chart .U;z/ in M, the first
order Möbius invariant k relative to z has the property that for any point in U there
is a neighborhood V � U about the point such that k D rg2 on V, where r W V! R
is smooth and g W V! Cn f0g is holomorphic.

Proof. Suppose f is isothermic and suppose .U;z/ is a complex coordinate chart
of M. About a given point in U, let .V;w/ be a principal chart for f and let Ok be the
Calapso potential relative to w. By the change of coordinate formula (13.20),

kD Ok
�

dw

dz

�2
=

ˇ̌
ˇ̌dw

dz

ˇ̌
ˇ̌ ; (14.1)

which is a real valued smooth function Ok=
ˇ̌
ˇ dw

dz

ˇ̌
ˇ times the square of the nowhere zero

holomorphic function dw
dz .

Conversely, if k D rg2 on V , where g is holomorphic and never zero on V , and r
is real, then there is a holomorphic function w on a possibly smaller neighborhood
of the point in V such that dw D gdz and w is a complex coordinate on this
neighborhood. By (14.1), the first order invariant Ok of f relative to w is

OkD jgjk
g2
D jgjr;

which is real valued. ut
Recall Definition 9.16 of an affine structure on a Riemann surface M.



14.1 Isothermic immersions 471

Theorem 14.6 (Affine structure). If fU˛;z˛g˛2A is an atlas of principal charts
for an isothermic conformal immersion f WM!M whose set of nonumbilic points
is dense in M, then this atlas defines an affine structure on M.

Proof. Let fU˛;z˛g˛2A be an atlas of principal charts on M and let k˛ be the first
order Möbius invariant of f relative to z˛ . If U˛\Uˇ ¤ ;, then by (13.20)

kˇ

�
dzˇ
dz˛

�2
D k˛

ˇ̌
ˇ̌dzˇ
dz˛

ˇ̌
ˇ̌

Since the set of nonumbilic points of f is assumed dense in M, its intersection with
U˛\Uˇ is dense in this set, and on this dense subset of U˛\Uˇ we have

�
dzˇ
dz˛

�2
D
ˇ̌
ˇ̌dzˇ
dz˛

ˇ̌
ˇ̌k˛=kˇ

is holomorphic and real valued, thus locally constant. It follows that dzˇ
dz˛

is locally
constant on U˛\Uˇ. Therefore, the given atlas defines an affine structure on M. ut
Corollary 14.7. If M is a compact Riemann surface and if f W M ! M is a
conformal isothermic immersion whose set of nonumbilic points is dense in M, then
M is a torus.

Proof. By Theorem 9.20, a compact Riemann surface which possesses an affine
structure must have genus equal to one. ut
Theorem 14.8. If M is a simply connected Riemann surface with a conformal
isothermic immersion f W M!M whose set of nonumbilic points is dense in M,
then there exists an atlas fU˛;z˛g˛2A of principal charts for f such that, if k˛ and
b˛ are the first and second order Möbius invariants of f relative to z˛ , then

z˛ D zˇ; k˛ D kˇ; b˛ D bˇ

for any ˛;ˇ 2A with U˛ \Uˇ ¤ ;. Therefore, there exist a holomorphic function
z WM! C and smooth functions k WM! R and b WM! C such that

z˛ D zjU˛ ; k˛ D kjU˛ ; b˛ D bjU˛ ;
for any ˛ 2A .

Proof. Let fU˛;z˛g˛2A be an atlas of principal charts on M. We may assume that
the open cover U D fU˛g˛2A is a simple cover, which implies that any nonempty
intersection U˛\Uˇ is contractible (see [53, Theorem 8.5.7, p. 268]). By the proof
of Theorem 14.6, if U˛ \Uˇ ¤ ;, then

c˛ˇ D dzˇ
dz˛
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is locally constant, hence constant, on U˛\Uˇ , and c2˛ˇ is real valued and nonzero.

We now apply a Čech cohomology argument of the kind used in the global
construction part of the proof of Theorem 9.24.

It is known (see [53, Lemma 8.9.8, p. 285]) that for any abelian group G, the Čech
cohomology of a simple cover, LH1.U ;G/, is equal to H1.M;G/, which is just the
trivial group consisting of the identity element of G when M is simply connected.
That said, we now go through two cohomology arguments to arrive at the desired
atlas.

For the first argument, we let G D R� [ iR� be the multiplicative group of
nonzero real and pure imaginary numbers. Thus c˛ˇ 2 G whenever U˛ \Uˇ ¤ ;.
Define a 1-cochain c on M by assigning to the pair U˛;Uˇ , if U˛ \Uˇ ¤ ;,
the element c˛ˇ 2 G. Then, whenever U˛ \Uˇ \U� ¤ ;, the cocycle condition
c˛ˇcˇ�c�˛ D 1 is satisfied, which shows that c is a Čech cocycle. Since the Čech
cohomology group LH1.U ;G/ D f1g, there exists a 0-cochain t whose coboundary
ıtD c. That is, t assigns to the open set U˛ the number t˛ 2G, such that for any pair
U˛;Uˇ with nonempty intersection,

.ıt/˛ˇ D tˇ=t˛ D c˛ˇ: (14.2)

Let w˛ W U˛ ! C be defined by w˛ D z˛=t˛. Then U˛;w˛ is a complex chart in M
such that dw˛

dz˛
D 1=t˛ on U˛ and, by (13.20), its first order Möbius invariant

Qk˛ D
k˛j dw˛

dz˛
j

. dw˛
dz˛
/2
D k˛t2˛
jt˛j ;

which is real valued on U˛ . Hence, U˛;w˛ is a principal chart for f , for any ˛ 2A ,
and whenever U˛\Uˇ ¤ ;,

dwˇ
dw˛
D dzˇ

tˇ

t˛
dz˛
D t˛

tˇ
c˛ˇ D 1:

We may thus assume that our original atlas of principal charts fU˛;z˛g˛2A
is such that U is a simple cover of M and that

dzˇ
dz˛
D 1 on any nonempty

intersection U˛\Uˇ. It follows that on this intersection, which is connected, we
have zˇ D z˛Ca˛ˇ , for some constant a˛ˇ 2 C.

Now consider Čech cohomology with coefficients in the additive group
of complex numbers C. Let a denote the 1-cochain which assigns to a pair
U˛;Uˇ , with U˛ \Uˇ ¤ ;, the constant a˛ˇ 2 C. Then a is a cocycle because
a˛ˇCaˇ� Ca�˛ D 0. Hence, there exists a 0-cochain s D .s˛/ such that ıs D a,
which means that s assigns to U˛ the constant s˛ 2 C in such a way that on
U˛ \Uˇ ¤ ; we have sˇ � s˛ D .ıs/˛ˇ D a˛ˇ . Let w˛ W U˛ ! C be defined by
w˛ D z˛ � s˛ . Then U˛;w˛ remains a principal complex chart for each ˛ 2 A and
on any nonempty intersection

wˇ�w˛ D zˇ� sˇ� z˛C s˛ D a˛ˇ�a˛ˇ D 0
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We have shown that there exists an atlas fU˛;z˛g˛2A on M of principal complex
charts for f such that z˛ D zˇ on U˛ \Uˇ. Then dzˇ

dz˛
D 1 and the Schwarzian

derivative Sz˛ .zˇ/ D 0, so by (13.20) and (13.21), we have kˇ D k˛ and bˇ D b˛
on U˛\Uˇ. ut
Remark 14.9. In the notation of the preceding theorem, the function z WM! C is
not necessarily a complex coordinate on all of M, because it need not be one-to-one,
but for each U˛ in this atlas, the function zjU˛ D z˛ is a principal complex coordinate
on U˛ for f . For this reason there is a well defined operator @z on functions and
1-forms, which on U˛ is @z˛ . The function k WM! R is the Calapso potential for f
relative to z, in the sense that kjU˛ D k˛ is the Calapso potential relative to z˛ . In the
same way, the function b WM!C is the second order Möbius invariant of f relative
to z in the sense that bjU˛ D b˛ is this invariant for f relative to z˛ . We summarize
this in the following definition.

Definition 14.10. A principal function for an isothermic immersion f WM!M is
a holomorphic function z WM! C together with Calapso potential k WM! R and
second order Möbius invariant b WM!C such that there is an atlas fU˛;z˛g˛2A of
principal charts for f with Calapso potential k˛ and second order Möbius invariant
b˛ relative to z˛ such that zjU˛ D z˛ , kjU˛ D k˛ and bjU˛ D b˛, for each ˛ 2A .

This definition allows the possibility that A consists of only one element so
that .M;z/ is a principal chart with Calapso potential k and second order Möbius
invariant b. According to Theorem 14.8, if M is simply connected and if f WM!M
is a conformal isothermic immersion with dense set of nonumbilic points, then there
exists a principal function z on M with Calapso potential k WM!R and second order
Möbius invariant b WM! C relative to z.

Example 14.11. The following example has a principal function that is not a global
complex coordinate on M. Let MDC with its standard complex structure zD xC iy.
Let f W M !M be the conformal immersion defined by the lift F W M ! L C
defined by

F.x;y/D 1

c

0
BBBBB@

cC cos.cex cosy/
sin.cex cosy/
cos.cex siny/
sin.cex siny/

1
2
.c� cos.cex cosy//

1
CCCCCA

where cDp2. One calculates hFz;Fzi D 0 and hFz;FNzi D e2x=2 to verify that e�xF
is the normalized lift required in Theorem 13.13 to calculate the invariants k and b
of f relative to z. As an exercise, verify that

kD�e2ze�x; bD�1=2:
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By Proposition 14.5, f is an isothermic immersion, because k is a real function
times a nowhere zero holomorphic function. But the complex coordinate z is not
principal, because k is not real valued. The holomorphic map wD ez W C! C is a
principal function for f . In fact, on a sufficiently small neighborhood of any point of
C, w is a local complex coordinate, because w0 D dw

dz D ez is never zero. It is not a
global complex coordinate because it is not one-to-one. According to the change of
coordinate formulas (13.20) and (13.21), the invariants Ok and Ob relative to w are

OkD kjw0j
.w0/2

D�1; ObD b�Sz.w/

.w0/2
D 0:

Actually, the normalized lift OF W M ! L C of f relative to w is the map defined
in (13.33) with rD sD 1=p2, which is the minimal Clifford torus in S3 composed
with the conformal diffeomorphism (12.23) of S3 with M .

14.2 T-Transforms and Calapso’s equation

Definition 14.12. A T-transform of an isothermic immersion f W M ! M with
principal function z WM! C is an isothermic immersion Of WM!M with the same
Calapso potential as f .

T-transforms are analogs of associates of CMC immersions in the space forms.

Theorem 14.13 (T-Transforms of Isothermic Immersions). Suppose z WM! C
is a principal function for an isothermic immersion f W M ! M of a simply
connected Riemann surface M. Let k W U ! R be the Calapso potential and let
b W U ! C be the second order invariant of f relative to z. Then the structure
equations (13.17) and (13.18) for f become

bNz D .k2/z; =.kzzC 1
2

bk/D 0; (14.3)

where =.p/ denotes the imaginary part of the complex number p. For each constant
t 2 R, there exists an isothermic immersion ft W M !M , called the T-transform
of f , such that z W M! C remains a local principal complex coordinate for ft, the
Calapso potential for ft relative to z is kt D k and the second order Möbius invariant
of ft relative to z is bt D bC t. If t ¤ s, then ft is not Möbius congruent to fs. If
Of WM!M is a T-transform of f , then Of D ft, for some constant t.

Proof. Let fU˛;z˛g˛2A be an atlas of principal charts on M such that zjU˛ D z˛
for each ˛ 2 A . Let k˛ be the Calapso potential and b˛ the second order
Möbius invariant of f relative to z˛ . Since k˛ is real valued on U˛ , the structure
equations (13.17) and (13.18) become

b˛ Nz˛ D .k2˛/z˛ =.k˛zzC 1
2

b˛k˛/D 0:

Then (14.3) follows from this because kjU˛ D k˛ , bjU˛ D b˛ and zjU˛ D z˛ .
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For any constant t 2 R, the smooth functions kt D k W M! R and bt D bC t W
M ! C satisfy the structure equations (14.3). By Theorem 13.8, there exists an
immersion ft W M !M with Calapso potential kt D k and second order Möbius
invariant bt D bC t. As the invariants bt are distinct for distinct values of t, the
immersions ft are noncongruent for distinct values of t.

If Of W M !M is a T-transform of f , and if Ob is the second order invariant of
Of relative to z, then ObNz D bNz and =.Ob/ D =.b/, by (14.3). That a real holomorphic
function must be a real constant then implies that ObD bC t, for some real constant
t, so Of D ft up to Möbius transformation. ut
Proposition 14.14 (Calapso’s equation [27]). Let M be a simply connected
Riemann surface with a complex coordinate z WM! C.

If f WM!M is a conformal isothermic immersion for which .M;z/ is a principal
chart with first order invariant k WM! Rn f0g, then k satisfies Calapso’s equation

�

�
kxy

k

�
C2.k2/xy D 0; (14.4)

where zD xC iy and �D 4 @2

@z@Nz D @2

@x2
C @2

@y2
is the Laplace operator.

Conversely, if k W M ! R n f0g is a smooth function satisfying Calapso’s
equation (14.4), then there exists a conformal isothermic immersion f W M !M
for which .M;z/ is a principal chart whose first order invariant is k.

Proof. For a real valued function g we have=.gzz/D� 12gxy since gzzD 1
4
.gxx�gyy�

2igxy/. Let b WM!C be the second order invariant of f relative to z. Write the second
structure equation in (14.3) as =. kzz

k Cb=2/D 0. To it apply the Laplace operator�,
which commutes with =, and then use the first structure equation in (14.3), to get

0D�=.kzz

k
C 1
2

b/D�
�
�1
2

kxy

k

�
C 1
2
=.�b/

D�1
2
�

�
kxy

k

�
C 1
2
=.4.bNz/z/D�1

2
�

�
kxy

k

�
C2=..k2/zz/

D�1
2
�

�
kxy

k

�
� .k2/xy;

from which (14.4) follows.
To prove the converse, we construct a smooth function b W M ! C such that

k and b satisfy the structure equations (14.3). The result will then follow from
Theorem 13.8. If we write bD b1C ib2, where b1 and b2 are real valued functions
on M, then the second structure equation in (14.3) holds if and only if

b2 D�2=.kzz

k
/D kxy

k
:



476 14 Isothermic Immersions into Möbius Space

The first structure equation holds if and only if

b1x D 2kkxCb2y; b1y D�2kky�b2x:

A solution b1 of these two equations exists if and only if

.2kkxCb2y/yC .2kkyCb2x/x D 0;

which is true by Calapso’s equation (14.4). ut
Definition 14.15. A principal frame field along a conformal immersion
f WM!M is a Möbius frame field Y W U �M!MRobC along f for which

!30 D 0; !31 ^!10 D 0D !32 ^!20 :

Then !21 D p!10Cq!20 , for smooth functions p;q WU!R, and the criterion form of
Y is

˛ D !00 Cq!10 �p!20 :

The conditions !31 ^!10 D 0 D !32 ^!20 on U are equivalent to the conditions
!31 D a!10 and !32 D c!20 , for smooth a;c W U ! R. The principal vectors are the
zeros of !20!

3
1 �!10!32 D .a� c/!10!

2
0 , by Lemma 13.21. If f is umbilic free on U,

then a� c is never zero on U, so the integral curves of !10 D 0 and !20 D 0 are the
lines of curvature of f in U.

Any second order Möbius frame field along f is principal, and these exist on a
neighborhood of any nonumbilic point. We have an isothermic criterion analogous
to Theorem 9.12 given in terms of a principal frame field.

Theorem 14.16 (Isothermic criterion form). Let f W M !M be a conformal
immersion of a Riemann surface M.

If f is isothermic, then each point of M has a neighborhood on which there is a
principal frame field along f . If the nonumbilic points of f are dense in M, then for
any principal frame field along f the criterion form is closed.

Conversely, if each point of M has a neighborhood on which there is a principal
frame field with closed criterion form, then f is isothermic.

Proof. If f is isothermic, then for any m 2M there exists a principal complex coor-
dinate chart about m. The Möbius frame field adapted to this complex coordinate is
principal with criterion form ˛ D 0.

Suppose Y W U ! MRobC is any principal frame field along isothermic f with
criterion form ˛. If we show that d˛ D 0 on some neighborhood of any nonumbilic
point m 2 U, then d˛ D 0 on U under the further assumption that the nonumbilic
points of f are dense in M. Let z D xC iy be a principal complex coordinate on a
connected, umbilic free neighborhood V � U of m. The integral curves of !10 D 0
and of !20 D 0 are the lines of curvature of f , as are the coordinate curves dxD 0 and
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dyD 0. Thus !10 D ldx, !20 D ndy or !10 D ldy, !20 D ndx, for smooth l;n W U! R.
Since !10 ^!20 and dx^ dy are positive, we must have ln > 0, respectively, ln < 0
on V . By conformality, !10!

1
0 C!20!20 is a multiple of dx2C dy2, so we must have

l2 D n2. Thus, either !10 D ldx, !20 D ldy or !10 D ldy, !20 D�ldx. In the latter case,
replace z by the principal coordinate iz, to get the former case. Finally, if l < 0,
replace z by �z. Hence, we may assume that on some open neighborhood V � U
of m,

!10 C i!20 D eudz;

for some smooth u W V!R. With !21 D p!10Cq!20 and!00 D v!10Cw!20 , for smooth
p;q;v;w W U! R, the criterion form is

˛ D !00 Cq!10 �p!20 D NQdzCQdNz
on V , where

QD 1

2
eu.vCqC i.w�p// W V! C

is smooth, and !00 � i!21 D PdzCQdNz, for some smooth P W V!C. By the structure
equations,

�euuNzdz^dNzD d.!10 C i!20/D .!00 � i!21/^ eudzD�euQdz^dNz;

so QD uNz and ˛ D uzdzCuNzdNzD du is closed on V .
Conversely, given a point m 2M, let Y WU!MRobC be a principal frame field on

a neighborhood U of m with closed criterion form ˛ on U. By an argument identical
to that given in the proof of the converse of Theorem 9.12, there exists a complex
coordinate z on a neighborhood V � U of m such that !10 C i!20 D eudz on V . Now
Y principal implies !31 D a!10 , !32 D c!20 , for smooth a;c W U! R, so

!31 � i!32 D
a� c

2
.!10 C i!20/C

aC c

2
.!10 � i!20/D

a� c

2
eudzC aC c

2
eudNz:

Problem 13.42 now implies that the first order invariant of f relative to z is
kD a�c

2
eu, which is real valued on V , so z is a principal complex coordinate about

m. Hence, f is isothermic. ut
Corollary 14.17. A conformal immersion f WM!M with dense set of nonumbilic
points M0 is isothermic if and only if its third order Möbius invariant p2 D 0 on M0.

Proof. If f is isothermic, then each point of M0 is contained in a principal complex
coordinate neighborhood .U;z/ for which the first order Möbius invariant k > 0
on U. Then Q, the coefficient of the quartic form Qf relative to z must be real, by
its formula in Proposition 13.37, and thus p2 D 0 on U by (13.48).
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Conversely, suppose p2 D 0 on M0. Any point of M0 has a neighborhood U on
which there is a Bryant central frame Y WU!MRobC, by Lemma 12.34. This frame
is principal, and by (12.51) !21 D q1!10 Cq2!20 , and !00 D�2.q2!10 �q1!20/, so

˛ D !00 Cq2!
1
0 �q1!

2
0 D

1

2
!00 :

By (12.52) and the structure equations of MRob, we get

d˛ D�1
2
.!01 ^!10 C!02 ^!20/D p2!

1
0 ^!20 D 0

on U. Hence, f is isothermic by Theorem 14.16. ut
Corollary 14.18. If f WM!M is a Dupin immersion without umbilics, then it is
isothermic and relative to any principal complex coordinate the Calapso potential
is constant.

Proof. By Theorem 12.51, the Möbius invariants q1 D q2 D p2 D 0, so f is
isothermic. Relative to a principal complex coordinate .U;z/ in M, the Calapso
potential k W U ! R satisfies kz D 0 on U, by (13.48) in Proposition 13.37, so it
is constant. ut
Definition 14.19. An immersion f W M!M is densely nonisothermic if for any
complex chart .U;z/ in M the first order Möbius invariant k of f relative to z has
nonzero imaginary part on a dense subset of U. In other words, f is not isothermic
on any open subset of M.

Theorem 14.20 (Burstall, Pedit, Pinkall [26]). Suppose that the Riemann surface
M has a global complex coordinate z. If f ; Of WM!M are conformal immersions for
which their first order Möbius invariants k and Ok relative to z are equal at every point
of M, Ok D k on M, and if there is no open subset M0 of M for which f WM0!M
is isothermic, then f and Of are Möbius congruent; that is, there exists an element
T 2MRob such that Of D T ı f .

Proof. Let b and Ob be the second order Möbius invariants of f and Of relative
to z. Then the assumption Ok D k and the structure equation (13.17) imply that
.Ob�b/Nz D 0. Hence, Ob� b is holomorphic on M. Seeking a contradiction, suppose
Ob�b is not zero at some point m 2M. Then a square root of it is defined and nonzero
on a neighborhood U of m. Let Ob� b D uC iv and k D pC iq, where u;v;p;q are
smooth, real valued functions on U. Then the structure equation (13.18) gives

0D=..Ob�b/k/D uq�vp;

which implies that .p;q/ D r.u;v/, for some smooth real valued function r on U.
Hence,

kD r.uC iv/D r.Ob�b/
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is a real valued function times the square of a holomorphic function on U, which
implies that f W U !M is isothermic, contrary to our assumption about f . Thus,
ObD b at every point of M, and our result now follows from Theorem 13.8. ut

14.3 Möbius deformation

Let f ; Of WM!M be smooth maps of a 2-dimensional manifold into Möbius space.
For a given point m0 2 M, let fUIx1;x2g be a local coordinate system of M about
m0. Since MRobC acts transitively on M , we may assume that

f .m0/D Of .m0/D Œı0�:

Let F, OF W U!L � R4;1 be arbitrary lifts of f and Of , where FD F0ı0CP3
1Fi�iC

F4ı4, OFD OF0ı0CP3
1
OFi�iC OF4ı4. Let �a D Fa=F0, �a D OFa

= OF0, aD 1;2;3;4, and
define � D ı0CP3

1 �
i�iC �4ı4, � D ı0CP3

1 �
i�iC �4ı4.

Definition 14.21. We say that f , Of WM!M agree to order k at m0 2M if �.m0/D
�.m0/ and for any integer r, 1	 r 	 k,

@r�a

@xi1 � � �@xir
.m0/D @r�a

@xi1 � � �@xir
.m0/;

for all i1; : : : ; ir and aD 1;2;3;4. This amounts to saying that f , Of have the same kth
order Taylor polynomials at m0.

We adopt the following notation. If � D �i1���ih dxi1 � � �dxih is a homogeneous
symmetric differential form of degree h on U, by j.�/ we mean the homogeneous
symmetric differential form of degree hC1 defined by

j.�/ WD @�i1���ih
@xihC1

dxi1 � � �dxih dxihC1 :

Lemma 14.22. The smooth maps f ; Of WM!M agree to order k at m0 2M if and
only if

jr. OF/jm0 D
rX

hD0

 
r

h

!
jr�h. OF0=F0/jm0 j

h.F/jm0 .rD 0; : : : ;k/; (14.5)

for arbitrary lifts OF, F W U!L � R4;1 such that f D ŒF�, Of D Œ OF�.
Proof. If f and Of agree to order k at m0, since FD F0�, OFD OF0� and jr.�/.m0/ D
jr.�/.m0/, rD 0; : : : ;k, we compute
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jr. OF/jm0 D
rX

hD0

 
r

h

!
jh. OF0/jm0 jr�h.�/jm0 D

rX
hD0

 
r

h

!
jh. OF0/jm0 jr�h.�/jm0

D
rX

hD0

 
r

h

!
jh. OF0/jm0 jr�h.

F
F0
/jm0

D
rX

hD0

r�hX
mD0

 
r

h

! 
r�h

m

!
jh. OF0/jm0 jr�h�m.

1

F0
/jm0 j

m.F/jm0

D
rX

mD0

r�mX
hD0

 
r

m

! 
r�m

h

!
jh. OF0/jm0 jr�h�m.

1

F0
/jm0 j

m.F/jm0

D
rX

mD0

 
r

m

!
jr�m. OF0=F0/jm0 j

m.F/jm0 ;

and hence condition (14.5).
Conversely, if conditions (14.5) hold true for arbitrary lifts F and OF, by choosing

FD ı0CP3
1 �

i�iC�4ı4 and OFD ı0CP3
1 �

i�iC�4ı4, then f and Of agree to order k.
ut

Corollary 14.23. In particular, we have:

• f , Of agree at first order if and only if

OFjm0 D �0jm0Fjm0 ; j1. OF/jm0 D �1jm0Fjm0C�0jm0 j
1.F/jm0 ; (14.6)

where �0 D OF0=F0 and �1 D j1. OF0=F0/.
• f , Of agree at second order if and only if (14.6) holds and

j2. OF/jm0 D �2jm0Fjm0C2�1jm0 j
1.F/jm0C�0jm0 j

2.F/jm0 ; (14.7)

where �2 D j2. OF0=F0/.
• f , Of agree at third order if and only if (14.6) and (14.7) hold and

j3. OF/jm0 D �3jm0Fjm0C3�2jm0 j
1.F/jm0

C3�1jm0 j
2.F/jm0C�0jm0 j

3.F/jm0 ;
(14.8)

where �3 D j3. OF0=F0/.

Definition 14.24. Two smooth maps f , Of WM!M are kth order Möbius deforma-
tions of each other if there exists a smooth map D WM!MRobC such that for each
point m 2M, the maps Of and D.m/f agree to order k at m. The map D is called the
infinitesimal displacement of the deformation. If D.m/ does not depend on m 2M,
the deformation is called trivial, in which case Of D Df is Möbius congruent to f .
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A given map f WM!M is rigid to kth order deformation if there is no nontrivial kth
order deformation of it. It is Möbius deformable of order k if it admits a nontrivial
kth order deformation.

Proposition 14.25. Let f , Of W M ! M be smooth immersions of the oriented
2-dimensional manifold M into Möbius apace M , viewed as homogeneous space
of the group MRobC. Then the following statements hold true:

1. The immersions f and Of are first order Möbius deformations of each other if
and only if there exist first order frame fields Y; OY WM!MRobC along f and Of ,
respectively, such that

OY�
!10 D Y�!10 ; OY�

!20 D Y�!20 ; (14.9)

where ! is the Maurer–Cartan form of MRobC. In particular, any smooth
immersion f WM!M is Möbius deformable of first order.

2. The immersions f and Of are second order Möbius deformations of each other
if and only if there exist second order frame fields Y and OY along f and Of ,
respectively, such that

OY�
!10 D Y�!10 ; OY�

!20 D Y�!20 ; OY�
!21 D Y�!21 ;

OY�
!00 D Y�!00 ; OY�

!31 D Y�!31 ; OY�
!32 D Y�!32 :

(14.10)

3. The immersions f and Of are third order Möbius deformations of each other if and
only if there exist second order frame fields Y and OY along f and Of , respectively,
such that

OY�
! D Y�!: (14.11)

Thus, any smooth immersion f WM!M is rigid to third order.

Proof. (1) Suppose f and Of are first order Möbius deformations of each other. Then
D W M!MRobC exists so that Of and D.m/f agree to order one at m, for each
m 2 M. Let Y be a first order Möbius frame field along f and define OY WM!
MRobC by OY.m/D D.m/Y.m/, for each m 2M. Then OY is a frame field along Of
and Y 0DD.m0/Y WM!MRobC is a frame field along D.m0/f , for each m0 2M.
According to (14.6) in Corollary 14.23, we have

OY0.m0/D �0.m0/Y0
0.m0/ (14.12)

d OY0jm0 D �0.m0/dY0
0jm0C�1.m0/Y0

0.m0/: (14.13)

Equation (14.12) yields

�0.m0/D 1; (14.14)
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since OY and Y 0 agree at m0. Now, the structure equations of MRobC imply

d OY0 D
5X

jD0
Ǫ j0 OYj; dY0

0 D
5X

jD0
˛

j
0Y

0
j; (14.15)

where we have set ˛ D Y�! and Ǫ D OY�
!. Substitution of (14.15) into (14.13)

yields

�1 D . Ǫ 00 �˛00/; Ǫ i0 D ˛i
0; at m0, for iD 1;2;3. (14.16)

Since m0 was chosen arbitrarily, equations (14.14) and (14.16) hold on all M,
which implies that OY is a first order frame along Of with the required properties.

Conversely, suppose (14.9) hold for first order frames Y; OY W M ! MRobC
along f and Of , respectively. Define D WM!MRobC by

D.m/D OY.m/Y.m/�1; m 2M:

It follows from (14.14), (14.15), and (14.16) that (14.12) and (14.13) hold,
which proves that D induces a first order Möbius deformation.

(2) We retain the notation of part (1) and suppose that f and Of are second order
Möbius deformations of each other. Then Of and D.m/f agree to second order at
m, for each m 2M. Let Y WM!MRobC be a second order frame field along f
and OY and Y 0 be as in part (1). We have to show that OY defines a second order
frame field along Of such that

Ǫ 10 D ˛10; Ǫ 20 D ˛20; Ǫ 21 D ˛21; Ǫ 00 D ˛00; Ǫ 31 D ˛31; Ǫ 32 D ˛32: (14.17)

By Corollary 14.23 and the discussion in part (1), the frame fields OY and Y 0 must
satisfy (14.12), (14.13), and

j2. OY0/jm0 D �2.m0/Y0
0jm0C2. Ǫ 00 �˛00/jm0dY0

0jm0C j2.Y0
0/jm0 : (14.18)

Writing out (14.18), using the structure equations (14.15), equations Ǫ i0 D ˛i
0,

iD 1;2, Ǫ 30 D ˛30 , and the fact that OY0.m0/DY0
0.m0/, we find

�2 D j. Ǫ 00 �˛00/C . Ǫ 00 �˛00/2C˛10. Ǫ 01 �˛01/C˛20. Ǫ 02 �˛02/;
0 D ˛20. Ǫ 12 �˛12/�˛10. Ǫ 00 �˛00/;
0 D ˛10. Ǫ 21 �˛21/�˛20. Ǫ 00 �˛00/;
0 D ˛10. Ǫ 31 �˛31/C˛20. Ǫ 32 �˛32/:
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From these equation it follows that

Ǫ12 D ˛12; Ǫ 00 D ˛00; Ǫ 3i D ˛3i .iD 1;2/: (14.19)

Thus OY is a second order frame field along Of and the conditions (14.17) are
satisfied.

Conversely, suppose (14.17) hold for second order frame fields Y; OY WM!
MRobC along f and Of , respectively. As above, let D WM!MRobC be given by

D.m/D OY.m/Y.m/�1; m 2M:

By reversing the arguments above, we see that (14.12), (14.13), and (14.18) are
satisfied, so that D induces a second order Möbius conformal deformation of f
and Of .

As for (3), writing out (14.8), after some lengthy but straightforward

computations one can prove that ˛ D Y�1dY D OY�1
d OY D Ǫ . By the Cartan–

Darboux theorem, we then have that dDjm D 0, for every m 2M. ut
The next result characterizes isothermic surfaces as the surfaces which are

Möbius deformable of second order.

Proposition 14.26. An umbilic free immersion f WM!M of an oriented surface
into Möbius space is Möbius deformable of order two if and only if it is isothermic.

Proof. Assume that f W M ! M and Of W M ! M are second order Möbius
deformation of each other. Let Y and OY be central frame fields along f and Of ,
respectively, and write ˛ D Y�!, Ǫ D OY�

!. According to Proposition 14.25, we
then have

Ǫ 10 D ˛10; Ǫ 20 D ˛20; (14.20)

Ǫ 00 D ˛00; Ǫ 21 D ˛21: (14.21)

Differentiating the two equations in (14.21) and using the structure equations of the
group MRobC, we get

˛01 � Ǫ 01 D r˛10; ˛02 � Ǫ 02 D�r˛20; (14.22)

for some smooth function r W M ! R. We have r ¤ 0 on an open, dense subset
of M, since f and Of are not Möbius congruent on any open subset of M. Next,
differentiating (14.22), taking into account (14.21), and using again the structure
equations, we obtain

.drC2rq1˛
2
0/^˛10 D 0;

.dr�2rq2˛
1
0/^˛20 D 0;
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which imply

dr� r˛00 D 0; (14.23)

since ˛00 D 2.q2˛10 �q1˛20/. By the structure equations,

d˛00 D 2p2˛
1
0 ^˛20; (14.24)

which combined with (14.23) implies that the third order invariant p2D 0, and hence
f is isothermic.

Conversely, if p2D 0, by (14.24), ˛00 is a closed 1-form. Given m0 2M, let U be a
simply connected open neighborhood of m0 and let u WU!R be a smooth function
such that ˛00 D du. Let aD eu and set

Ǫ01 D ˛01 �a˛10; Ǫ 02 D ˛02 D a˛20: (14.25)

Now, the mRob-valued 1-form

Ǫ D

0
BBBBB@

˛00 Ǫ 01 Ǫ 02 0 0

˛10 0 �˛21 �˛10 Ǫ 01
˛20 ˛

2
1 0 ˛20 Ǫ 02

0 ˛10 �˛20 0 0

0 ˛10 ˛20 0 �˛00

1
CCCCCA

satisfies the Maurer–Cartan structure equations, which implies the existence of
OY W U!MRobC, unique up to left translations, such that Ǫ D OY�

!. Let Of W U!M
be defined by f .m/ WD Œ OY0.m0/�, for each m 2U. Note that OY is a central frame field
along Of and that, in particular, Y and OY are second order frame fields satisfying the
conditions of Proposition 14.25. ut

14.4 Special isothermic immersions

In the following,

S0 D R3; SC D S3; S� DH3;


 2 f0;C;�g, and f
 W S
 !M are the conformal embeddings (12.59), (12.56),
and (12.62) of the space forms.

Definition 14.27. A special isothermic immersion is an umbilic free isothermic
immersion f W M !M of a connected Riemann surface M such that for some

 2 f0;C;�g there exists a constant mean curvature immersion x W M ! S
 and
a T 2MRobC for which T ı f
 ı xD f W U!M .
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This defines a subclass of immersions studied by L. Bianchi [7]. The essence of
the following result is in L. Bianchi’s [7].

Theorem 14.28. An umbilic free isothermic immersion f W M ! M is special
isothermic if and only if for any connected principal complex chart .U;z/ in M,
the Calapso potential k relative to z satisfies

4.logk/zNz D sk�2� k2; (14.26)

on U, for some constant s 2 R called the character of f relative to z.

Proof. Suppose f is special isothermic. Let x W M! S
 be a CMC H immersion
for which f
 ı x W M !M is Möbius congruent to f . Let .U;z/ be a connected
principal chart for f . The conformal factor eu and Hopf invariant h of x relative to z
are related to the Calapso potential k and second order invariant b of f by k D heu

and bD 2uzz�2u2zCHhe2u. Replacing z by iz, if necessary, we may assume k> 0 on
U, and thus h> 0 on U. Since H is constant, the Codazzi equation (7.32), .e2uh/NzD
e2uHzD 0 on U, implies that he2u is a real valued holomorphic function on U, hence
equal to a positive constant

t D he2u D keu: (14.27)

Then 0D .keu/Nz D eu.kNzC kuNz/ implies

kNz D�kuNz; (14.28)

on U. Differentiating this with respect to Nz to find kNzNz, using the fact that u is real
valued, and using the formula above for b, we get

kNzNzC 1
2
NbkD k

H

2
he2u (14.29)

on U. Note that the function W D kNzNzC 1
2
Nbk is always real valued, by the structure

equation (13.18) of k and b. Combining (14.27) and (14.29), we get

W=kD tH=2; (14.30)

on U. By (14.28),

kNzz D�.kuNz/z D�kuNzz� kzuNz:

Taking log of both sides of (14.27) and using the Gauss equation (7.31)

�uzNz D 1

4
e2u.
1CH2�jhj2/;
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for x, we obtain (14.26) on U for the constant

sD t2.
1CH2/: (14.31)

Conversely, suppose that (14.26) holds for any connected principal coordinate chart
for f in M. Suppose first that M is simply connected. Then by Theorem 14.8, there
exists a principal complex function z W M ! C with associated Calapso potential
k WM! RC and second order Möbius invariant b WM! C (see Definition 14.10).
We may assume k > 0 on M in which case the structure equation (13.17) becomes

bNz D 2kkz: (14.32)

Each point of M has a connected neighborhood on which z is a principal coordinate
of f with invariants k and b restricted to this neighborhood. Thus, (14.26) holds on
M for some constant s, since it holds on a neighborhood of any point of M. Now
W D kNzNzC 1

2
Nbk WM! R is a globally defined smooth function. Using (14.32), and

solving for s=4 in (14.26), we get
�

W

k

�
z

D 1

k2

� s

4

�
Nz
D 0 (14.33)

on M, so W=k is a real constant on M. By the preceding calculations, if there exists
a CMC H immersion x WM! S
 , then (14.31) and (14.30) determine 
 2 f0;�;Cg
and the real constants t > 0 and H. We then use (14.27) to define eu D t=k and
h D k2=t. The functions eu, h, and H satisfy the Codazzi equation (7.32) and the
Gauss equation (7.31) follows from (14.26).

The details depend on whether s< 0, sD 0, or s> 0.
If s < 0, then 
 D � and t2 D 4W2=k2� s > 0 determines t > 0, and H2 D .sC

t2/=t2 
 0 determines H2. Note H D 0 if and only if W D 0.
If s D 0, then (14.30) implies that H is zero or not depending on whether W is

zero or not. If W is zero on M, then f W M!M is Willmore, 
 D 0, and H D 0
by (14.31). If W is not identically zero, then 
 D� and H D˙1.

If s> 0, then tH D 2W=k, so 
t2 D s�4.W=k/2. If this is not zero, it determines

 and t > 0, and then H D 2.W=k/=t. If s�4.W=k/2 D 0, then 
 D 0 and tH Dps.
If x WM!R3 is the solution for tD 1, so HDps, then the solution for any constant
t > 0 is 1

t x WM! R3, and f0 composed with any of these is Möbius congruent to f .
To conclude the proof, we must prove the converse without the assumption that M

be simply connected. In this general case, let� W QM!M be the universal cover of M.
Here QM is a Riemann surface and the projection map � is holomorphic. For back-
ground on covering spaces, see, for example, [83] or [110]. Then f ı� W QM!M
satisfies the hypotheses of the theorem, including (14.26), so we have already proved
that there exists a CMC H immersion Qx W QM ! S
 , for some 
 2 f0;�;Cg and a
T 2MRobC such that

T ı f
 ı QxD f ı� W QM!M :
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If m;n 2 QM and if �.m/D �.n/, then

T ı f
 ı Qx.m/D f ı�.m/D f ı�.n/D T ı f
 ı Qx.n/

implies Qx.m/D Qx.n/. Hence, Qx descends to M in the sense that there exists a smooth
map x W M ! S� such that x ı� D Qx. Then x is a CMC H immersion satisfying
T ı f
 ı xD f on M. ut
Proposition 14.29 (CMC is T-transform of minimal). If x WM! S� is an umbilic
free, constant mean curvature H ¤ 0 immersion of a simply connected surface M,
then there exists an O
 2 f0;C;�g and a minimal immersion Ox W M! SO
 such that
f D f
 ı x is a T-transform of Of D fO
 ı Ox.

Proof. Let z WM! C be a principal function of f D f
 ı x WM!M , with Calapso
potential k W M ! RC and second order Möbius invariant b W M ! C. Use the
notation of the above proof. Then e2uh D t is a nonzero constant on M that we
may assume positive. The invariants relative to z of f are

kD te�u; bD 2uzz�2u2zCHt:

Let Of WM!M be the T-transform of f obtained from the invariants

OkD k; ObD b�Ht:

We want to find an immersion Ox W M! SO
 with mean curvature OH D 0 such that
fO
 ı Ox is Möbius congruent to Of . The conformal factor eOu and Hopf invariant Oh of Ox
must satisfy

OhD Ote�2Ou; Ote�Ou D OkD kD e�u;

for some constant Ot > 0. Then OuD uC log.Ot=t/. To satisfy the Gauss equation for Ox
requires

O
Ot2 D t2.H2C 
1/:

If H2C
1¤ 0, this equation has a unique solution O
 2 f�;Cg and Ot>0. If H2C
1D
0, so x is a CMC ˙1 immersion in H3, then O
 D 0 and Ot is any positive constant.
This 1-parameter family of solutions consists of the dilations Ot

t Ox of the solution Ox W
M!R3 given by OtD t, which is the Lawson correspondent of the given immersion
x WM!H3. ut

Bryant [20] proved that if f WM!M is Willmore, then its quartic differential
Q of Definition 13.38 is holomorphic. In Bohle and Peters [12] and Bohle [11], the
following more general result is attributed to K. Voss.
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Theorem 14.30 (K. Voss [165]). The Bryant quartic differential Q of an umbilic
free immersion f W M ! M is holomorphic if and only if f is Willmore or
f WM0!M is special isothermic, where M0 is the complement of a discrete set
of points of M.

Proof. Let k;b W U! C be the invariants of f relative to a complex chart .U;z/ in
M. The umbilic free assumption means k is never zero on U. Then Q D Q.dz/4 on
U, where

QD kkzNzC 1
4

k2jkj2� kzkNz; (14.34)

by Definition 13.38. By (13.19) in Theorem 13.9, the Willmore function of f relative
to z is W D kNzNzC 1

2
Nbk W U! R. One calculates

QNz D kWz� kzW D k2 .W=k/z : (14.35)

SupposeQ is holomorphic on M. Then Q is holomorphic on U, so W D kNg, for some
holomorphic function g on U. There are two cases possible. Either W is identically
zero on U, or it has only isolated zeros in U. By the transformation formula in
Problem 13.44, whichever case holds for W on U, must be the case that holds for
the Willmore function relative to any complex chart in M. Thus, in the former case,
f is a Willmore immersion of M.

In the latter case, let Z �M be the discrete set of zeros of the Willmore function
relative to any complex chart in M. Let M0 DM nZ . Then g is never zero on U0 D
U\M0, so kDW=NgD W

jgj2 g, satisfies the criterion of Proposition 14.5 on U0, which
implies f W U0!M is isothermic. Covering M with complex charts, we conclude
that f WM0!M is isothermic.

Given any point of M0, we may assume z is principal on a connected neighbor-
hood U00 �M0 of the point, so k is positive on U00. Then Q is holomorphic and real,
hence constant on U00, and by (14.34),

4.logk/zNz D 4Qk�2� k2:

Thus, f WM0!M is special isothermic.
Conversely, if f WM!M is Willmore, then relative to any complex chart .U;z/

we have W D 0 on U and thus Q is holomorphic on U by (14.35). If f WM0!M
is special isothermic, where M0 is the complement of a discrete subset of M, then
W=k relative to any principal coordinate is constant, by (14.30) (also by (14.33)),
and hence Q is holomorphic by (14.35). ut
Remark 14.31. By the preceding two propositions we see that any special isother-
mic immersion is a T-transform of a Willmore isothermic immersion. For the
relation between the T-transform and the Lawson correspondence in H3 see
Hertrich-Jeromin, Musso, and Nicolodi [88].
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14.5 Thomsen’s Theorem

Definition 14.32. A point p in a surface M is an end of an immersion x WM nfpg!
S
 if either 
D 0 and limm!p f0 ıx.m/D Œı4�2M , or 
D� and limm!p f� ıx.m/2
@M�, the boundary of M� D f�.H3/.

Theorem 14.33 (Thomsen [160]). If f W M !M is a Willmore immersion of a
connected Riemann surface M, if the set D of umbilic points of f is discrete, and if
f WMnD!M is isothermic, then there exists a minimal immersion x WMnD! S
 ,
for some 
 2 fC;�;0g, and a T 2MRob, such that

f
 ı xD T ı f WM nD!M : (14.36)

If p 2D , then either x extends smoothly to p and p is an umbilic point of x, or p is
an embedded end of x.

Proof. From the proof of Theorem 14.30, f Willmore implies that the quartic
form Q is holomorphic, and then f W M nD !M isothermic implies it is special
isothermic and the coefficient Q of Q relative to any principal coordinate z is
constant. By Theorem 14.26, there exists a CMC H immersion x W M nD ! S
 ,
for which H must be zero because W is identically zero, and there exists T 2MRobC
such that (14.36) holds. If Q < 0, then 
 D �, if Q > 0, then 
 DC, and if QD 0,
then 
 D 0, by the proof of Theorem 14.26.

For a point p 2D , if

T.f .p// 2 f
.S
/;

(always the case if 
 D C), then x extends smoothly to p by x D f �1

 ı T ı f on a

neighborhood of p, and p is an umbilic point of x. There exists a neighborhood U of
p in M on which the immersion T ı f W U!M is an embedding. If

T.f .p// … f
.S
/;

which is possible only if 
¤C, then f
 ıxDT ı f WUnfpg! f
.S
/ is an embedding,
and thus x W U n fpg ! S
 is an embedding. In the Euclidean case, we must have
T.f .p//D Œı4�, the only point not in f0.R3/, and so limm!p f0 ı xD Œı4� and p is an
embedded end of x WM nD! R3, by Definition 14.32. In the hyperbolic case,

lim
m!p

f� ı x.m/D lim
m!p

T ı f .m/D T.f .p// 2 @M�

implies that p is an embedded end of x WM nD !H3. ut
Corollary 14.34 (Bryant [20]). If M is compact and if the quartic form Q of
f is identically zero on M, then for some nonempty subset E � D , the minimal
immersion x WM nE ! R3 is complete, has finite total curvature, and each point of
E is an embedded planar end.
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Proof. The discrete subset D of M must be finite when M is compact. By the
Theorem, up to Möbius transformation, f D f0 ıx on M nD , where x WM nD ! R3

is conformal and minimal. Since x cannot be a minimal immersion of the compact
M, the set E � D of ends of x must be nonempty. The minimal immersion
x W M n E ! R3 is complete, since if �.t/ is a curve in M n E that approaches a
point of E , then xı�.t/ is divergent. By the Theorem, these ends are all embedded.
For the proof that the ends are planar – that is, they have zero logarithmic growth –
we refer to Bryant [20]. The total curvature of x is

�
Z

MnE
KdAD

Z
MnE

.H2�K/dAD
Z

MnE
˝f D

Z
M
˝f ;

which is finite since M is compact and the conformal area element ˝f is smoothly
defined on all of M. ut

Bryant and R. Kusner [23] have parametrized Boy’s surface to give a Willmore
immersion x W RP2! R3 shown in Figure 14.1. The figure is partially transparent
in order to show self-intersections.

Fig. 14.1 Boy’s surface as
Willmore immersion.

14.6 Hopf cylinders are not generically isothermic

Recall Hopf cylinders of Definition 5.29.

Proposition 14.35. A Hopf cylinder f� W N � S1 ! S3, f� .s;�/ D ei��1.s/ over a
unit speed curve � W N! S2 with curvature � W N! R is isothermic if and only if
�.s/D tan.cs/ for some constant c 2 R.
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Proof. By (5.52), ˛1 D 1
2
ds; ˛2 D d�C �

2
ds is an orthonormal coframe field for the

metric induced by f� and

˛1C i˛2 D 1

2
.dsC id'/;

where

' D 2�C
Z s

0

�.u/du:

Thus zD sC i' is a complex coordinate and eu D 1=2 is the conformal factor for
the induced metric. The calculations done in (5.53) show that the Hopf invariant of
f� relative to z is

hD �C i;

and the Hopf quadratic form is

II2;0 D 1

2
he2udzdzD 1

8
.�C i/dzdz:

By Lemma 14.4 and Proposition 14.5, f� is Möbius congruent to an isothermic
immersion into S3 if and only if its Hopf quadratic form is given by

II2;0 D 1

8
rg dzdz;

where r W N �R! R is smooth and g W N �R! C is holomorphic. Thus, r and g
are never zero and f� is Möbius congruent to an isothermic immersion if and only if

0D @

@Nz
�
�C i

r

�
D 1

2r

�
P�� .�C i/

rsC ir'
r

�
;

which holds if and only if

.�� i/ P�
�2C1 D

P�
�C i

D rs

r
C i

r'
r
;

which is equivalent to the pair of equations

� P�
�2C1 D

rs

r
; � P�

�2C1 D
r'
r
; (14.37)

which implies

0D
�

� P�
�2C1

�
'

D
� rs

r

�
'
D
� r'

r

�
s
D�

� P�
�2C1

�
s

:
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These equations imply

P�
�2C1 D n; (14.38)

for some real constant n. Integrating, and using the fact that the arclength parameter
s is defined up to an additive constant, we can conclude that �.s/D tan.ns/, for some
real constant n. Conversely, if this is the expression for �.s/, for any real constant n,
then (14.38) holds and implies that

� P�
�2C1ds� P�

�2C1d' D n.�ds�d'/

is a closed 1-form on N � R and thus there exists a positive real function
r W N�R! R satisfying (14.37) and the above argument is reversible. ut
Corollary 14.36. Pinkall’s Willmore tori in S3 constructed in Section 5.8 are not
Möbius congruent to any minimal torus in S3 except when the curvature � of the
base curve is identically zero, in which case the Clifford torus is generated.

Proof. The function �.s/D tan.ns/ satisfies (5.54) if and only if the constant nD 0.
ut

Problems

14.37. Let .U;z/ be a connected principal chart for an umbilic free isothermic
immersion f WM!M . Any other principal complex coordinate on U is given by
wD lzC�, where l and � are any complex constants such that l2 is nonzero and real.
Let k W U! Rn f0g be the Calapso potential, b W U! C the second order invariant,
and W D kNzNzC 1

2
Nbk W U! R, relative to z. Denote these functions relative to w by

the same letters with tildes. Use Theorem 13.10 to prove

OkD kjlj=l2; ObD b=l2; OW=OkD l2W=k;

so both k and Ok are positive if and only if l is real valued on U. Prove also that
if (14.26) holds for both, then OsD s=l4.

14.38. Let M be a Riemann surface with complex coordinate z D xC iy. Prove
that if a smooth positive function k W M ! R satisfies the special isothermic
equation (14.26), then it satisfies Calapso’s equation.

14.39. For a Hopf cylinder over a curve in S2 with curvature � and arclength
parameter s, use Theorem 13.22 to find the Möbius invariants k and b relative to zD
sC i'. Use the notation of Proposition 13.37 to find Q and W. Use Proposition 13.37
to find the Möbius invariants p1, p2, p3, q1, and q2 of the Hopf cylinder.



Chapter 15
Lie Sphere Geometry

Some properties of oriented surfaces immersed in a space form – for example,
the Dupin condition – are preserved by Möbius transformations and by parallel
translations (see §4.8.1, Problem 5.48, and Example 6.29). These two sets of
transformations generate the Lie sphere group G.

The set Q of all oriented spheres in S3 is the disjoint union of S3;1, the set of
all oriented spheres of nonzero radius, with M , the set of all point spheres. Q is
realized as the Lie sphere quadric in the projective space P.R4;2/. The lines in Q
are called pencils of oriented spheres. A pencil is determined by the unique point
sphere and unique oriented great sphere in it. The set of all lines in Q is denoted�,
a five-dimensional manifold. The spherical projection � W �!M sends a line to
the unique point sphere in it. � possesses a natural contact structure. An immersion
x WM2! S3 with unit normal vector field e3 has a Legendre lift � WM!� given by
�.m/ is the line determined by the point sphere x.m/ and the oriented great sphere
through x.m/ with unit normal e3.m/.

The Lie sphere group G is the group of all diffeomorphisms of Q that send
pencils to pencils. G acts transitively on� and preserves the contact structure on �.
It is isomorphic to O.4;2/=f˙Ig. Lie sphere geometry is the study of properties
of Legendre immersions into the homogeneous space � that are invariant under
the action of G. We use the method of moving frames to carry out this study. In
conclusion we prove that any Dupin immersion is Lie sphere congruent to an open
subset of the Legendre lift of a great circle.

15.1 Oriented spheres in S3

Recall Definition 5.4 of the sphere Sr.m/ of radius r 2 R and center m 2 S3

and Definition 5.6 of the oriented sphere of signed radius r and center m. For
convenience we repeat this latter definition here.

© Springer International Publishing Switzerland 2016
G.R. Jensen et al., Surfaces in Classical Geometries, Universitext,
DOI 10.1007/978-3-319-27076-0_15
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Definition 15.1. An oriented sphere in S3 is a sphere Sr.m/, together with a choice
of continuous unit normal vector field on it.

We can use the radius to define an orientation of Sr.m/ as follows. Recall that
x 2 Sr.m/ if and only if x �mD cosr. Let n 2 TxS3 be the unit vector satisfying the
equation

mD cosr xC sinr n: (15.1)

Except for the cases r D a� for any integer a, this uniquely determines n for each
point x on the locus. The cases r D a� , a any integer, are the point spheres m and
�m, and there is no condition on n in (5.24). We consider point spheres to be in the
set of all oriented spheres, but without orientation. Thus, the oriented spheres with
center m are parametrized by their radius r satisfying 0	 r < 2� .

We illustrate the oriented nonpoint spheres in Figures 15.1, 15.2 and 15.3.
Picturing m as the north pole, the diagrams show the plane determined by x and m,
which will also contain n, the unit normal at x determining the orientation by (5.24).
The diagram on the left in Figure 15.1 shows a point x and the normal n at x of the
oriented sphere with center m and radius r in the range 0 < r < �=2. This sphere is
in the northern hemisphere with normal pointing towards m.

Fig. 15.1 Center m, normal
n at point x. Left:
0 < r < �=2. Right: great
sphere.

m
xn r

n
nm = n

r

x

The case rD �=2 in the diagram on the right in Figure 15.1 is the oriented great
sphere with unit normal nDm.

When �=2 < r < � , we have the oriented spheres in the southern hemisphere
with normal pointing towards m, as shown in the diagram on the left in Figure 15.2.

Fig. 15.2 Center m, normal
n at point x. Left:
�=2 < r < � . Right:
� < r < 3�=2.

m m
n

n

n

n

x x

r

r
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The case r D �� is the point sphere at �m. When � < r < 3�=2, we have the
oriented spheres in the southern hemisphere with normal pointing away from m, as
shown in the diagram on the right in Figure 15.2.

The case r D 3�=2 is the great sphere with unit normal n D �m shown in the
left diagram of Figure 15.3.

Fig. 15.3 Left: Center m,
normal n D �m at x, radius
r D 3�=2. Right: Center m,
normal n at x, radius
3�=2 < r < 2�

m m

n n = −m

x
r

r

x

n

n

Finally, when 3�=2 < r < 2� , we have the oriented spheres in the northern
hemisphere with normal pointing away from m, as shown in the right diagram in
Figure 15.3.

Proposition 15.2. The set of all oriented spheres in S3 is in 1:1 correspondence
with

.S3�S1/=f˙1g D f.m;cosr;sin r/ Wm 2 S3; r 2 Rg=f˙1g;

which is compact.

Proof. The oriented sphere with center m 2 S3 and signed radius r 2 R is

Sr.m/D fx 2 S3 W x �mD cosrg;

which is the point sphere m if r D 0, and otherwise is oriented by the unit normal
vector field n.x/D m�cos r x

sinr . Then

Sr.m/$ .m;cos r;sin r/ 2 S3�S1:

By the discussion above, the same oriented sphere Sr.m/ also corresponds to
�.m;cosr;sin r/. It is clear that oriented spheres with centers m and Qm cannot
coincide if Qm ¤ ˙m. If their centers are the same, then they coincide if and only
if their radii differ by an integer multiple of 2� . By (2) and (3) of Problem 15.57,
if Qm D �m, then SQr.�m/ and Sr.m/ coincide as oriented spheres if and only if
QrD rC .2aC1/� , for some integer a, in which case

. Qm;cos Qr;sin Qr/D�.m;cosr;sin r/:

ut
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The set of all oriented spheres in S3 has the following important projective
description. Let R4;2 denote R6DR4˚R2 with the inner product of signature .4;2/,

hu;vi D
3X
0

uivi�u4v4�u5v5; (15.2)

where we label the components of vectors in R4;2 from 0 to 5 relative to the standard
basis �0; : : : ;�5 of R6, which is an orthonormal basis of signature .CCCC��/.
Denote the projective space RP5 by P.R4;2/ in order to emphasize the inner product
of R4;2.

The following inner product spaces are naturally embedded in R4;2 as

R3 D spanf�1;�2;�3g;
R4 D spanf�0;�1;�2;�3g;

R3;1 D spanf�1;�2;�3;�4g;
R4;1 D spanf�0;�1;�2;�3;�4g:

(15.3)

Definition 15.3. The Lie quadric Q� P.R4;2/ is the smooth quadric hypersurface

QD fŒu� 2 P.R4;2/ W hu;ui D 0g:

Exercise 62. Verify that there is a natural isomorphism

.S3�S1/=f˙1g! Q; Œm; .cos r;sin r/� 7! ŒmC cosr �4C sinr�5�;

with inverse

Q! .S3�S1/=f˙1g; Œq� 7! Œ

3X
0

qi

D
�i; .

q4

D
;

q5

D
/�;

where D2 D .q4/2C .q5/2.
Recall the set S3;1 of oriented nonpoint spheres in S3 defined in (12.67) by,

S3;1 D fuD .u0; : : : ;u4/ 2 R4;1 W hu;ui D
3X
0

.ui/2� .u4/2 D 1g:

As shown in Exercise 56, S3;1 is identified with Q̇ , the set of nonpoint oriented
spheres in S3. The set of point spheres is identified with the Möbius space M
defined in (12.56).
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Proposition 15.4. The Lie quadric Q is a compactification of S3;1 obtained by
attaching the set of point spheres M to S3;1. Namely,

QD S3;1[M and S3;1\M D ;;

where

S3;1 D fŒq� 2 Q W hq;�5i ¤ 0g; (15.4)

and

M D fŒq� 2 Q W hq;�5i D 0g: (15.5)

Proof. The natural inclusions (15.3) give rise to additional inclusions

S3;1 D fu 2R4;1 W hu;ui D 1g � Q; u 7! uC�5;

whose image is (15.4), and

M D fŒu� 2 P.R4;1/ W hu;ui D 0g � Q; Œu� 7! ŒuC0�5�;

whose image is (15.5). ut
Proposition 15.5. In the identification of oriented spheres in S3 with points in Q
given in Proposition 15.2 and Exercise 62, the oriented sphere of center m 2 S3 and
signed radius r 2R,

Sr.m/D fx 2 S3 W x �mD cosrg; n.x/D m� cosr x
sinr

;

is identified with

Œq�D ŒmC cosr �4C sinr �5� 2 Q: (15.6)

An oriented sphere in R3 of center p and signed radius r 2 R,

Sr.p/D fx 2R3 W jx�pj2 D r2g; n.x/D p�x
r
;

is identified with

Œq�D Œ1�jpj
2C r2

2
�0CpC 1Cjpj

2� r2

2
�4C r�5� 2Q: (15.7)

An oriented plane in R3 with unit normal n and signed height h 2 R,

˘h.n/D fx 2 R3 W x �nD hg;
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is identified with

Œq�D Œ�h�0CnCh�4C�5� 2Q: (15.8)

The oriented sphere in H3 of center m 2H3 � R3;1 and signed radius r,

Sr.m/D fx 2H3 W hx;mi D �coshrg;

is identified with

Œq�D Œcoshr �0CmC sinhr �5� 2Q: (15.9)

More generally, the oriented totally umbilic surface through y2H3 with unit normal
v 2 TyH3 D y? and principal curvature a 2 R, given in Lemma 6.9 as

S.ayCv/D fx 2H3 W hx;ayCvi D �ag;

is identified with

Œq�D Œa�0CayCvC�5� 2Q: (15.10)

Proof. (15.6) is characterized by

fCSr.m/D Œq�? D fŒxC�4� 2M W hxC�4;qi D 0g:

The stereographic projections S �1 WR3! S3 and S �1 ıs WH3! S3 send oriented
spheres, planes, horospheres, and ultraspheres onto open connected subsets of
oriented spheres in S3, so these correspond to points of Q. To obtain explicit
expressions of the correspondences we use the conformal embeddings f0 WR3!M
of (12.59) and f� WH3!M of (12.62).
Œq� in (15.7) is characterized by f0Sr.p/D Œq�? D

fŒ1�jxj
2

2
�0CxC 1Cjxj

2

2
�4� W h1�jxj

2

2
�0CxC 1Cjxj

2

2
�4;qi D 0g:

Œq� of (15.8) is characterized by f0˘h.n/D Œq�? D

fŒ1�jxj
2

2
�0CxC 1Cjxj

2

2
�4� W h1�jxj

2

2
�0CxC 1Cjxj

2

2
�4;qi D 0g:

Œq� in (15.9) is characterized by f�Sr.m/D Œq�? D

fŒxC�4� 2M W hxC�4;qi D 0g:
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Œq� in (15.10) is characterized by f�S.ayCv/D Œq�? D

fŒxC�4� 2M W hxC�4;ayCvi D 0g:

In each of these five cases the elementary calculation hq;qi D 0Dhq; f
.x/i is easily
verified. By Definition 6.12, the last case is an oriented sphere if jaj> 1, an oriented
horosphere if jaj D 1, an oriented ultrasphere if 0 < jaj< 1, and an oriented plane if
aD 0. ut

15.2 Pencils of oriented spheres

A line in RPn is the projection of a 2-dimensional subspace of RnC1. It is determined
by any two distinct points Œx� and Œy� on it, for if Œx�¤ Œy�, then x and y are linearly
independent vectors in RnC1 and so span the 2-dimensional subspace containing
them. For distinct points Œx� and Œy� in RPn, we let Œx;y� denote the line in RPn

spanned by them.

Lemma 15.6. If Œu� and Œv� are distinct points in the Lie quadric Q, then the line
they span lies in Q if and only if

hu;vi D 0:

Proof. The line spanned by Œu� and Œv�,

LD fŒruC sv� W r;s 2 Rg � P.R4;2/

lies in Q if and only if

0D hruC sv;ruC svi D 2rshu;vi;

for all r;s 2R. ut
Definition 15.7. Let � denote the set of all lines in the Lie quadric Q.

Lemma 15.8. If � is a line in Q spanned by points q D ŒmC a�4C b�5� and QqD
Œ QmC Qa�4C Qb�5� in Q, where a;b; Qa; Qb 2 R and m; Qm 2 S3, then

aQb� Qab¤ 0:

Proof. By definition of Q and by Lemma 15.6,

a2Cb2 D jmj2; Qa2C Qb2 D j Qmj2; aQaCbQbDm � Qm: (15.11)
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Seeking a contradiction, we suppose that aQb� Qab D det

�
a b
Qa Qb
�
D 0. Then .Qa; Qb/ D

t.a;b/, for some t 2 R, so j Qmj2 D t2jmj2 and tjmj2 Dm � Qm, which imply

jm � Qmj D jtjjmj2 D jmjj Qmj:

By the Cauchy-Schwarz inequality, Qm D sm, for some s 2 R, so then tjmj2 D m �
QmDm � smD sjmj2 implies that sD t. This leads to the contradiction

QqD ŒtmC ta�4C tb�5�D q:

ut
Proposition 15.9. Any line � 2� contains a unique point sphere ŒxC�4� 2 Q, for
some x 2 S3, and a unique great sphere ŒnC�5� 2 Q, for some n 2 S3\x?. Thus,

�D ŒxC�4;nC�5�: (15.12)

Proof. Let � be a line in Q. It is spanned by any two distinct points q and Qq in it,
which must be represented as

qD ŒmCa�4Cb�5�; QqD Œ QmC Qa�4C Qb�5�; (15.13)

for some m; Qm 2 S3 and a;b; Qa; Qb 2 R satisfying (15.11). Then

�D fŒrmC s QmC .raC sQa/�4C .rbC sQb/�5� W r;s 2Rg:

A point in � is a point sphere if and only if rbC sQbD 0, which is true if and only if

.r;s/D k.�Qb;b/;

for some non-zero k 2 R. For any such value of k, the resulting point in � is

Œb Qm� QbmC .bQa�aQb/�4�; (15.14)

which is independent of k. Hence, this is the unique point sphere in �. In the same
way, the unique oriented great sphere in � is

Œa Qm� QamC .aQb� Qab/�5�:

By Lemma 15.8, D D aQb � Qab ¤ 0. Thus, � is given by (15.12), where
xD 1

D .
Qbm�b Qm/ and nD 1

D .a Qm� Qam/. ut
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Definition 15.10. Two oriented spheres in S3 are in oriented contact if they are
tangent at a point x 2 S3 and they have the same orientation defining unit normal
vector n at x.

Definition 15.11. A pencil of oriented spheres in S3 is the set of all oriented spheres
that contain a given point x 2 S3 and have the same orientation defining unit normal
vector n 2 TxS3.

Figure 15.4 shows the pencil determined by the point x D �2 2 S3 with unit
normal n D �3 2 TxS3, as it appears in the hyperplane x0 D 0 of R4. The dotted
circle is the locus of centers m of the oriented spheres of the pencil. It is the great
circle through x tangent to n.

Proposition 15.12. There is a one-to-one correspondence between the set of
pencils of oriented spheres in S3 and �, the set of lines in the Lie quadric Q.

Proof. The pencil of oriented spheres determined by x2 S3 and unit vector n 2 TxS3

is the set of oriented spheres

fŒmC cosr�4C sinr�5� WmD cosr xC sinr n; r 2 Rg;

which is precisely the line in Q determined by the point sphere ŒxC�4� and the great
sphere ŒnC �5�. Conversely, any line � 2 � is spanned by a unique point sphere
ŒxC�4� and a unique great sphere ŒnC�5�, and thus

�D fŒaxCbnCa�4Cb�5� 2Q W a2Cb2 D 1g;

which is the set of oriented spheres in the pencil determined by x 2 S3 and unit
normal n 2 TxS3. ut
Lemma 15.13. The set � is a smooth, five-dimensional submanifold of the Grass-
mannian G.2;6/.

Fig. 15.4 The pencil of
oriented spheres determined
by x D �2, n D �3.
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Proof. Recall that the Grassmannian G.2;6/ is the set of all two-dimensional
subspaces of R6 D R4;2. It is naturally represented by the quotient of the space
R6�2�

of all 6� 2 matrices of rank two by the action of right multiplication by
GL.2;R/. If X is such a matrix, let ŒX� denote its equivalence class in G.2;6/. If we
write vectors in R4;2 as columns, then

�D fŒu;v� 2 G.2;6/ W 0D hu;ui D hv;vi D hu;vig:
Consider the open coordinate neighborhood of G.2;6/ given by

U D fŒu;v� 2 G.2;6/ W det

�
u4 v4

u5 v5

�
¤ 0g;

with coordinate map

F WU! R4�2; FŒu;v�D

0
B@

u0 v0

:::
:::

u3 v3

1
CA
�

u4 v4

u5 v5

��1
:

Then�� U, by Lemma 15.8, and

F.�/D f.x;y/ 2 R4�2 W jxj D jyj D 1; x � yD 0g; (15.15)

which is a smooth, five-dimensional submanifold of R4�2. ut
Exercise 63. Verify (15.15).

Definition 15.14. The spherical projection is the map

� W�!M ;

that sends any line � 2� to the unique point sphere in it. If �D Œq; Qq�, where qD
ŒmCa�4Cb�5� and QqD Œ QmC Qa�4C Qb�5� are points in Q given by (15.13), then

�.�/D ŒQbm�b QmC .aQb�bQa/�4� 2M ;

by (15.14).

15.3 Lie sphere transformations

Definition 15.15. A Lie sphere transformation T W Q! Q is a diffeomorphism on
the space of oriented spheres that sends lines to lines, or, equivalently, preserves
oriented contact. Thus, it defines a diffeomorphism T W �! �. The set Lie.S3/ of
all Lie sphere transformations is a group under composition of mappings.
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Definition 15.16. Let O.4;2/ denote the set of all linear transformations T of R4;2

that preserve the signature .4;2/ inner product (15.2); that is

hTx;Tyi D hx;yi;

for any x;y 2R4;2. This is a Lie group of dimension 15.

In the standard orthonormal basis �0; : : : ;�5 of R4;2 used in (15.2), the group
O.4;2/ is represented by

O.4;2/D fT 2GL.6;R/ W tTI4;2T D I4;2g;

where

I4;2 D
�

I4 0

0 �I2

�
:

Exercise 64. Prove that the Lie algebra of O.4;2/ is

o.4;2/D fX 2 gl.6;R/ W tXI4;2C I4;2X D 0g: (15.16)

Find its dimension.

Example 15.17. The linear action of O.4;2/ on R4;2 maps linear subspaces to linear
subspaces, so it induces a smooth action on P.R4;2/, which sends Q to Q and lines in
Q to lines in Q. Hence, the elements of O.4;2/ induce Lie sphere transformations.
Moreover, this action induces a smooth action of O.4;2/ on �, the space of lines
in Q. An element T 2 O.4;2/ induces the identity transformation on Q if and only
if T D˙I6. Thus O.4;2/=f˙Ig is a subgroup of Lie.S3/.

Exercise 65. Prove that the Lie sphere transformation defined by the element

I5;1 D
�

I5 0

0 �1
�
2O.4;2/

fixes each point sphere and sends any oriented non-point sphere to the same sphere
with the opposite orientation.

Consider the Lie group inclusion

O.4;1/�O.4;2/; A ,!
�

A 0
0 1

�
:

If T 2O.4;2/ sends M D Œ�5�? � Q to itself, then, up to sign, T D
�

A 0
0 1

�
, where

A 2O.4;1/. If det AD�1, then �A 2 SO.4;1/ and
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�
�

A 0
0 1

�
D I5;1

��A 0
0 1

�
:

Thus, up to sign, T 2 SO.4;1/ or T 2 I5;1SO.4;1/. In words, a Lie sphere
transformation in O.4;2/=f˙Ig that sends point spheres to point spheres is either
a Möbius transformation or a Möbius transformation followed by the orientation
reversal mapping of Exercise 65.

Example 15.18. A conformal diffeomorphism f W S3 ! S3 (see Definition 12.9)
sends spheres to spheres. If n is a unit normal vector field orienting a sphere, then
df sends n to a normal vector field along the image sphere, thus orienting the image
sphere. A pencil of spheres through x 2 S3 with unit normal n at x is sent by f to the
set of oriented spheres through f .x/ with unit normal dfxn

jdfxnj , which is again a pencil.
Hence, f induces a map Q! Q, which sends lines to lines. To see that this induced
map is a diffeomorphism of Q, we recall the group isomorphism

F W SO.4;1/! Conf.S3/; F.T/D f �1C ıT ı fC

introduced in Theorem 12.17. Thus, the map induced by f 2 Conf.S3/ on Q is that
of T D F�1.f / 2 SO.4;1/, whose projective action on Q is smooth with smooth
inverse given by T�1.

Example 15.19. Lie parallel transformations by t 2 R are the Lie transformations
induced by the elements T
t 2 SO.4;2/, where 
 2 fC;0;�g, that send the oriented
sphere with given center in S3, R3, or H3, respectively, and signed radius r, to the
oriented sphere with the same center and signed radius rC t. These are:

TC
t D

0
@I4 0

0

�
cos t �sin t
sin t cos t

�
1
A 2 SO.4;2/; (15.17)

T0t D

0
BBB@
1C t2

2
0 t2

2
t

0 I3 0 0

� t2

2
0 1� t2

2
�t

t 0 t 1

1
CCCA 2 SO.4;2/; (15.18)

and

T�
t D

0
@cosh t 0 sinh t

0 I4 0

sinh t 0 cosh t

1
A 2 SO.4;2/: (15.19)

The following is called the fundamental theorem of Lie sphere geometry.

Theorem 15.20 ([114]). The group Lie.S3/, of all Lie sphere transformations of
S3, is O.4;2/=f˙Ig.
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Proof. This is in Lie’s thesis [114, p. 186]. Pinkall [135, p. 431] proved this theorem
for the group of all Lie sphere transformations of Sn, for any n 
 3. An excellent
exposition of the proof, with all details provided, is in Cecil [36, Theorem 3.5,
pp. 28–30]. ut
Theorem 15.21 (Cecil-Chern [37]). Any Lie sphere transformation decomposes
into a Möbius transformation followed by a parallel transformation followed by a
Möbius transformation.

Proof. See Cecil [36, Theorem 3.18, p. 49]. ut

15.4 Lie sphere frames

The basic space of Lie sphere geometry is�, the space of lines in the Lie quadric Q.
The standard action of the Lie sphere group O.4;2/=f˙Ig on R4;2 induces an action
on P.R4;2/, which preserves Q and sends lines to lines. In this way the Lie sphere
group acts on the set � of lines in Q. In the notation developed above, for any
T 2O.4;2/ and �D Œu;v� 2�, the action is T�D ŒTu;Tv�.

Lemma 15.22. The Lie sphere group acts transitively on �.

Proof. By Lemma 15.12 and its proof, any point in �2� is given by ŒxC�4;nC�5�,
where x;n2 S3 �R4 and x �nD 0. Fix the point oD Œ�0C�4;�1C�5�2�. Applying
Gram-Schmidt to R4, we see that there exists A 2 SO.4/ such that A�0 D x and

A�1 D n. Then T D
�

A 0

0 I2

�
2 SO.4;2/ and ToD �. ut

As in the case of Möbius geometry, the orthonormal basis of R4;2 is not
convenient for the study of this action. What we need are Lie frames.

Definition 15.23. A Lie frame is a basis v0; : : : ;v5 of R4;2 that satisfies

hva;vbi D Ogab;

for a;bD 0; : : : ;5, where the Ogab are the entries of the matrix

OgD
0
@ 0 0 �L
0 I2 0

�L 0 0

1
A ; LD

�
0 1

1 0

�
:

To be specific, we fix the Lie frame

�0 D �4C�0

2
; �5 D �4� �0; �2 D �2; �3 D �3;

�1 D �5C�1

2
; �4 D �5� �1;

(15.20)
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where �0; : : : ;�5 is the standard orthonormal basis of R4;2. In this Lie frame, the
inner product of vectors xDP5

0 xa�a and yDP5
0 yb�b is

hx;yi D �.x0y5C x5y0/� .x1y4C x4y1/C x2y2C x3y3:

The representation of O.4;2/ in this Lie frame is

GD fT 2GL.6;R/ W tT OgT D Ogg;

which we also call the Lie sphere group. Its Lie algebra is

gD fT 2 gl.6;R/ W tT OgC OgT D 0g:

Thus, T 2 g if and only if OgT is skew-symmetric. These linear relations on the
entries of elements of g can be expressed with the block form

gD
8<
:
0
@ X tY rI1;1

V W YL
sI1;1 LtV �LtXL

1
A W X;Y;V 2R2�2; W 2 o.2/; r;s 2 R

9=
; ;

where I1;1 D
�
1 0

0 �1
�

. The Maurer–Cartan form of G is the left-invariant g-valued

1-form ! D T�1dT D .!a
b / on G. We express it in the block form used for g as

! D .!a
b /D

0
@ 
 ṫ ˇI1;1

� ˝ ˙L
˛I1;1 Lt� �Lt
L

1
A ;

where a;b;cD 0; : : : ;5. These imply the following relations:

�
!00 !

0
1

!10 !
1
1

�
D 
;

�
!44 !

4
5

!54 !
5
5

�
D�Lt
LD�

�
!11 !

0
1

!10 !
0
0

�

�
!20 !

2
1

!30 !
3
1

�
D �;

�
!42 !

4
3

!52 !
5
3

�
D Lt� D

�
!21 !

3
1

!20 !
3
0

�

�
!02 !

0
3

!12 !
1
3

�
D t˙;

�
!24 !

2
5

!34 !
3
5

�
D˙LD

�
!12 !

0
2

!13 !
0
3

�

�
0 !23
!32 0

�
D˝ D�t˝;

˛ D !40 D�!51 ; !41 D 0D !50 ; ˇ D !04 D�!15 ; !05 D 0D !14 :

(15.21)
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Now dT D T! means

dTa D
5X
0

Tb!
b
a ;

where Ta DP5
0 Tb

a �b is column a of T in the Lie frame (15.20), for a;bD 0; : : : ;5.
We can calculate the forms !a

b from the inner products

hdTa;Tci D
5X
0

hTb;Tci!b
a :

For example,

˛ D !40 D�hdT0;T1i; ˇ D !04 D�hdT4;T5i:

The structure equations of G are

d!a
b D�

5X
0

!a
c^!c

b :

Applying this to ˛ D !40 and using (15.21), we get

d˛ D�˛^.!00 C!11/C!21^!20 C!31^!30 : (15.22)

Choose oD Œ�0;�1�2� as the origin of the space of lines� in the Lie quadric Q.
The transitive action of G on � has the projection map

� W G!�; �.T/D ToD TŒ�0;�1�D ŒT�0;T�1�D ŒT0;T1�: (15.23)

The isotropy subgroup of G at oD Œ�0;�1� is

G0 D fk.c;B;Z;b/ W bLtcC cLtbD tZZg; (15.24)

where we introduce the notation

k.c;B;Z;b/D
0
@c tZ b
0 B BZ tc�1L
0 0 L tc�1L

1
A ; (15.25)

for

c 2GL.2;R/; b;Z 2 R2�2; B 2O.2/:
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Exercise 66. Prove that

k.c;B;Z;b/�1 D k.c�1;B�1;�BZ tc�1;LtbL/:

The Lie algebra of G0 is the subalgebra sD 0D V of g,

g0 D
8<
:
0
@X tY rI1;1
0 W YL
0 0 �LtXL

1
A W X;Y 2 R2�2; W 2 o.2/; r 2 R

9=
; :

We choose the complementary subspace

m0 D
8<
:
0
@ 0 0 0

V 0 0

sI1;1 LtV 0

1
A W V 2R2�2;s 2 R

9=
;

of g0 in g, so that gD g0Cm0 is a vector space direct sum. We shall need the adjoint
action of G0 on m0.

Exercise 67. Prove that if kD k.c;B;Z;b/ 2 G0 and if

X0 D
0
@0 0 0

V 0 0

0 LtV 0

1
A 2m0;

then the m0-component of Ad.k�1/X0 (relative to gD g0Cm0) is

Ad.k�1/m0X0 D
0
@ 0 0 0

.B�1V � sZLI1;1/c 0 0

sdet.c/ Ltc.tVB� sI1;1LtZ/ 0

1
A :

Definition 15.24. A local Lie frame field on an open subset U�� is a smooth map
T W U! G such that � ıT is the identity map of U.

If Ta is column a D 0; : : : ;5 of a local Lie frame field T W U ! G, then each
Ta W U! R4;2 is a smooth map such that T0; : : : ;T5 is a Lie frame of R4;2, at each
point of U, and

� ıT D ŒT0;T1� W U! U

is the identity map. If we denote the m0-component of ! by

!0 D
0
@ 0 0 0

� 0 0

˛I1;1 Lt� 0

1
A ; (15.26)
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where � is defined in (15.21), and if we denote the entries of T�!0 with the same
symbols, which are now 1-forms on U, then

˛;!20 ;!
2
1 ;!

3
0 ;!

3
1 (15.27)

is a coframe field on U, by Proposition 3.3.
Given any Lie frame field on U, any other is given by

QT D Tk.c;B;Z;b/;

for some smooth map k.c;B;Z;b/ W U ! G0. Denoting QT�!0 as in (15.26) with Q�
and Q̨ , then

Q� D .B�1� �˛ZLI1;1/c; Q̨ D det.c/˛; (15.28)

by Exercise 67.

Definition 15.25. A contact structure on a smooth, 2nC 1-dimensional manifold
M is a collection A of pairs .U;˛/, where U is an open subset of M and ˛ is a
smooth 1-form on U such that ˛^.d˛/n ¤ 0 at every point of U, with the following
properties.

1. The open sets U of all pairs in A cover M.
2. If .U;˛/ and . QU; Q̨ / are elements of A such that U\ QU ¤ ;, then

Q̨ D l˛

on U\ QU for some nowhere zero smooth function l W U\ QU! R�.
3. A is maximal for properties 1) and 2).

For the pair .U;˛/ 2A , the form ˛ is called the contact form on U. Generally
we take property 3) for granted, since any collection A satisfying the first two
properties can always be augmented to satisfy the third property. In particular, a
1-form ˛ on M satisfying ˛^.d˛/n never zero on M defines a contact structure
on M.

Example 15.26. Consider the 1-form on R4�R4 defined by

dx �nD
4X
1

nidxi;

where �i; iD 1; : : : ;4 is the standard basis of R4, and .x;n/ 2 R4�R4 is given by
xDP4

1 xi�i and nDP4
1 ni�i. Let ˇ be this 1-form pulled back to the unit tangent

bundle US3 of S3, which is the submanifold US3 � S3 �S3 � R4 �R4 defined in
Problem 15.62. Then ˇ is a contact form on US3, which means that the 5-form

ˇ^dˇ^dˇ

is never zero on US3.
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Example 15.27 (Contact structure on�). Let A be the set of all pairs .U;˛/, where
U is an open subset of� on which there is a local section T WU!G, and ˛D T�!40 .
By (15.22),

˛^d˛^d˛ D 2˛^!21^!20^!31^!30 ;

which is non-zero at every point of U, by (15.27). If T W U ! G and QT W QU ! G
are Lie frame fields and if U\ QU ¤ ;, then QT D Tk.c;B;Z;b/ for some smooth map
k.c;B;Z;b/ WU\ QU!G0 and Q̨ D det.c/˛ on U\ QU. Thus, A is a contact structure
on �.

Example 15.28. The diagram

US3
F! �

� # # �
S3

f
C!M

;

where F, the diffeomorphism of Problem 15.62, is a fiber bundle isomorphism that
preserves the contact structures. That is, F maps the fiber of US3 over x 2 S3 onto
the fiber of� over fC.x/, and F� of a contact form on� is a nonzero multiple of the
contact form ˇ D dx �n on US3. To see this last point in more detail, let T W U! G
be a local Lie frame field on an open subset U � �. Then T�!40 D �hdT0;T1i is
the contact form on U, where T D .T0;T1; : : : ;T5/. On the other hand, if .x;n/ 2
F�1U � US3, then

F.x;n/D ŒxC�4;nC�5�D ŒT0 ıF;T1 ıF�

implies that T0 ıF D c00.xC�4/C c10.nC�5/ and T1 ıFD c01.xC�4/C c11.nC�5/

for some smooth functions ci
j WU! R, i; jD 1;2, such that c00c

1
1�c10c

0
1 is never zero

on U. Thus,

F�T�!40 D�hd.T0 ıF/;T1 ıFi D �.c00c11� c10c
0
1/dx �n:

15.5 Legendre submanifolds

Definition 15.29. A Legendre map into a manifold N with contact structure A is a
smooth map � WM! N such that

��˛ D 0;

for every local contact form .U;˛/ 2A .
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Definition 15.30. A Legendre lift of a conformal immersion f W M ! M of a
Riemann surface M is a Legendre immersion � WM!� such that � ı�D f , where
� W�!M is the spherical projection map of Definition 15.14.

Remark 15.31. A lift � WM!� of an immersion f WM!M is a smooth section
along f of the fibre bundle � W�!M . Let F WU!L be a local representation of
f on an open subset U of M. At a point m 2M, the lift �.m/ is a pencil of oriented
tangent spheres to f at m. Thus, �.m/D ŒF.m/;S.m/C�5�, where S W U! S3;1 is a
smooth map such that S.m/ is an oriented tangent sphere of f at m. That is,

hF.m/;S.m/i D 0D hdF.m/;S.m/i;

for each m 2 U, by Definition 12.42. The next proposition shows that this lift is
Legendrian.

Proposition 15.32. If M is a Riemann surface with a smooth immersion � WM!�

given by �D ŒS0;S1�, where S0;S1 WM!R4;2 nf0g are smooth maps satisfying 0D
hSi;Sji, for all i; jD 0;1, then � pulls back any contact form of the contact structure
of� to a multiple of hdS0;S1i. In particular, � is a Legendre map if hdS0;S1i D 0 on
M.

Proof. Given a point m 2M, let T D .T0; : : : ;T4/ WU!G be a Lie frame field on a
neighborhood U �� of �.m/. Then

T ı�D ŒT0 ı�;T1 ı��D Œc00S0C c10S1;c
0
1S0C c11S1�

on ��1U �M, where cD .ci
j/ W ��1U!GL.2;R/ is a smooth map. Thus,

��T�!40 D���hdT0;T1i D �detchdS0;S1i:

ut
Corollary 15.33. Legendre lifts along surface immersions into various spaces are
constructed as follows.

M A smooth oriented tangent sphere map S W M! S3;1 along an immersion f W
M2 !M determines the Legendre lift � D ŒF;SC �5� W M ! � of f , where
F W U �M!L is a local lift of f .

S3 A unit normal vector field n W M ! S3 along an immersion x W M2 ! S3

determines the Legendre lift � D ŒxC �4;nC �5� W M ! � of the conformal
immersion f D fC ı x WM!M .

R3 A unit normal vector field n WM! S2 � R3 along an immersion x WM! R3

determines the Legendre lift

�D Œ.1�jxj2/�0C2xC .1Cjxj2/�4;�.x �n/�0CnC .x �n/�4C�5� WM!�

of the conformal immersion f0 ı x WM!M .
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H3 A unit normal vector field n WM! R3;1 along an immersion x WM2! H3 �
R3;1 determines the Legendre lift

�D Œ�0Cx;nC�5� WM!� (15.29)

of the conformal immersion f� ı x WM!M .

This construction works even in cases when the surface has singularities. Such
cases cannot be avoided because in general the spherical projection of a Legendre
immersion � WM2!� will have singularities.

Example 15.34 (Legendre lift of surfaces with singularities). Let a and b be positive
constants. Consider the surface obtained by rotating the circle in the �1�3-plane with
center .a;0;0/ 2 R3 and radius b about the �3-axis. It is parametrized by

x W R2! R3; x.s; t/D .aCbcoss/cos t�1C .aCbcoss/sin t�2Cbsins�3:

This is an immersion if 0< b< a, but if 0< a	 b, then it has singularities, as shown
in Figure 15.5, where some of the outer surface is cut away to show the singularities
inside.

Fig. 15.5 Circle in �?

2 ,
center .a;0;0/, radius
b> a> 0, rotated about
�3-axis

The map .x;e1;e2;e3/ WR2! E.3/, where

e1 D�sin scos t�1� sinssin t�2C coss�3;

e2 D�sin t�1C cos t�2;

e3 D�cosscos t�1� cosssin t�2� sins�3;
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is a frame field along x for which e1;e2 are tangent at the nonsingular points, and
e2;e3 are normal at the singular points. The map � W R2!�,

�.s; t/D Œ.1�jxj2/�0C2xC .1Cjxj2/�4; .aCb/�0C e3� .aCb/�4C�5�;

is a Legendre lift of fC ıS �1 ı x W R2!M .

Example 15.35. A smooth curve in S3 has a Legendre lift. This is important because
the spherical projection of a Legendre immersion of a surface can be a curve, as we
now show. The unit normal bundle N of a smooth curve f W J! S3, where J � R is
an interval, is

ND f.s;v/ 2 J�S3 W f.s/ � vD 0D Pf.s/ � vg � Tf.s/S3:

It has a Legendre immersion

� W N!�; �.s;v/D Œf.s/C�4;vC�5�:

Its spherical projection is the curve � ı�D fC ı f in M .

Lie sphere geometry is the study of properties of Legendre immersions of
surfaces into � that remain invariant under the action of the Lie sphere group G.
It is an extension of Möbius geometry in the following sense. If f W M!M is a
conformal immersion of a Riemann surface into Möbius space, then its Legendre
lift � WM!� is a Legendre immersion. The Möbius group is a subgroup of G that
sends point spheres to point spheres. Any property of the Legendre lift invariant
under the Lie sphere group, is also invariant under the Möbius subgroup. To see
the geometric effects of a Lie sphere transformation on the Legendre lift, we must
project it back into Möbius space via the spherical projection of Definition 15.14.
As we just observed in the preceding two examples, this projection can fail to be an
immersion.

Let us examine this last statement in more detail. Suppose f W M !M is a
conformal immersion with Legendre lift � WM!�, which we know is a Legendre
immersion. If � W�!M is the spherical projection (each line goes to the unique
point sphere in it), then � ı�D f . If T 2 G is any Lie sphere transformation, then
T ı � W M ! � is again a Legendre immersion, since T acts on � as a contact
diffeomorphism. The spherical projection

� ıT ı� WM!M ;

however, need not be an immersion. It could have discrete points where its
differential has rank less than two, or the whole map can have rank less than two.
The Lie parallel transformations are the culprits.

Proposition 15.36. Let x W M ! R3 be an immersion with unit normal vector
field n and Legendre lift � W M ! � given in Corollary 15.33. For any r 2 R,
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let T0r 2 SO.4;2/ be the Lie parallel transformation (15.18). Then the spherical
projection of T0r ı� WM!� is f0ı Qx, where QxD x�rn is the parallel transformation
of x by �r.

Thus, the spherical projection of the smooth Legendre immersion T0r ı� WM!�

is singular at any point of M where�1=r is a principal curvature of x relative to n. In
general, these points will be discrete, but consider an immersion such as a circular
torus obtained by revolving a circle of radius r>0 about a line disjoint from it. With
the inward pointing normal, the parallel transformation Qx by r will have rank equal
to one at every point. The parallel transformation of an oriented sphere of radius r
by an amount r along the inward pointing normal is a constant map.

Proof. This is an elementary calculation. Use Definition 15.14 to calculate the
spherical projection. ut

15.6 Tangent and curvature spheres

Following the general theory of Chapter 3, we now apply the method of moving
frames to Legendre immersions � W M ! �, where M is a surface, and the Lie
sphere group G acts transitively on �. The geometry of Lie frames is based on the
concepts of tangent and curvature spheres. Recall that the Lie quadric Q is identified
with the set of all oriented spheres in S3 in Proposition 15.2 and Exercise 62.

Definition 15.37. An oriented tangent sphere at a point m 2 M of a Legendre
immersion � WM2!� is a point on the line �.m/�Q. An oriented tangent sphere
map is a smooth map S W U � M ! Q such that S.m/ 2 �.m/, for every m 2 U.
An oriented curvature sphere at a point m 2 M of � is an oriented tangent sphere
OS of � at m for which, if S W U ! Q is an oriented tangent sphere map of � on a
neighborhood U of m with S.m/D OS, then dSm mod �.m/ has rank less than 2.

Example 15.38. The oriented curvature spheres of the Legendre lift of a conformal
immersion f W M !M with tangent sphere map S W M ! S3;1 correspond to the
oriented curvature spheres of f via the inclusion S3;1 � Q, S 7! ŒSC �5�. In fact, if
F W U � M!L is a lift of f , then any oriented tangent sphere of f at a point on
U is given by SC rF 2 S3;1, for any r 2 R. This is an oriented curvature sphere if
and only if d.SC rF/ mod F has rank less than two. The Legendre lift of f on U
is � D ŒF;SC �5� W U! �. All of its oriented tangent spheres are given on U by
ŒrFC s.SC�5/� 2 Q, for tŒr;s� 2 RP1. This is a curvature sphere of � if and only if
d.rFC s.SC �5// mod fF;SC �5g has rank less than two if and only if s¤ 0 and
d.SC r

s F/ mod F has rank less than two if and only if SC r
s F is a curvature sphere

of f .

Definition 15.39. A Lie frame field along a Legendre immersion � W M! � is a
smooth map T W U ! G defined on an open subset U � M such that � ı T D �,
where � W G!� is the projection (15.23).
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Let T D .T0; : : : ;T5/ WU!G be a Lie frame field along the Legendre immersion
� WM!�. Then �D ŒT0;T1�, which is a line in the Lie quadric Q� P.R4;2/. Any
oriented tangent sphere S of � at a point of U is given by

SD ŒrT0C sT1�;

for any tŒr;s� 2 RP1, which are called the projective coordinates of S relative to T.
Since � is a Legendre map, it satisfies

T�!40 D 0

on U. We shall omit writing T� in the entries of T�!. Taking the exterior derivative
of this equation, and using the structure equations of G, we get

!21 ^!20 C!31 ^!30 D 0 (15.30)

on U. By (15.26), the linearly independent entries of T�!m0 lie in

� D
�
!20 !

2
1

!30 !
3
1

�
:

The smooth map T0^T1 W U!�2R4;2 is a lift of � W U!� and

d.T0^T1/�
3X
2

!i
0Ti^T1C

3X
2

!i
1T0^Ti mod T0^T1:

Thus, d� has rank two if and only if the dimension of spanf!20 ;!30 ;!21 ;!31g is two at
every point of U. This is equivalent to the condition that for any point m 2 U, there
exists pD tŒr;s� 2RP1, such that

.r!20 C s!21/^ .r!30 C s!31/¤ 0 (15.31)

on a neighborhood of m in U. In fact, if !20 ^!30 ¤ 0 at m, then pD tŒ1;0� works.
Otherwise, suppose that !20 ^!30 D 0 at m. Now, if for every r 2 R we have at m,

0D .r!20 C!21/^ .r!30 ^!31/D r.!20 ^!31 C!21 ^!30/C!21 ^!31 ;

then taking r D 0 implies !21 ^!31 D 0 at m, and thus also !20 ^!31 C!21 ^!30 D 0
at m. These equations combined with (15.30) imply that the rank of f!20 ;!30 ;!21 ;!31g
is less than two at m, a contradiction.
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Lemma 15.40. A curvature sphere of a Legendre immersion � WM!� at a point
m 2 M is a tangent sphere S at m with the property that for any Lie frame field
T W U! G, with m 2 U, the projective coordinates tŒr;s� of S relative to T and the
Maurer–Cartan forms .!b

a /D T�1dT satisfy

.r!20 C s!21/^ .r!30 C s!31/D 0 (15.32)

at m.

Proof. Let T WU! G be a Lie frame field along � on a neighborhood U of m in M.
Let tŒs; t� 2RP1 be the projective coordinates relative to T of a curvature sphere S at
m. The tangent sphere map ŒrT0C sT1� W U! Q has value S at m and the rank of
dŒrT0C sT1�m mod �.m/ is less than 2 if and only if

d.rT0C sT1/� .r!20 C s!21/T2C .r!30 C s!31/T3; mod fT0;T1g

has rank less than two at m if and only if (15.32) holds at m. ut
How do the projective coordinates of a tangent sphere depend on the Lie frame?

Let S be a curvature sphere of � at m 2M. Let T WU!G be a Lie frame field about
m 2M such that SD ŒsT0CrT1�.m/ 2Q. Any other Lie frame field on U is given by

QT D Tk.c;B;Z;b/;

where k.c;B;Z;b/ WU! G0 is defined in (15.25). Here c WU!GL.2;R/, B W U!
O.2/, and Z;b W U! R2�2 are smooth maps. Then

. QT0; QT1/D .T0;T1/c and Q� D B�1�c;

by (15.28). The projective coordinates of S relative to T and QT are related by
�Qr
Qs
�
D c�1

�
r
s

�
; (15.33)

so

Q�
�Qr
Qs
�
D B�1�cc�1

�
r
s

�
D B�1�

�
r
s

�
;

which implies that

.Qr Q!20 CQs Q!21/^ .Qr Q!30 CQs Q!31/D .detB�1/.r!20 C s!21/^ .r!30 C s!31/:

A change of Lie frame changes the projective coordinates of a tangent sphere S
by (15.33). A basic property of this action of GL.2;R/ on RP1 is its three point
transitivity. See Problem 15.76.

The discussion around (15.31) showed that at any point m 2 M, there exists a
neighborhood U of m on which there is a smooth tangent sphere S W U! Q, which
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is not a curvature sphere at any point of U. By Problem 15.76, there exists a Lie
frame field T W U! G such that SD ŒT0� on U. Now (15.32) becomes !20 ^!30 ¤ 0
at every point of U. Then Cartan’s Lemma applied to (15.30) implies that !i

1 D hi
j!

j
0

for smooth functions on U satisfying hi
j D hj

i, for all i; j 2 f2;3g. Any tangent sphere
not equal to S is given by ŒrT0CT1�, where r W U! R. Then

.r!20 C!21/^ .r!30C!31/D .r2C r.h22Ch33/Ch22h
3
3�h23h

3
2/!

2
0 ^!30

shows that ŒrT0CT1� is a curvature sphere at a point m 2 U if and only if �r is an
eigenvalue of the symmetric matrix .hi

j.m//. In particular, there are precisely two
curvature spheres, counting multiplicities, at each point of M. Distinct solutions
depend smoothly on m, but the dependence is only continuous at points where
the solutions coincide. Thus, if r0;r1 W U! R are the solutions, then the curvature
spheres

ŒriT0CT1� W U! Q

are continuous maps and smooth where r0 and r1 are distinct. Thus, we have shown
that if

S0;S1 WM! Q

denote the curvature spheres at each point of M, then these are continuous maps,
smooth when they are distinct, and hS0;S1i D 0.

Definition 15.41. A point m 2 M is an umbilic point of the Legendre immersion
� WM!�, if the curvature sphere at m has multiplicity two; that is, S0.m/D S1.m/.
Otherwise, the point is nonumbilic.

15.7 Frame reductions

The first step of the reduction procedure for Lie frame fields along a Legendre
immersion � WM!� requires the absence of umbilic points.

Definition 15.42. A first order Lie frame field T W U ! G along a Legendre
immersion � W M2 ! � for which there are distinct smooth curvature spheres
S0;S1 W U! Q is characterized by

1. ŒT0�D S0 and ŒT1�D S1 at each point of U, and
2. !20 D 0D !31 and !21 ^!30 ¤ 0 at every point of U.

Lemma 15.43. If � W M ! � is a Legendre immersion, then for any nonumbilic
point m 2M, there exists a neighborhood U of m in M on which there exists a first
order Lie frame field.
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Proof. Let T W U ! G be any smooth Lie frame field on a neighborhood U of
m. By the three point transitivity of the action of GL.2;R/ on RP1, as proved in
Problem 15.76, there exists a smooth map c W U! GL.2;R/ such that relative to
the Lie frame field QT D Tk.c; I2;0;0/ WU!G the curvature spheres are Œ QT0� and Œ QT1�
at each point of U. Change the notation to assume this is the case for the original
Lie frame field T. Then ŒT0� and ŒT1� being curvature spheres on U implies that

!20 ^!30 D 0D !21 ^!31 ; (15.34)

at each point of U, by (15.32). In particular, !20 and !30 are linearly dependent at
each point of U, and they are not both zero at any point, because if r;s 2 R n f0g,
then ŒrT0C sT1� is not an oriented curvature sphere at any point of U, so by (15.32)
and (15.34),

0¤ .r!20 C s!21/^ .r!30 C s!31/D rs.!20 ^!31C!21 ^!30/; (15.35)

at every point of U. There exists a smooth map

.a;b/ W U! S1 � R2

such that a!20 Cb!30 D 0 at each point of U, so

BD
�

a �b
b a

�
W U! SO.2/

is a smooth map. The Lie frame field QT D Tk.I2;B;0;0/ W U! G has QT0 D T0 and
QT1 D T1 and

Q� D B�1� D
�
0 Q!21
Q!30 Q!31

�
;

by (15.28). Now Q!20 D 0 on U implies Q!21 ^ Q!30 ¤ 0 at every point of U, by (15.35),
which holds for Q� as well. Thus, Q!21 ; Q!30 is a coframe field on U, so Q!31 D 0 on
U, since Q!31 ^ Q!21 D 0 on U, by (15.34), and Q!31 ^ Q!30 D 0 on U by the Legendre
condition (15.30). Hence, QT W U! G is of first order. ut

Let T W U! G be a first order Lie frame field along �. Let

�2 D !21 ; �3 D !30 : (15.36)
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By (2) of Definition 15.42, �1;�2 is a coframe field on U and

0D d!20 D !10 ^�2�!23 ^�3; 0D d!31 D !01 ^�3�!32 ^�2; (15.37)

by the structure equations of G. If we let

!10 D A2�
2CA3�

3; !01 D B2�
2CB3�

3; (15.38)

for some smooth functions A2;A3;B2;B3 W U! R, then (15.37) implies

!23 D�A3�
2CB2�

3 D�!32 : (15.39)

In the notation of (15.25), any other first order Lie frame field on U is

QT D Tk.c;B;Z;b/ W U! G;

where k.c;B;Z;b/ W U! G1 is a smooth map into the closed subgroup

G1 D fk.c;B;Z;b/ 2G0 W cD
�

r 0
0 s

�
; Z;b 2 R2�2; BD

�

 0

0 ı

�
g;

where rs¤ 0 and 
;ı 2 f˙1g. Its Lie algebra is

g1 D
8<
:
0
@X tY X04I1;1
0 0 YL
0 0 �LtXL

1
A 2 g0 W X D

�
X00 0

0 X11

�
;Y 2 R2�2; X04 2 R

9=
; :

Equations (15.38) suggest that for a vector space complement of g1 in g0 we choose

m1 D
8<
:
0
@X0 0 0

0 W 0

0 0 �LtX0L

1
A W X0 D

�
0 X01

X10 0

�
; W 2 o.2/

9=
; :

The .m0Cm1/-component of the Maurer–Cartan form ! is

!m0Cm1 D
0
@
0 0 0

� ˝ 0

0 Lt� �Lt
0L

1
A ;

where


0 D
�
0 !01
!10 0

�
; � D

�
0 �2

�3 0

�
; ˝ D

�
0 !23
!32 0

�
:
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Let kD k.c;B;Z;b/ WU!G1. Denote the .m0Cm1/-component of Ad.k�1/!m0Cm1

with the same letters covered by a tilde. Then

Q�2 D 
s�2; Q�3 D ır�3;

Q!10 D
r

s
.!10 � ıZ13�3/D

r
A2
s2
Q�2C ıA3�Z13

s
Q�3;

Q!01 D
s

r
.!01 � 
Z02�2/D


B2�Z02
r

Q�2C sıB3
r2
Q�3;

Q!32 D 
ı!32 C ıZ02�3� 
Z13�2 D� Q!23 :

Hence, the coefficients in (15.38) relative to the new frame satisfy

QA2 D 
r

s2
A2; QA3 D ıA3�Z13

s
; QB2 D 
B2�Z02

r
; QB3 D ıs

r2
B3; (15.40)

from which we see that we can always choose k W U! G1 to make QA3 D 0D QB2 on
U, but the orbit structure of the action of G1 on A2 and B3 depends on whether these
functions are zero or not. There are four orbit types.

Definition 15.44. A Legendre immersion � WM!� is of the following type, if for
every first order Lie frame field T W U! G,

A). !10 ^�3 ¤ 0 and �2^!01 ¤ 0 at every point of U;
B). !10 ^�3 ¤ 0 and �2^!01 D 0 at every point of U;
C). !10 ^�3 D 0 and �2^!01 ¤ 0 at every point of U;
D). !10 ^�3 D 0 and �2^!01 D 0 at every point of U.

Type A is the non-degenerate case, immersions of Types B or C are called canal,
and immersions of Type D are called Dupin.

15.8 Frame reductions for generic immersions

Suppose now that � WM!� is a Legendre immersion of Type A.

Definition 15.45. A second order Lie frame field T WU!G along � is a first order
Lie frame field for which

!10 D �2; !01 D �3; !23 D 0 (15.41)

on U, where �2;�3 is the coframe field defined in (15.36).

It is evident from (15.40) that smooth second order Lie frame fields exist on some
neighborhood of any point of M. These same equations also show that if T and QT
are both second order Lie frame fields on U, then
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Z02 D 0D Z13 ; rD 
; sD ı:

Let T W U! G be a second order Lie frame field. Taking the exterior differential of
the forms in (15.41) and using the structure equations, we get

.!00 �2!11/^�2�!13 ^�3 D 0;
!02 ^�2� .!11 �2!00/^�3 D 0;

!13 ^�2�!02 ^�3 D 0

on U. These equations imply that

!02 D D2�
2CD3�

3; !13 D E2�
2�D2�

3;

!00 �2!11 D C2�
2�E2�

3; !11 �2!00 D�D3�
2CC3�

3;
(15.42)

for some smooth functions D2;D3;E2;C2;C3 W U! R. Any other second order Lie
frame field on U is given by

QT D Tk.c;c;Z;b/ W U! G;

where k.c;c;Z;b/ W U! G2 is a smooth map into the closed subgroup

G2 D fk.c;c;Z;b/ 2 G1 W cD
�

 0

0 ı

�
; 
;ı D˙1; tZ D

�
0 s
r 0

�
; r;s 2 Rg;

where we use the notation of (15.25). We note that the condition imposed on
b 2R2�2 in (15.24) implies the entries bi

j, iD 0;2, jD 4;5, of b satisfy

b05 D



2
s2; b14 D

ı

2
r2; 
b15C ıb04 D 0:

Note r;s; and b04 can be chosen arbitrarily. The Lie algebra of G2 is

g2 D
8<
:
0
@0

tY tI1;1
0 0 YL
0 0 0

1
A W Y D

�
0 Y03

Y12 0

�
; t 2 R

9=
; :

Equations (15.42) suggest that for the vector space complement of g2 in g1 we
should choose

m2 D
8<
:
0
@X tY 0

0 0 YL
0 0 �LtXL

1
A W tY D

�
Y02 0

0 Y13

�
;X D

�
X00 0

0 X11

�9=
; :
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The .m0Cm1Cm2/-component of the Maurer–Cartan form ! is

!m0Cm1Cm2 D
0
@


ṫ 0

� 0 ˙L
0 Lt� �Lt
L

1
A ;

where


D
�
!00 �

3

�2 !11

�
; � D

�
0 �2

�3 0

�
; t˙ D

�
!02 0

0 !13

�
:

Letting k D k.c;c;Z;b/ W U! G2 and denoting the .m0Cm1Cm2/-component of
Ad.k�1/!m0Cm1Cm2 with the same letters covered by a tilde, we get

Q�2 D 
ı�2; Q�3 D 
ı�3;
Q!00 D !00 � ıs�3; Q!11 D !11 � 
r�2;
Q!02 D !02 C 
r�3C 
b15�2; Q!13 D !13 C ıs�2C ıb04�3:

Hence, the coefficients in (15.42) relative to the new frame satisfy

QD2 D 
ıD2C ıb15; QD3 D 
ıD3C ır; QE2 D 
ıE2C 
s; (15.43)

from which we see that we can choose k.c;c;Z;b/ W U! G2 to make QD2 D QD3 DQE2 D 0 at every point of U.

Definition 15.46. A third order Lie frame field T WU!G along � is a second order
Lie frame field for which

!02 D 0D !13 (15.44)

on U.

It is evident from (15.43) that a third order Lie frame field exists on some
neighborhood of any point of M. These same equations also show that if QT D Tk
are both third order Lie frame fields on U, then k D k.c;c;0;0/ takes values in the
discrete subgroup

G3 D fk.c;c;0;0/ 2 G2 W cD
�

 0

0 ı

�
; 
;ı 2 f˙1gg:

Summary: A third order Lie frame field T W U ! G along a Type A Legendre
immersion � WM!� is characterized by ŒT0�D S0 and ŒT1�D S1 are the curvature
spheres of � and

1. !20 D 0D !31 , �2 D !21 , �3 D !30 , and �2^�3 ¤ 0.
2. !10 D �2, !01 D �3, !23 D 0.
3. !02 D 0D !13 .
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Let T WU!G be a third order Lie frame field. It follows from (15.44) and (15.42)
that now

!00 D q�2�2p�3; !11 D 2q�2�p�3; (15.45)

for smooth functions p;q WU! R. These functions are globally defined on M up to
sign. From the structure equations of G,

d�2 D d!21 D p�2^�3; d�3 D d!30 D q�2^�3;
so the functions p;q are determined by the coframe field �2;�3. Taking the exterior
differential of the forms in (15.44) and using the structure equations of G, we get

0D d!02 D !12 ^�3C�2^!04 ; 0D d!13 D��2^!03 C!04 ^�3;
from which we conclude that

!12 D r�2C s�3; !03 D t�2Cu�3; !04 D u�2� r�3; (15.46)

for smooth functions r;s; t;u W U! R. All other Maurer–Cartan forms can now be
determined from the identities in (15.21). Any other third order Lie frame field on
U is given by QT D Tk, where k D k.c;c;0;0/ W U ! G3 is a smooth map. Then
Q! DAd.k�1/! implies that

Q�2 D 
ı�2; Q�3 D 
ı�3; Q!00 D !00 ; Q!11 D !11 ;
Q!03 D 
ı!03 ; Q!12 D 
ı!12 ; Q!04 D 
ı!04

from which it follows that the 1-forms !00 and !11 , relative to a third order Lie frame
field, are globally defined on M, the third order invariants

QrD r; QsD s; QtD t; QuD u

are globally defined smooth functions on M, the invariants

QpD 
ıp; QqD 
ıq
are defined only up to sign, while QpQqD pq is a globally defined function on M. In
addition, the area element

Q�2^ Q�3 D �2^�3

is globally defined on M. In the literature, see for example Blaschke [8] or
Ferapontov [68], the fundamental invariants of a Legendre immersion of Type A
are taken to be the symmetric quadratic form F and cubic form P defined by the
symmetric products

F D��2�3; P D�.�2/3C .�3/3:

The form F is globally defined on M, but the form P is defined only up to sign.



524 15 Lie Sphere Geometry

Taking the exterior derivative of (15.45) and (15.46), using the structure equa-
tions of G and the identities in (15.21), we obtain the structure equations relative to
the third order Lie frame field T,

d�2 D !11 ^�2; d�3 D !00 ^�3;
d!00 D .�2�!03/^�3; d!11 D .�3�!12/^�2;

d!12 D !12 ^!11 ; d!03 D !03 ^!00 ; d!04 D !04 ^ .!00 C!11/:

These equations imply the invariants p;q;r;s; t; and u satisfy

dq^�2�2dp^�3D .1Cpq� t/�2^�3;
2dq^�2�dp^�3D .s�1�pq/�2^�3;

dt^�2Cdu^�3 D�.3ptC2qu/�2^�3;
dr^�2Cds^�3 D�.3qsC2pr/�2^�3;
du^�2�dr^�3 D 4.rq�up/�2^�3:

15.9 Frame reductions for Dupin immersions

Suppose now that � WM!� is a Legendre immersion of Type D. Then for any first
order frame field T W U! G, the functions A2 D 0D B3 in (15.38). By (15.40), we
may choose T such that A3 D 0D B2 on U, so !23 D 0 as well, by (15.39).

Definition 15.47. A second order Lie frame field T WU!G along � is a first order
Lie frame field for which

!10 D 0; !01 D 0; !23 D 0 (15.47)

on U. Thus, !m1 D 0 on U characterizes a second order Lie frame field.

Let T W U ! G be a second order Lie frame field along �. Taking the exterior
differential of the forms in (15.47) and using the structure equations of G, we get

!13 ^�3 D 0; !02 ^�2 D 0; �2^!13 C!02 ^�3 D 0;
where �2 D !21 , �3 D !30 is the coframe field of T. It follows that

!02 D D�2; !13 D�D�3; (15.48)

for some smooth function D W U! R. If T and QT are both second order Lie frame
fields on U, then (15.40) implies

Z02 D 0D Z13
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on U. Thus, any other second order Lie frame field on U is given by

QT D Tk.c;B;Z;b/ W U! G;

where k.c;B;Z;b/ W U! G2 is a smooth map into the closed subgroup

G2 D fk.c;B;Z;b/ 2 G1 W tZ D
�
0 Z03

Z12 0

�
; Z03 ;Z

1
2 2 Rg:

We note that if k.c;B;Z;b/ 2 G2, then

bD
�

b04
1
2r .Z

0
3/
2

1
2s .Z

1
2/
2 � s

r b04

�
;

where b04 2R is arbitrary. The Lie algebra of G2 is

g2 D
8<
:
0
@X tY X04I1;1
0 0 YL
0 0 �JtXJ

1
A W X D

�
X00 0

0 X11

�
; tY D

�
0 Y03

Y12 0

�9=
; :

Equations (15.48) suggest that for the vector space complement of g2 in g1 we
should choose

m2 D
8<
:
0
@0

tY 0

0 0 YL
0 0 0

1
A W tY D

�
Y02 0

0 Y13

�
2 R2�2

9=
; :

Relative to the second order Lie frame field T W U! G, we have

!m0Cm1Cm2 D
0
@0

ṫ 0

� 0 ˙L
0 Lt� 0

1
A ;

where

� D
�
0 !21
!30 0

�
; t˙ D

�
!02 0

0 !13

�
:

As usual, �2 D !21 , �3 D !30 is the coframe field on U determined by T. If QT D
Tk.c;B;Z;b/ is any other second order Lie frame field on U, then

Q�2 D 
s�2; Q�3 D ır�3;

Q!02 D



r
.!02 � sb04�

2/; Q!13 D
ı

s
.!13 C sb04�

3/:
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Using (15.48) for both frame fields, we thus have

QDD 1

rs
.D� sb04/: (15.49)

Definition 15.48. A third order Lie frame field T WU!G along � is a second order
Lie frame field for which

!02 D 0D !13 : (15.50)

It follows from (15.49) that smooth third order Lie frame fields exist on some
neighborhood of any point of M. These same equations also show that if QT D
Tk.c;B;Z;b/ are both third order, then b04 D 0.

Let T W U ! G be a third order Lie frame field along �. Taking the exterior
differential of the forms in (15.50), we get

!04 D 0 (15.51)

on U. Any other third order Lie frame field on U is given by

QT D Tk W U! G;

where k W U! G3 is a smooth map into the closed subgroup of G2,

G3 D

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

0
BBBBBBB@

r 0 0 t 0 t2=2r
0 s u 0 u2=2s 0

0 0 
 0 
u=s 0

0 0 0 ı 0 ıt=r
0 0 0 0 1=s 0

0 0 0 0 0 1=r

1
CCCCCCCA
W r;s; t;u 2 R; rs¤ 0; 
;ı D˙1

9>>>>>>>=
>>>>>>>;
:

The connected component of the identity of G3 is the subgroup G0
3 of all elements

for which r > 0, s> 0, and 
 D 1D ı. The Lie algebra of G3 is

g3 D

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

0
BBBBBBB@

x 0 0 z 0 0

0 y w 0 0 0

0 0 0 0 w 0

0 0 0 0 0 z
0 0 0 0 �y 0

0 0 0 0 0 �x

1
CCCCCCCA
W x;y;z;w 2R

9>>>>>>>=
>>>>>>>;
:

Equation (15.51) suggests that for a complementary vector subspace to g3 in g2 we
take

m3 D
8<
:
0
@0 0 X04I1;1
0 0 0

0 0 0

1
A W X04 2R

9=
; :
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But then (15.51) implies that

!m0Cm1Cm2Cm3 D !m0Cm1Cm2 D Q!m0Cm1Cm2 D Q!m0Cm1Cm2Cm3

on U, which means that the frame reduction ends at the third order. Observe that
taking the exterior derivative of the form in (15.51) imposes no further conditions.

Summary: A third order Lie frame field T W U ! G along a Dupin Legendre
immersion � WM!� is characterized by ŒT0�D S0 and ŒT1�D S1 are the curvature
spheres of � and

Order 1: !20 D 0D !31 ; �2 D !21 ; �3 D !30 ; �2^�3 ¤ 0;
Order 2: 0D !10 D !01 D !23 D�!32 ;
Order 3: 0D !02 D !13 D !04 :

(15.52)

By the structure equations of G,

d�2 D p�2^�3; d�3 D q�2^�3;

for smooth functions p;q W U! R. The remaining entries of ! are given by

!00 D q�2C t�3; !11 D u�2�p�3; !03 D ci�
i; !12 D di�

i; (15.53)

for smooth functions t;u;ci;di W U ! R, where i D 2;3. Taking the exterior
differential of these forms, we get

dq^�2Cdt^�3 D�.c2Cq.pC t//�2^�3;
du^�2�dp^�3 D .d3Cp.q�u//�2^�3:

Lemma 15.49. The 6-dimensional distribution D defined on G by the coframe of
left-invariant 1-forms

D? D f!20 ;!31 ;!10 ;!01 ;!23 ;!02 ;!13 ;!04 ;!40g

satisfies the Frobenius condition and

hD fT 2 g W ˛.T /D 0; for all ˛ 2D?.g: (15.54)

is a Lie subalgebra of g. Its maximal integrable manifolds are the right cosets of the
connected 6-dimensional Lie subgroup H of G whose Lie algebra is h.

Proof. It is a simple calculation to show that d˛ � 0 mod D? for every ˛ 2 D?.
Since the nine left invariant 1-forms in D? are linearly independent over R, the
subspace h� g defined in (15.54) is a Lie subalgebra of dimension six. ut
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Example 15.50 (Legendre lift of a great circle). We obtain an explicit description
of H by finding the third order frame fields along the Legendre lift of the great circle

f W R! S3; f.u/D cosu�0C sinu�3:

By Example 15.35, a Legendre lift of f is

� WR2!�; �.u;v/D ŒS0;S1�;
where

S0 D cosu�0C sinu�3C�4; S1 D cosv�1C sinv�2C�5: (15.55)

Then � is Dupin and a third order frame field along it is S0, S1, and

S2 D�sinv�1C cosv�2; S3 D�sin u�0C cosu�3;

S4 D�1
2

cosv�1� 1
2

sinv�2C 1
2

�5; S5 D�1
2

cosu�0� 1
2

sinu�3C 1
2

�4:

The matrix of .S0; : : : ;S5/.u;v/ in the standard Lie frame is S W R2! G, where

S.u;v/D

0
BBBBBBB@

1C cosu 0 0 �sin u 0 1�cosu
2

0 1C cosv �sinv 0 1�cosv
2

0

0 sinv cosv 0 � sinv
2

0

sinu 0 0 cosu 0 � sinu
2

0 1�cosv
2

sinv
2

0 1Ccosv
4

0
1�cosu
2

0 0 sinu
2

0 1Ccosu
4

1
CCCCCCCA
:

From !0a D �hdSa;S5i, !1a D �hdSa;S4i, !2a D hdSa;S2i, !3a D hdSa;S3i, !4a D
�hdSa;S1i, and !5a D�hdS5;S0i, for aD 0; : : : ;5,

! D S�1dSD

0
BBBBBBB@

0 0 0 �du=2 0 0

0 0 �dv=2 0 0 0

0 dv 0 0 �dv=2 0

du 0 0 0 0 �du=2
0 0 dv 0 0 0

0 0 0 du 0 0

1
CCCCCCCA
;

which is h-valued. The set fS.u;v/G3 W .u;v/ 2 R2g, of all third order frames
along �, is thus an integral submanifold of the distribution D defined in
Lemma 15.49. It passes through the origin I6 D S.0;0/k, where the diagonal matrix
k D diag.1=2;1=2;1;1;2;2/ is an element of G0

3, the connected component of the
identity of G3. The subgroup H in Lemma 15.49 is H D S.R2/G0

3, and the spherical
projection of Definition 15.14 of �.H/ D HŒ�0;�1� D ŒS0;S1� is the great circle
fC ı f.R/ in M .
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Theorem 15.51 (Dupin immersions). If � WM! � is a Dupin Legendre immer-
sion of a connected surface M, then up to a Lie sphere transformation �.M/ is an
open submanifold of

�.H/D fŒT0;T1� W T 2 Hg ŠH=G3;

where � W G!� is the projection (15.23) and H is the subgroup of Lemma 15.49.

Proof. The proof is a special case of Proposition 3.11. Let � WM! � be a Dupin
Legendre immersion of a connected surface. By (15.52), any third order Lie frame
field T W U! G along � is an integral surface of D . Thus, the immersion

F W U�G3! G; F.m;K/D T.m/K

is an integral submanifold of D of maximal dimension. Assuming the open subset
U �M connected, we then know that there is a unique right coset SH, where S 2G,
such that F.U�G3/� SH. Thus, S�1T WU!G is a third order Lie frame field along
S�1 ı� such that S�1T.U/�H. The element S 2G can be computed from the value
of T at any point of U. In fact, if m0 2 U, then T.m0/

�1T W U! G is a third order
frame field along the Legendre immersion T.m0/

�1� W M! � whose value at m0

is the identity element of G. Hence, the right coset into which T.m0/
�1T W U! G

takes values must be H itself, and thus T.U/ � T.m0/H shows that we may take
SD T.m0/.

If QT W QU! G is another third order Lie frame field along � on a connected open
subset QU �M, and if U\ QU ¤ ;, then on U\ QU we have QT D TK, where

K W U\ QU! G3 � H;

which shows that for any point m 2U\ QU,

QT.m/D T.m/K 2 SH;

and thus QT. QU/ � SH, since this connected integral manifold must go into a unique
right coset of H. It follows that �.M/� �.SH/D S�.H/. ut

As a consequence of this Theorem, any connected Dupin immersion is Lie
congruent to (an open subset of) �.H/, which is a Legendre lift of a great circle
in S3, by Example 15.50. Moreover, any two connected Dupin immersions into
R3 are Lie equivalent, in the sense that their Legendre lifts are Lie congruent to
open submanifolds of �.H/. The third order frames give an explicit construction of
the Lie transformation that provides the equivalence. Theorem 12.51 classified the
connected Dupin immersions into Möbius space, up to Möbius transformation, as
the nonumbilic isoparametric immersions in the classical geometries. In particular, it
follows that the Legendre lifts of these isoparametric immersions are Lie congruent.
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Lie sphere geometry and the method of moving frames have been used suc-
cessfully to study Dupin hypersurfaces in spheres of higher dimensions. See
[38, 39, 41, 135].

The following examples illustrate the construction of the third order Lie frame
field along the Legendre lift of a circular torus in S3 and of a circular cylinder in
R3. A congruence sending the cylinder into an open dense subset of the torus is then
constructed from these frames.

Example 15.52 (Circular tori). Consider the circular torus of Example 5.12

x.r;s/ W R2! S3; x.r;s/.x;y/D r cos
x

r
�0C r sin

x

r
�1C scos

y

s
�2C ssin

y

s
�3;

where r D cos˛, s D sin˛, and 0 < ˛ < �=2 is fixed. Use the unit normal vector
field

e3 D scos
x

r
�0C ssin

x

r
�1� r cos

y

s
�2� r sin

y

s
�3

to define the Legendre lift

�.r;s/ W R2!�; �.r;s/ D ŒxC�4;e3C�5�:

The principal curvatures of xD x.r;s/ are cD cot˛ D r=s and aD cot.˛C�=2/D
� tan˛ D �s=r. The curvature sphere with principal curvature c is the oriented
tangent sphere with center rxC se3 and signed radius ˛, while the curvature sphere
with principal curvature a has center �sxC re3 and signed radius ˛C �=2. As
smooth maps into the space of oriented spheres Q, these are

ŒrxC se3C r�4C s�5�; Œ�sxC re3� s�4C r�5� W R2! Q:

If we define smooth null-vector fields into R4;2 by

T0 D cos
x

r
�0C sin

x

r
�1C r�4C s�5;

T1 D cos
y

s
�2C sin

y

s
�3C s�4� r�5;

then ŒT0� and ŒT1� are the curvature spheres. The derivatives

dT0 D .�sin
x

r
�0C cos

x

r
�1/
1

r
dx;

dT1 D .�sin
y

s
�2C cos

y

s
�3/
1

s
dy

show that both curvature sphere maps have rank one at every point of R2, and thus
� is a Dupin immersion. These derivatives prompt us to let

T2 D�sin
y

s
�2C cos

y

s
�3; T3 D�sin

x

r
�0C cos

x

r
�1;
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which is a pair of space-like orthonormal vectors in R4;2 both orthogonal to T0
and T1. With this choice it follows that

!30 D
1

r
dx; !00 D !10 D !20 D !40 D 0

!21 D
1

s
dy; !01 D !11 D !31 D !51 D 0:

Thus, no matter how these four vector fields are completed to a Lie frame field
T W R2! G by adding the null vector fields T4 and T5, it will be at least of second
order. Note, column i of the matrix T is the vector Ti expressed in the Lie frame
�0; : : : ;�5 defined in (15.20). Reasonable candidates for these last two null vector
fields are

T4 D 1

2
.�cos

y

s
�2� sin

y

s
�3C s�4� r�5/;

T5 D 1

2
.�cos

x

r
�0� sin

x

r
�1C r�4C s�5/:

It is easily verified that T D .T0; : : : ;T5/ is a smooth map from R2 into the Lie
sphere group G and that all conditions in (15.52) are satisfied, so T is a third order
Lie frame field along �. Relative to it the non-zero forms in (15.53) are

!03 D�
1

2
�3; !12 D�

1

2
�2;

as can be verified by computing hdT3;T5i and hdT2;T4i, respectively. To find the
columns of T, we must express each vector Ti in terms of the Lie frame �0; : : : ;�5,
so �0 D �0� �5

2
, �1 D �1� �4

2
, �2 D �2, �3 D �3, �4 D �0C �4

2
, �5 D �1C �4

2
. For

use in Example 15.54 below, we record here the value of T at the origin .0;0/ 2R2,

T.0;0/D

0
BBBBBBB@

1C r s 0 0 s=2 .r�1/=2
s �r 0 1 �r=2 s=2
0 1 0 0 �1=2 0

0 0 1 0 0 0

s=2 �r=2 0 �1=2 �r=4 s=4
.r�1/=2 s=2 0 0 s=4 .rC1/=4

1
CCCCCCCA
2 G:

By Theorem 15.51, the third order frame field T W R2! G must take values in the
right coset T.0;0/H. In addition, T is periodic, so descends to the appropriate torus,
which means that its image in G is compact, thus closed. It follows that

�.r;s/.R2/D �.T.R2//D �.T.0;0/H/D T.0;0/�.H/: (15.56)
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Example 15.53 (Circular cylinders). A circular cylinder of radius R > 0 in R3 is
parametrized by

x W R2! R3; x.x;y/D .Rcosx;Rsin x;y/;

with second order frame field .x; .e1;e2;e3// W R2 ! E.3/, where e1 D 1
R xx D

.�sinx;cosx;0/, e2 D xy D �3, and e3 D e1� e2 D .cosx;sinx;0/. Then f D f0 ı x W
R2!M is

f D Œı0CRcosx ı1CRsinx ı2C yı3C 1
2
.R2C y2/ı4�;

which is a conformal Dupin immersion with Möbius frame field

Y D F0 ı .x;e/D
0
@ 1 0 0 0 0

x e1 e2 e3 0
1
2
.R2C y2/ 0 y R 1

1
A ;

as explained in Subsection 12.5.2. The Legendre lift of f is

�cyl D ŒY0;Y3C�5� W R2!�;

where Yi is column i of Y. Then

Y0 D ı0CxC 1
2
.R2C y2/ı4; Y3 D e3C yı4;

in terms of the standard Möbius frame (12.15) of R4;1,

ı0 D 1

2
.�4C�0/; ıi D �i; iD 1;2;3; ı4 D �4� �0:

These are related to the standard Lie frame of R4;2 by

�0 D ı0; �1 D �5Cı1

2
; �2 D ı2; �3 D ı3; �4 D �5�ı1; �5 D ı4;

so

Y0 D �0CRcosx .�1� �4

2
/CRsinx �2C y�3C R2C y2

2
�5

Y3C�5 D .1C cosx/�1C sinx �2C 1� cosx

2
�4CR�5:

Differentiating Y0 and Y3, we see by inspection that the curvature spheres along
�cyl are



15.9 Frame reductions for Dupin immersions 533

S0 D Y0�R.Y3C�5/D �0�R�1C y�3� R

2
�4C y2�R2

2
�5;

S1 D Y3C�5 D .1C cosx/�1C sin x �2C 1� cosx

2
�4CR�5:

Taking the derivatives of S0 and S1, we are lead to let

S2 D�sinx �1C cosx �2C sinx

2
�4; S3 D �3C y�5;

an orthonormal pair of vectors, orthogonal to S0 and S1, so that

!20 D hdS0;S2i D 0D hdS1;S3i D !31 :

Differentiating S2 and S3, we can complete S0; : : : ;S3 to a third order frame field
along �cyl by choosing

S4 D 1� cosx

2
�1� sinx

2
�2C 1C cosx

4
�4C R

2
�5;

S5 D �5:

It is an elementary calculation to verify that S D .S0; : : : ;S5/ is a third order Lie
frame field along �cyl. For use in Example 15.54 below, we record here

S.0;0/D

0
BBBBBBB@

1 0 0 0 0 0

�R 2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

�R=2 0 0 0 1=2 0
�R2=2 R 0 0 R=2 1

1
CCCCCCCA
2 G:

By Theorem 15.51, the third order frame field S W R2! G must take values in the
right coset S.0;0/H. It follows that

�cyl.R2/D �.S.R2//� �.S.0;0/H/D S.0;0/�.H/: (15.57)

Example 15.54 (Lie congruence of circular cylinders and tori). Continue the nota-
tion of the preceding two examples. Let U D T.0;0/S.0;0/�1 2 G. By equations
(15.56) and (15.57), we have

U�cyl.R2/D �.US.R2//� �.US.0;0/H/D �.T.0;0/H/D �.r;s/.R2/:

That is, the Legendre lift of the circular cylinders are Lie congruent to an open
subset of the Legendre lift of any of the circular tori.
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Example 15.55. Continue the notation of the preceding three examples. Verify that

U�cyl.x;y/D

2
66666664

1C rC .r�1/y2=4 s
sC yC sy2=4/ �r

0 cosx
0 sinx

s=2� y=2C sy2=8 �r=2
.r�1/=2C .rC1/y2=8 s=2

3
77777775
;

whose spherical projection of Definition 15.14 is �ŒU�cyl�D

Œ
r

4
.4� y2/�0C ry�1C s

4
.4C y2/cosx �2C s

4
.4C y2/sinx �3C 4C y2

4
�4� 2M ;

and f �1C ı�ŒU�cyl�D

r
4� y2

4C y2
�0C r

4y

4C y2
�1C scosx �2C ssinx �3:

Verify this is contained in the circular .r;s/-torus, x.r;s/R2 � S3.

Problems

15.56. Prove that if r is not an integer multiple of � , then the vector field n defined
in (15.1) is normal and smooth.

15.57. It was observed in Section 12.6 that for any m 2 S3, the spheres SQr.m/ D
Sr.m/ if and only if QrD 2�a˙r, for some integer a. Moreover, Sr.m/D S��r.�m/,
for any r 2 R.

1. Prove that the orientation induced on Sr.m/ by Qr D 2�aC r is the same as that
induced by r.

2. Prove that the orientation induced on Sr.m/ by QrD 2�a�r is the opposite to that
induced by r.

3. Prove that the orientation induced by r on Sr.m/ is the opposite to that induced
by � � r on S��r.�m/. See Figure 15.6.

15.58. Prove that a point Œu� 2 Q for which u5 D 0 is a point sphere in S3, and for
which u4 D 0 is an oriented great sphere in S3.

15.59. Prove that if Œu� 2 Q, then there exists a line through Œu� contained in Q.
Hint: You may assume that uDmCa�4Cb�5, where a2Cb2 D 1 and m 2 S3. Let
vD n�b�4Ca�5, where n 2 TmS3 � R4 and jnj D 1.
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Fig. 15.6 Sr.m/ oriented by
r and S��r.�m/ oriented by
�� r.

m

−m

x x
r

π−r

n

−n

15.60. Using the notation of the proof of Proposition 15.9, verify that x 2 S3 and n
is a unit vector in TxS3.

15.61. Prove that Q contains no linear subspace of dimension greater than one.
Namely, prove that if Œu�, Œv�, and Œw� are three non-collinear points in Q, then for
some a;b;c 2 R, not all zero, the point ŒauCbvC cw� is not in Q.

15.62. The unit tangent bundle of S3 is

US3 D f.x;n/ 2 S3�S3 W x �nD 0g:

Prove that the map

F WUS3!�; F.x;n/D ŒxC�4;nC�5�

is a diffeomorphism.

15.63. Prove that the spherical projection � W �!M is a smooth map onto M .
Prove that this is a fiber bundle with standard fiber S2.

15.64. Prove that the matrix TC
t in (15.17) sends the point Œq� 2 Q in (15.6), which

corresponds to the oriented sphere Sr.m/ in S3 of center m and signed radius r 2R,
to the point ŒTC

t q� 2 Q that corresponds to SrCt.m/ in S3.

15.65. Prove that the matrix T0t in (15.18) sends the point Œq� 2 Q in (15.7), which
corresponds to the oriented sphere Sr.p/ in R3 with center p and signed radius r 2R,
to the point ŒT0t q� 2Q that corresponds to SrCt.p/ in R3.

15.66. Prove that the matrix T�
t in (15.19) sends the point Œq� 2 Q in (15.9), which

corresponds to the oriented sphere Sr.m/ in H3 with center m and signed radius
r 2 R, to the point ŒT�

t q� 2Q that corresponds to SrCt.m/ in H3.

15.67. Prove that there is no Ad.G0/-invariant complementary subspace m to
g0 in g.

15.68. Prove that any T 2G acts on � as a contact transformation.
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15.69. Prove that if x W M2! S3 is an immersion with unit normal vector field n
along x, then

� WM! US3; �.m/D .x.m/;n.m//

is a Legendre immersion for the contact structure defined by ˇ in Example 15.26.

15.70. Prove that through any point of US3 there exists a Legendre immersion of ˇ
of dimension 2, but none of higher dimension.

15.71 (Legendre lift of surfaces in S3). Let x W M! S3 be an immersion of an
oriented surface, with unit normal vector field n WM! S3. Then SD n WM! S3;1 is
a smooth tangent sphere map along the conformal immersion f D fC ı x WM!M .
Prove that the Legendre lift of x determined by n is the same as the Legendre lift of
f determined by S for the constructions of Corollary 15.33.

15.72 (Legendre lift of immersions into R3). If x WM2!R3 is an immersion with
unit normal vector field n WM! S2 � R3, then f D f0 ı x WM!M is a conformal
immersion with smooth tangent sphere map SD�.x �n/�0CnC.x �n/�4 WM! S3;1.
Prove that the Legendre lift of x determined by n is the same as the Legendre lift of
f determined by S, by the constructions of Corollary 15.33.

15.73 (Legendre lift of surfaces in H3). Let x WM! H3 � R3;1 be an immersed
surface in hyperbolic space, with unit normal vector field n WM! R3;1. Then SD
n WM! S3;1 is a smooth tangent sphere map along the conformal immersion f� ıx W
M!M . Prove that the Legendre lift of the conformal immersion f� ıx WM!M ,
with smooth tangent sphere map SD n WM! S3;1, is the same as the Legendre lift
of x determined by n by the constructions of Corollary 15.33.

15.74. Let x W M ! S3 be an immersion with unit normal vector field n and
Legendre lift �D ŒxC�4;nC�5� WM!� given in Corollary 15.33. For r 2 R, let
TC

r 2 SO.4;2/ be the Lie parallel transformation (15.17). Prove that the spherical
projection of TC

r ı� W M! � is fC ı Qx, where Qx D cosr x� sinr n is the parallel
transformation of x by �r.

15.75. Let x W M ! H3 be an immersion with unit normal vector field n and
Legendre lift � W M! � given by Corollary 15.33. For r 2 R, let T�

r 2 SO.4;2/
be the Lie parallel transformation (15.19). Prove that the spherical projection of
T�

r ı� WM!� is f� ı Qx, where QxD coshr x� sinhr n is the parallel transformation
of x by �r.

15.76. Prove that the action induced on RP1 by the standard linear action of
GL.2;R/ on R2,

GL.2;R/�RP1! RP1; .c;

�
r
s

�
/ 7! c

�
r
s

�
D Œc

�
r
s

�
�;
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is three point transitive, which means that any three points of RP1 can be sent to
any three points by some c 2 GL.2;R/, which is unique up to scalar multiple. In
addition, prove that if p W U! RP1 is a smooth map on an open set U � M, then
there exists a smooth map c WU!GL.2;R/ such that c.m/p.m/D tŒ1;0�, for every
m 2 U.

15.77. Prove that if � W M! � is the Legendre lift of an immersion f W M!M
with tangent sphere map S WM! S3;1, then m 2 M is an umbilic point of � if and
only if it is an umbilic point of f .

15.78. Prove that if S0;S1 WM!Q are the distinct curvature spheres of a Legendre
immersion � WM!�, then � is of Type

A) if and only if S0 and S1 are both immersions;
B) if and only if S0 is an immersion and S1 has rank one at every point of M;
C) if and only if S1 is an immersion and S0 has rank one at every point of M;
D) if and only if S0 and S1 both have rank one at every point of M.

15.79. Prove that if � W M! � is the Legendre lift of an immersion f W M!M
with tangent sphere map S WM! S3;1, then � is canal if and only if f is canal, and
� is Dupin if and only if f is Dupin.

15.80. Prove that any isoparametric immersion (6.44) into H3 is Lie sphere
equivalent to an open subset of any circular torus in S3.

15.81. Prove that any two circular tori x.r;s/ W R2! S3 are Lie sphere equivalent;
that is, their Legendre lifts are Lie sphere congruent.

15.82. Let �D T�
t ŒS0;S1� WR2!�, where S0;S1 WR2!R4;2 in (15.55) define the

Legendre lift of a great circle in S3 and T�
t 2 SO.4;2/ is defined in (15.19), for any

positive t 2 R. Prove that stereographic projection of the spherical projection,

S ı f �1C ı� ıT�
t ŒS0;S1�;

is the surface obtained by rotating the circle in the yD 0 plane, .x� 1
sinh t /

2C z2 D
coth2 t, about the �3-axis. See Figure 15.5.

15.83. Classify the canal immersions up to Lie sphere congruence.



Solutions to Select Problems

Problems of Chapter 2

2.29 The orbits of K are circles centered at the origin of D. The orbits of A are ultra
circles passing through˙1 as t!˙1. The orbits of N are the horocircles passing
through 1 as t!˙1.

2.30 H2 with the metric I D 1
y2
.dx2 C dy2/ is the hyperbolic plane. The group

SL.2;R/ acts on it by isometries. The orbits of K are the hyperbolic circles whose
hyperbolic center is at the point i. The orbits of A are the Euclidean rays issuing
from the origin 0. The orbits of N are the Euclidean horizontal lines.

Problems of Chapter 3

3.14 If p < 0, then there are no radial points. If p > 0, then the radial points occur
where t2 D 1=p. � D�2p=.1�pt2/3.

3.15 Use the centro-affine parameter s. Then,

1. x.s/D �1C s�2, when � D 0,

2. x.s/D �1 cosh.
p
� s/C�2

sinh.
p
� s/p
�

, when � > 0,

3. x.s/D �1 cos.
p�� s/C�2

sin.
p�� s/p�� , when � < 0.
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Problems of Chapter 4

4.62 In the first eight cases

Q!1 D ı!1; Q!2 D �ı!2; Q!1^ Q!2 D �!1^!2;
QaD 
a; QcD 
c; QpD �ıp; QqD ıq:

(15.58)

In the second eight cases

Q!1 D ı!2; Q!2 D �ı!1; Q!1^ Q!2 D��!1^!2;
QaD 
c; QcD 
a; Qp���ıq; QqD�ıp:

(15.59)

4.65 The frame field defined along x by

e1 D T; e2 D��3; e3 D ND e1� e2

is second order, with dual coframe field !1 D ds, !2 D dt, and principal curvatures
aD � and cD 0.

4.68 A second order frame field .x;e/ has

e1 D 1p
cosh2 s

t.sinhscos t;sinh ssin t;coshs/;

e2 D t.�sin t;cos t;0/;

e3 D e1� e2 D 1p
cosh2s

t.�coshscos t;�coshssin t;sinh s/:

The principal curvatures are

aD� 1

.cosh2s/3=2
; cD 1p

cosh2s
:

4.73 Prove that aD c for some u if and only if the polynomial p.u/D .1Cu2/4C
10L2u2�2L2 is zero at u. Show that p.u/ is increasing on u
 0, has its minimum at
uD 0 and goes to C1 as u!C1.

4.85 Let .x;e/ be a local first order frame field along x. Prove that:

d QxD dx
jxj2 �

2x � dx
jxj4 x;

QI D d Qx � d QxD 1

jxj4 I;
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that .Qx; Qe/ is a first order frame field along Qx, where

Qe1 D ei� 2x � ei

jxj2 x; Qe3 D e3� 2x � e3
jxj2 x;

for iD 1;2, and

eII D 1

jxj2 IIC 2x � e3
jxj4 I:

Problems of Chapter 5

5.32 Consider the parametrization of a dense open subset of S3

x W .0;2�/� .0;�/� .0;�/! S3; x.�;'; /D

0
BB@

cos� sin' sin 
sin� sin' sin 

cos' sin 
cos 

1
CCA :

Calculate dx � dx to prove x�dV D sin' sin2  d� ^d'^d .

5.33 Solution 1). There exists a constant vector v 2 R4 and a neighborhood V � U
of m such that the vectors x;xx;xy;v are linearly independent. Apply Gram-Schmidt
to these vectors. This construction produces a smooth unit normal vector field e3
along x on V .

Solution 2). At each point of U, the orthogonal complement x? is isomorphic
to R3 with the orientation given by the interior product �x.dx1 ^ dx2 ^ dx3 ^ dx4/,
where x1; : : : ;x4 are the standard coordinate functions on R4. Thus, there is a cross
product defined on x? and xx�xy is in x? and normal to xx and xy, so it is a nonzero
normal vector to x at each point of U. Use Gram-Schmidt on xx and xy to construct
a smooth first order frame field on all of U.

5.37 See Figure 5.3 and prove that

m� cosr x
sinr

D�
��m� cos.� � r/ x

sin.� � r/

�
:

5.38 The inclusion� follows from the definition of tangent space, and then equality
follows since both sides are 2-dimensional. Prove the opposite inclusion directly by
showing that if z � x0D 0D z �m, then the curve

x.t/DmcosrC .x0�mcosr/cos.
jzjt
sinr

/C z
jzj sin.

jzjt
sinr

/sin r

lies in Sr.m/ and satisfies x.0/D x0 and Px.0/D z.
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5.40 If Qn D �n, then principal curvatures change sign, so if Qa D �a, then Qr D
cot�1.�a/D � � r and thus the center is

QmD cos Qr x.m/C sin Qr QnD�.cosr x.m/C sinr n/D�m

and SQr. Qm/D S��r.�m/D Sr.m/.

5.46 Find a second order frame field along x to show that the principal curvatures
are

aD �.s/cos t

cosr��.s/sinr cos t
; cD� 1

sinr

5.48 The principal curvatures Qa and Qc of Qx relative to its unit normal vector field Qe3
are

QaD acosrC sin r

cosr�asin r
; QcD ccosrC sin r

cosr� csinr
:

5.49 Use Problem 4.69.

5.50 Use Ax �pD x � tAp.

5.54

S ı y W J�R! R3; S ı y.s; t/D e�t� .s/;

is the cone in R3 over the same curve in S2 used to define the cylinder in S3.

5.52 Start with the default stereographic projection.

5.53 Ad.AB/D Ad.A/ıAd.B/, for any A;B 2 SU.2/ and �h.z/D Ad.z;z�/I .

Problems of Chapter 6

6.35 Do the case xD �4 first, then use the transitivity of the action of OC.3;1/.

6.38 Using the transitivity of SOC.3;1/ on H3, you may assume p D �4. Then
qD q4�4Cq and if you assume that q ¤ 0, then vD q

jqj is a unit vector in T�4H
3.

If r D cosh�1 q4 > 0, then q D coshr �4C sinhr v. Consider the geodesic �.s/ D
coshs �4C sinhs v.

6.45 If jaj ¤ 1, complete the square to show that

Q.p/D fy 2 R3;1 W .a2�1/.y4C a2

1�a2
/2C .y1/2C .y2/2 D 1

a2�1g;
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which is an ellipsoid if jaj> 1, and a hyperboloid if jaj< 1. If jaj D 1, then

Q.p/D fy 2R3;1 W y4 D 1C 1
2
..y1/2C .y2/2/g;

which is a paraboloid.

6.47 First do the planar case of x0 in the Poincaré disk, B2, and v0 in its boundary
circle @B2 D S1. Then explain why this case is sufficient.

6.48 If QvD�v, then the principal curvatures change sign, so apply Remark 6.10.

6.49 This is a special case of Proposition 3.11. Equation (6.44) is the solution
eD .e1;e2;e3;x/ WR2! SOC.3;1/ of

e�1deD

0
BB@
0 0 �a ds ds
0 0 � 1a dt dt

a ds 1
a dt 0 0

ds dt 0 0

1
CCA

satisfying the initial condition

e.0;0/D

0
BB@
0 0 �1=b a=b
0 1 0 0

1 0 0 0

0 0 �a=b 1=b

1
CCA :

Problems of Chapter 7

7.48 eu D f and hD ..RgPf � PgRf /=w2� Pg=f /=.2w/, where wD
q
Pf 2C Pg2.

Problems of Chapter 8

8.64 If complex numbers a and b satisfy a2Cb2D 1, then there exists a unique � 2C
such that aD cos� and bD sin�. Also recall that cos iyD coshy and sin iyD isinhy,
for any number y.

8.69 Its curvature is the constant kD 0.

8.70 The curvature is constant kD�1=2. Its element of pseudoarc is ˙idw, where
the sign depends on the choice of square root of f .

8.71 Its curvature is kD 3z2

z4�1 . Its element of pseudoarc is
q

2
z4�1dz.



544 Solutions to Select Problems

8.72 What happens when you scale the minimal curve of the catenoid by a nonzero
complex constant?

Problems of Chapter 9

9.35 If � ! S2 is the profile curve with arclength parameter x and curvature �.x/,
if M D J�R, and if x WM! R3 is x.x;y/D e�y� .x/ is our cone, then zD xC iy is
a principal complex coordinate in M relative to which the conformal factor is e�y,
and the Hopf invariant h and mean curvature H of x satisfy

hD �.x/ey

2
DH:

9.36 The existence of a principal complex chart implies the existence of a second
order frame field along x. Then refer to Example 4.11.

9.37 If .x;e/ W U ! E.3/ is a second order frame field, then differentiating !31 �
a!1 D 0 and !32 � c!2 D 0 and using Definition 4.36 of Dupin: da D a2!2 and
dcD c1!1, gives

˛ D q!1�p!2 D�d.a� c/

a� c
:

9.38 For Enneper’s surface, Ox parametrizes a sphere not centered at the origin.
Compare these examples with Corollary 9.26.

9.39 If the profile curve is embedded, so also is the curve .1=f .s/2;0;g.s//. Apply
Green’s Theorem to the region this curve encloses to prove that (9.16) does not hold.
See [86, p 201].

Problems of Chapter 10

10.51 Use the fact that a holomorphic function with constant modulus on a
connected open set must be constant.

10.54 Note that fAn.x/vn�vn W x> 0g is the circle centered at �vn of radius jvnj D
1=.1Cn2/. Check that �n satisfies the initial conditions

�n.1/D
�
0

0

�
; P�n.1/D

�
1

0

�
; so Nn.1/D

�
0

1

�
:

T must satisfy the Euler equation

x2 RTC x PTCn2TD 0:
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Problems of Chapter 11

11.30

1. The entries of �.A/ are quadratic functions of the real and imaginary parts of the
entries of A.

2. If aD ei� , then

�.A/D

0
BB@

cos2� �sin2� 0 0
sin2� cos2� 0 0

0 0 1 0

0 0 0 1

1
CCA :

3.

�.A/D

0
BB@
�cos2� sin2� 0 0

sin2� cos2� 0 0

0 0 �1 0
0 0 0 1

1
CCA :

11.34 Fix a point m2 QM and prove that dAm W Tm QM! Tm QM is the identity map. Then
dAm W TmH.3/! TmH.3/must be the identity map, since A preserves orientation of
H.3/. Now use the exponential map of the Riemannian manifold H.3/ at m to prove
that if an isometry of H.3/ fixes a point m and if its derivative at m is the identity
map, then the isometry is the identity map.

11.42 Let H be the positive definite square root of the positive definite, hermitian
matrix BB�, and then show K D H�1B is unitary.

11.45

GD 1

2

��e�w=2 �.4Cw/e�w=2

ew=2 wew=2

�
:

Then

QGı gn.w/D QG.w/Dn;

where the monodromy matrix

DD�
�
1 2�i
0 1

�
:
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Problems of Chapter 12

12.54 T.1�r2/m ı hr2 ıIm.

12.55 Im D Tm ıI ıT�m.

12.59 Prove that the vector v D 2u4ı0 �P3
1 uiıi C 1

2
u0ı4 is in L C and that

hv;Y0i D �r, for some r > 0. Let Y4 D 1
r v and then show that the orthogonal

complement of the span of Y0;Y4 is a 3-dimensional subspace on which the inner
product is positive definite, so there exists an orthonormal basis of it.

12.62 Prove there exists a frame field Y W U �M!MRobC along f , then prove the
existence of a smooth map K.r;A;y/ WU!G0, with r> 0, such that QY D YK is first
order. The action on the Grassmannian

RC�SO.3/�G2.R3/! G2.R3/D R3�2�=GL.2;R/; .r;A/ŒP�D ŒrAP�

is transitive.

12.63 In fact, QwD QY�1d QY D K�1!KCK�1dK gives

Q!m0Cm1 D .K.r;A;y/�1!m0Cm1K.r;A;y//m0Cm1 ; (15.60)

which calculated gives

� Q!10
Q!20

�
D 1

r

�
cos t sin t
�sin t cos t

��
!10
!20

�
;

. Q!31 ; Q!32/D .!31 � y3!10 ;!
3
2 � y3!20/

�
cos t �sin t
sin t cos t

�
;

(15.61)

which imply

Q!10 C i Q!20 D
1

r
e�it.!10 C i!20/;

Q!31 � i Q!32 D eit.!31 � i!32/� y3eit.!10 � i!20/

D re2ith. Q!10 C i Q!20/C r.H� y3/. Q!10 � i Q!20/;
from which (12.42) follows.

12.64 If QY D YK is another first order frame field, then Qh D re2ith by (12.42) and
Q!10 C i Q!20 D 1

r e�it.!10 C i!20/ by (15.61). It follows that ˝ QY D˝Y , since !10^!20 D
i
2
.!10 C i!20/^.!10 � i!20/.

12.71 Use the standard orthonormal basis of R4;1.
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12.74 If e W R2 ! SO.4/ is the second order frame field along x constructed in
Example 5.12, then Y D FC ı e W R2!MRob is first order along f , by Exercise 52,
and QY D YK.rs;ei�=2; t.0;0;H// is central, where H D r2�s2

rs .

12.75 Y D F0 ı .x;e/ is first order along f , by Exercise 53, and

QY D YK.2;ei�=2; t.0;0;�1=2//

is central.

12.76 The frame field

eD .e1;e2;e3;x/ W R2! SOC.3;1/;

where e1 D xx and e2 D xy, is second order along x and

Y D F� ı e W R2!MRobC

is first order by Exercise 55, and QY D YK.�1=h;ei�=2; t.0;0;H// is central, where
hD a�a�1 < 0 and H D aCa�1.

12.77 Find a central frame field along f0 ı xn.

Problems of Chapter 13

13.42 Prove that QY D YK.eu; I3;0/ is a time oriented first order frame relative to z
and that Q!31 � i Q!32 D !31 � i!32 .

13.43 Prove that the frame

QY D YK.1;A;0/;

where

AD
0
@cosv �sinv 0

sinv cosv 0

0 0 1

1
A W U! SO.3/;

is a time oriented frame field satisfying the conditions of Problem 13.42 and that
Q!31 � i Q!32 D eiv.!31 � i!32/.

13.45 kD 1
2R2

and bD 1
4R4

relative to z are constant.

13.46 kD tan˛ by (13.30) and bD 2C�2
4

, where � is the curvature of � .
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13.47 OkD 1, and ObD�b=k2 D r2� s2 D cos2˛.

13.49 Use Exercise 56.

13.53 Relative to the complex coordinate zD xC iy for xn WRC�R!R3, we have
Hopf invariant hD n

2x , mean curvature H D n
2x , and conformal factor eu D 1. Then

the conformal invariants of f0 ı x are k D n
2x and bD k2 D n2

4x2
, by Theorem 13.22.

Now calculate the Möbius invariants using Proposition 13.37.

Problems of Chapter 14

14.38 Write �.log.k//� s
k2
C k2 D �C=k2, where C D sC .kx/

2C .ky/
2� k.k3C

�k/, and let F D�. kxy

k /C2.k2/xy. Prove that k3F D kxCyC kyCx� kCxy.

14.39

kD 1

2
.�C i/; bD �

4
.�C i/:

QD 1

16
.� R�C 1

4
.�4�1/� P�2C i. R�C �

2
.�2C1///;

and

W D 1

8
. R�C �

2
.�2C1//:

p1�p3 D�
4. R�C 1

2
�.�2C1//

.�2C1/3=2 ;

p1Cp3�2ip2 D�
4.�2�1� i2�/.� R�C 1

4
.�4�1/� P�2C i. R�C �

2
.�2C1///

.�2C1/3

q1� iq2 D �P�.3�C
p
�2C1C i.1��.2p�2C1C1///p

2.
p
�2C1C�/1=2.�2C1/7=4 :

Problems of Chapter 15

15.70 Suppose � W M3 ! US3 is a Legendre immersion of dimension 3. For
any point p 2 M, there exists a coframe field �1; : : : �5 on an open subset of US3

containing �.p/ such that �5 D ˇ and

��.�1^�2^�3/p ¤ 0:
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Calculate dˇ in terms of this coframe field and then use the fact that ��dˇ D 0
to get enough information on the coefficients of dˇ to contradict the hypothesis
.ˇ^dˇ^dˇ/�.p/ D 0.

15.73 f� ı xD Œ�0Cx� in (12.62).

15.76 Given distinct points

rD
�

r1

r2

�
; sD

�
s1

s2

�
; tD

�
t1

t2

�
2RP1;

it suffices to show there exists c 2GL.2;R/, unique up to scalar multiple, such that
cŒ�1�D r, cŒ�2�D s, and cŒ�1C�2�D t, where �1;�2 is the standard basis of R2. The
first two equations imply that

cD
�

xr1 ys1

xr2 ys2

�
;

for some non-zero real numbers x and y. Then the third equation implies that

�
r1 s1

r2 s2

��
x
y

�
D z

�
t1

t2

�
;

for some non-zero real number z. Up to a non-zero factor the solution is

�
x
y

�
D
�

s2t1� s1t2

r1t2� r2t1

�
;

which determines c up to a non-zero multiple.

15.78 If T W U ! G is a first order Lie frame field along �, then S0 D ŒT0� and
S1 D ŒT1� on U. Show that dT0 DP5

0 !
i
0Ti has rank two modulo T0 if and only if

!10 ^�3 ¤ 0.



References

1. Ahlfors, L.V.: Complex analysis. An Introduction to the Theory of Analytic Functions of One
Complex Variable. McGraw-Hill, New York/Toronto/London (1953)

2. Barbosa, J.L.M., Colares, A.G.: Minimal Surfaces in R3. Lecture Notes in Mathematics,
vol. 1195. Springer, Berlin (1986). Translated from the Portuguese

3. Bernstein, H.: Non-special, non-canal isothermic tori with spherical lines of
curvature. Trans. Am. Math. Soc. 353(6), 2245–2274 (electronic) (2001).
doi:10.1090/S0002-9947-00-02691-X. http://www.dx.doi.org/10.1090/S0002-9947-00-
02691-X

4. Bernstein, S.: Sur un théorèm de géométrie et ses applications aux équations aux dérivées
partielles du type elliptique. Commun. de la Soc. Math. de Kharkov 2ème Sér. 15, 38–45
(1915–1917)

5. Bers, L.: Riemann Surfaces. Mimeographed Lecture Notes, New York University (1957–
1958). Notes by Richard Pollack and James Radlow

6. Bianchi, L.: Complementi alle ricerche sulle superficie isoterme. Ann. Mat. Pura Appl. 12,
19–54 (1905)

7. Bianchi, L.: Ricerche sulle superficie isoterme e sulla deformazione delle quadriche. Ann.
Mat. Pura Appl. 11, 93–157 (1905)

8. Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen
von Einsteins Relativitätstheorie. III: Differentialgeometrie der Kreise und Kugeln. In:
Grundlehren der mathematischen Wissenschaften, vol. 29. Springer, Berlin (1929)

9. Bobenko, A., Eitner, U.: Bonnet surfaces and Painlevé equations. J. Reine Angew. Math. 499,
47–79 (1998). doi:10.1515/crll.1998.061. http://www.dx.doi.org/10.1515/crll.1998.061

10. Bobenko, A.I., Pavlyukevich, T.V., Springborn, B.A.: Hyperbolic constant mean curvature
one surfaces: spinor representation and trinoids in hypergeometric functions. Math. Z. 245(1),
63–91 (2003). doi:10.1007/s00209-003-0511-5. http://www.dx.doi.org/10.1007/s00209-003-
0511-5

11. Bohle, C.: Constant mean curvature tori as stationary solutions to the Davey-Stewartson
equation. Math. Z. 271(1–2), 489–498 (2012). doi:10.1007/s00209-011-0873-z. http://www.
dx.doi.org/10.1007/s00209-011-0873-z

12. Bohle, C., Peters, G.P.: Bryant surfaces with smooth ends. Commun. Anal. Geom. 17(4),
587–619 (2009)

13. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent.
Math. 7, 243–268 (1969)

14. Bonnet, P.O.: Mémoire sur la théorie des surfaces applicables sur une surface donnée,
première partie. J. l’Ecole Polytech. 41, 209–230 (1866)

© Springer International Publishing Switzerland 2016
G.R. Jensen et al., Surfaces in Classical Geometries, Universitext,
DOI 10.1007/978-3-319-27076-0

551

http://www.dx.doi.org/10.1090/S0002-9947-00-02691-X
http://www.dx.doi.org/10.1090/S0002-9947-00-02691-X
http://www.dx.doi.org/10.1090/S0002-9947-00-02691-X
http://www.dx.doi.org/10.1515/crll.1998.061
http://www.dx.doi.org/10.1515/crll.1998.061
http://www.dx.doi.org/10.1007/s00209-003-0511-5
http://www.dx.doi.org/10.1007/s00209-003-0511-5
http://www.dx.doi.org/10.1007/s00209-003-0511-5
http://www.dx.doi.org/10.1007/s00209-011-0873-z
http://www.dx.doi.org/10.1007/s00209-011-0873-z
http://www.dx.doi.org/10.1007/s00209-011-0873-z


552 References

15. Bonnet, P.O.: Mémoire sur la théorie des surfaces applicables sur une surface donnée,
deuxième partie. J. l’Ecole Polytech. 42, 1–151 (1867)

16. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd
edn. Academic, New York (1986)

17. Bowman, F.: Introduction to Elliptic Functions with Applications. Dover, New York (1961)
18. Boy, W.: Über die Curvatura integra und die Topologie geschlossener Flächen. Math.

Ann. 57(2), 151–184 (1903). doi:10.1007/BF01444342. http://www.dx.doi.org/10.1007/
BF01444342

19. Brück, M., Du, X., Park, J., Terng, C.L.: The submanifold geometries associated to Grass-
mannian systems. Mem. Am. Math. Soc. 155(735), viii+95 (2002). doi:10.1090/memo/0735.
http://www.dx.doi.org.libproxy.wustl.edu/10.1090/memo/0735

20. Bryant, R.L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–54 (1984)
21. Bryant, R.L.: Surfaces of mean curvature one in hyperbolic space. Astérisque 154–155, 12,

321–347, 353 (1988) (1987). Théorie des variétés minimales et applications (Palaiseau, 1983–
1984)

22. Bryant, R.L., Griffiths, P.: Reduction for constrained variational problems and
R
1
2
k2 ds.

Am. J. Math. 108(3), 525–570 (1986). doi:10.2307/2374654. http://www.dx.doi.org/10.2307/
2374654

23. Bryant, R.L., Kusner, R.: Parametrization of Boy’s surface that makes it a Willmore
immersion. (2004). https://en.wikipedia.org/wiki/Robert_Bryant_(mathematician)

24. Burstall, F.E.: Isothermic surfaces: conformal geometry, Clifford algebras and integrable
systems. In: Integrable Systems, Geometry, and Topology. AMS/IP Studies in Advanced
Mathematics, vol. 36, pp. 1–82. American Mathematical Society, Providence (2006)

25. Burstall, F.E., Hertrich-Jeromin, U., Pedit, F., Pinkall, U.: Curved flats and isothermic
surfaces. Math. Z. 225(2), 199–209 (1997). doi:10.1007/PL00004308. http://www.dx.doi.org.
libproxy.wustl.edu/10.1007/PL00004308

26. Burstall, F.E., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces. In:
Differential Geometry and Integrable Systems (Tokyo, 2000). Contemporary Mathematics,
vol. 308, pp. 39–61. American Mathematical Society, Providence (2002)

27. Calapso, P.: Sulle superficie a linee di curvatura isoterme. Rend. Circ. Mat. Palermo 17, 273–
286 (1903)

28. Calapso, P.: Sulle trnsformazioni delle superficie isoterme. Ann. Mat. Pura Appl. 24, 11–48
(1915)

29. Calini, A., Ivey, T.: Bäcklund transformations and knots of constant torsion. J. Knot Theory
Ramif. 7(6), 719–746 (1998). doi:10.1142/S0218216598000383. http://www.dx.doi.org/10.
1142/S0218216598000383

30. do Carmo, M.P.: O método do referencial móvel. Instituto de Matemática Pura e Aplicada,
Rio de Janeiro (1976)

31. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser,
Boston (1992). Translated from the second Portuguese edition by Francis Flaherty

32. Cartan, E.: La Théorie des groupes finis et continus et la géométrie différentielle traitées par
la méthode du repère mobile. Gauthier-Villars, Paris (1937)

33. Cartan, E.: Sur les couples de surfaces applicables avec conservation des courbures princi-
pales. Bull. Sci. Math. 66, 55–85 (1942). Oeuvres Complète, Partie III, vol. 2, pp. 1591–1620

34. Catalan, E.C.: Sur les surfaces réglés dont l’aire est un minimum. J. Math. Pure Appl. 7,
203–211 (1842)

35. Cayley, A.: On the surfaces divisible into squares by their curves of curvature. Proc. Lond.
Math. Soc. IV, 8–9 (1871)

36. Cecil, T.E.: Lie Sphere Geometry: With Applications to Submanifolds. Universitext, 2nd edn.
Springer, New York (2008).

37. Cecil, T.E., Chern, S.S.: Tautness and Lie sphere geometry. Math. Ann. 278(1–4), 381–399
(1987). doi:10.1007/BF01458076. http://www.dx.doi.org/10.1007/BF01458076

38. Cecil, T.E., Jensen, G.R.: Dupin hypersurfaces with three principal curvatures. Invent. Math.
132(1), 121–178 (1998)

http://www.dx.doi.org/10.1007/BF01444342
http://www.dx.doi.org/10.1007/BF01444342
http://www.dx.doi.org/10.1007/BF01444342
http://www.dx.doi.org.libproxy.wustl.edu/10.1090/memo/0735
http://www.dx.doi.org.libproxy.wustl.edu/10.1090/memo/0735
http://www.dx.doi.org/10.2307/2374654
http://www.dx.doi.org/10.2307/2374654
http://www.dx.doi.org/10.2307/2374654
https://en.wikipedia.org/wiki/Robert_Bryant_(mathematician)
http://www.dx.doi.org.libproxy.wustl.edu/10.1007/PL00004308
http://www.dx.doi.org.libproxy.wustl.edu/10.1007/PL00004308
http://www.dx.doi.org.libproxy.wustl.edu/10.1007/PL00004308
http://www.dx.doi.org/10.1142/S0218216598000383
http://www.dx.doi.org/10.1142/S0218216598000383
http://www.dx.doi.org/10.1142/S0218216598000383
http://www.dx.doi.org/10.1007/BF01458076
http://www.dx.doi.org/10.1007/BF01458076


References 553

39. Cecil, T.E., Jensen, G.R.: Dupin hypersurfaces with four principal curvatures. Geom. Dedicata
79(1), 1–49 (2000)

40. Cecil, T.E., Ryan, P.J.: Tight and Taut Immersions of Manifolds. Research Notes in Mathe-
matics, vol. 107. Pitman (Advanced Publishing Program), Boston (1985)

41. Cecil, T.E., Chi, Q.S., Jensen, G.R.: Dupin hypersurfaces with four principal curvatures. II.
Geom. Dedicata 128, 55–95 (2007). doi:10.1007/s10711-007-9183-3. http://dx.doi.org/10.
1007/s10711-007-9183-3

42. Chern, S.S.: An elementary proof of the existence of isothermal parameters on a surface. Proc.
Am. Math. Soc. 6, 771–782 (1955)

43. Chern, S.S.: On the minimal immersions of the two-sphere in a space of constant curvature. In:
Problems in Analysis (Lectures at the Symposium in Honor of Salomon Bochner. Princeton
University, Princeton, NJ (1969)), pp. 27–40. Princeton University Press, Princeton (1970)

44. Chern, S.S.: Deformation of surfaces preserving principal curvatures. In: Chavel, I., Farkas,
H. (eds.) Differential Geometry and Complex Analysis: A Volume Dedicated to the Memory
of Harry Ernest Rauch, pp. 155–163. Springer, Berlin (1985)

45. Chern, S.S.: Moving frames. Astérisque Numero Hors Serie, 67–77 (1985). The Mathematical
Heritage of Élie Cartan (Lyon, 1984)

46. Chern, S.S.: Lecture Notes on Differential Geometry. Tech. Rep. UH/MD-72, University of
Houston, Houston (1990)

47. Chern, S.S.: Surface theory with Darboux and Bianchi. In: Miscellanea Mathematica, pp. 59–
69. Springer, Berlin (1991)

48. Chern, S.S.: Complex Manifolds Without Potential Theory (With an Appendix on the
Geometry of Characteristic Classes). Universitext, 2nd edn. Springer, New York (1995).

49. Chern, S.S., Tenenblat, K.: Pseudospherical surfaces and evolution equations. Stud. Appl.
Math. 74(1), 55–83 (1986)

50. Christoffel, E.B.: Über einige allgemeine Eigenschaften der Minimumsflächen. J. Reine
Angew. Math. 67, 218–228 (1867)
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SymbolsQ̇ Š S3;1, 419
R4;2, 496
S3;1 � R4;1, 418
SL.2;R/, 35
SU.2/, 138
su.2/, 139

A
abelian differential, 198, 378
action

E.3;C/ on C3, 253
E.3/ on R3, 48
R� � SO.3/ on I , 434
R� on N, 162
GL.2;R/ on RP1, 516
MRob on M , 400
O.2/� O.1/ on S , 18
O.3/ on G.2;3/, 62
O.3/ on S2, 12
O.4/ on S3, 113
O.n/ on Grassmannian, 26
O

C

.3;1/ on S2
1

, 163
O

C

.3;1/ on H3, 157
SL.2;C/ on N.3/=R�, 353
SL.2;C/ on H.3/, 350
SL.2;R/ on PR2, 35
SL.2;R/ on CC, 14
SO.R4;1/ on P.R4;1/, 395
SO.R4;1/ on S3;1, 419
adjoint, 9

SL.2;C/ on Herm, 348
SU.2/ on su.2/, 139
Lie sphere group, 508

effective, 9
free, 9
of a Lie group, 9
orbit, 15
transitive, 9

adapted coframes, 196
adapted frame field to z

space forms, 209
spin frame, 320

adjoint representation Ad, 8
admissible variation, 224

immersion into M , 457
affine structure, 282, 471

torus C=� , 282
almost complex structure, 190

integrable, 191
analytic type, 458
arclength parameter, 83
area form

conformal, 406
on surface in R3, 58

area functional, 221
argument function, 241
associate

circular cylinder, 345
associate immersion

of Clifford torus, 467
to constant H immersion, 214, 302
to Willmore surface in M , 460

associate isothermic immersions,
474

asymptotically parallel, 162
geodesics in B3, 175

atlas
complex, 190
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auxiliary polynomial
equal roots, 388

B
B-immersions of Cartan, 344
Bäcklund transformation, 88
Bernstein’s Theorem, 249

Osserman’s generalization, 249
bidegree

1-forms, 197
biholomorphic map, 199
bilinear form

symmetric on C3, 253
Bonnet

cones, 308
Bonnet mates, 311
classification, 309

congruence theorem, 70
complex case, 213

cylinders, 304
Bonnet mates, 311
classification, 306
profile curve, 305

existence theorem, 72
complex case, 213

parallel transformation theorem, 93
proper

M never compact, 342
dH D 0 isolated, 342
B-immersions, 344
Cartan holomorphic function, 340
Cartan’s classification, 344
Cartan’s criterion, 334
Chern’s Theorem, 343
isothermic, 343

proper is isothermic, 278
Bonnet immersion

mate, pair, 298
proper, 298

Bonnet pair
generated by cone, 331
generated by cylinder, 329
generated by KPP, 327

Bonnet Problem, 298
Bonnet’s Theorem

proper Bonnet is isothermic, 343
Boy’s surface, 208
Bryant quartic differential, 464

holomorphic
iff Willmore or special isothermic,

488
Bryant sphere, 379
Bryant surfaces, 379

C
Calapso potential, 469
Calapso’s equation, 475
canal immersion, 82

curvature spheres, 96
in�, 520
in M , 423
invariance under inversion, 90

canal immersions
cones, 108

canonical bundle, 373
canonical orientation

of Sr.m/� S3, 121
Cartan form, 334
Cartan holomorphic function, 341
Cartan’s

classification of proper Bonnet, 344
criterion for proper Bonnet, 334
map p W M ! RP1, 334

Cartan’s lemma, 54, 117, 166, 405
Cartan–Darboux

congruence, 22
existence, 23

catenary, 108
catenoid, 223

Weierstrass representation, 237
catenoid associates and helicoid, 238
catenoid cousins, 379
Cauchy–Schwarz inequality, 156
Cauchy-Schwarz inequality, 500
Cayley’s problem, 274
Čech cohomology, 472
central frames, 410
centro-affine

arclength parameter, 37
curvature, 37
curve, 36
curves

constant curvature, 46
plane, 35
radial point, 37

Chern’s Theorem on proper Bonnet,
343

Christoffel transform, 283, 324, 325
catenoid, 295
CMC immersion, 284
minimal immersion, 288
orientation preserved, 292
surface of revolution, 289
tori of revolution, 295
totally umbilic immersion, 288

Christoffel’s Theorem, 284
circle

in H3, 179
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circular hyperboloid
in H3, 186
in M , 428

circular paraboloid, 67
Clifford torus, 125
CMC immersion

Delaunay, 88
CMC immersions, 51

isothermic, 278
CMC1 immersions

finite total curvature, 379
CMC 1 immersions

holomorphic null immersions, 362
CMC 1 in H.3/

from null sl.2;C/ forms, 365
left-invariant solutions, 368
right-invariant solutions, 369

cocycle property, 372
Codazzi equations

frame F W U ! SL.2;C/, 358
surfaces in H3, 168
surfaces in R3, 57
surfaces in S3, 119

coframe field, 53
in S3, 115

cohomology
deRham, 81

complete
immersion, 248
Riemannian metric, 248

complex coordinates
principal, 276

complex projective space CPn, 203
complex quadric Q1, 231
complex structure

almost, 190
conjugate, 196
induced by conformal structure,

426
induced by metric, 195
on a manifold, 190
on a vector space, 189

cone
Bonnet, 308
circular, 107
in R3

is isothermic, 294
in R3, 78

canal, 108
into M , 444

Conf.S3/Š SO.R4;1/, 396
Conf.S3/, 392
confocal quadrics, 294
conformal

diffeomorphism, 89, 389
f
C

W S3 ! M , 394, 400
preserves spheres, 392

immersion
C in M , 432
surface in M , 403, 431

mean curvature vector, 408
metrics, 194
structure, 194, 394

adapted coframes, 196
on S2

1

, 165
on M , 403

conformal area element
˝ in M , 406
surfaces in space forms and M , 457

conformal associate, 292
of H D 0 immersion in R3, 234

conformal dual map of f W M ! M , 412
in frame adapted to z, 465
of Willmore immersion, 465

conformal factor, 389
calculation by z, 215
dependence on z, 217
relative to z, 199, 210

conformal Gauss map, 459
harmonic for Willmore, 459

conformally minimal immersion, 102
congruence

G, 29
Bonnet, 70
Euclidean, 47

second order frame, 69
conjugate surface, 234

Enneper, 235
conjugation map Cg, 8
constant mean curvature (CMC), 51
contact form, 509
contact structure, 509

on �, 510
Costa’s minimal surface, 252
cover

double
˙ W SU.2/! SO.3/, 206
S3 ! SO.3/, 319
� W C2 nf0g ! V � sl.2;C/, 361
� W SL.2;C/! SO

C

.3;1/, 349
universalQE.3/! E.3/, 319

criterion form, 279
dependence on first order frame, 69
of first order frame, 69
principal frame field, 476
relative to z, 219
second order independence, 107
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curvature
constant, 51
form

H3, 161
S3, 116
Euclidean space, 52

line of, 57
surface in H3 � M , 456
surface in R3 � M , 451
surface in S3 � M , 454
surface of revolution, 86
tubes, 109

mean, Gaussian, 51
of a minimal curve in C3, 267
of curve in S2, 140
plane curve, 83
principal, 51
total, 80

degree of Gauss map, 82
curvature sphere

in M
by frame adapted to z, 445
independence from z, 446

of a Legendre immersion, 516
oriented

in H3, 176
in R3, 76
in S3, 123
in M , 422
of � W M !�, 514

curves
holomorphic in C3

regular, 254
hyperbolic plane

curvature, 104
in H3, 179
in S2

frame field G W N ! SO.3/,
140

spinor lift, 140
in S3, 129
plane, 83

curves on S2, 77
cyclic frames in C3, 262
cyclide of Dupin, 82
cylinder

circular
in M , 428
inversion, 90
Legendre lift, 532

in S3

isothermic, 294
in M

invariants, 444

is isothermic, 278
on plane curve, 107

D
@ and N@, 197
deck transformations, 25

of exp W C ! C nf0g, 237, 380
decomposition by bidegree, 197
deformation equations, 316
deformation form, 313

criteria for deformation, 314
of a Bonnet pair, 315
relative to spin frame, 322

deformation quadratic differential, 299
CMC immersions, 302
deformation form, 315
holomorphic iff Bonnet mate, 301

degree
Gauss map, 82
integral, 81
local, 81

Delaunay CMC immersion, 88
discriminant of a PDE, 222
distance function

in H3, 185
in S3 , 120

distribution on Lie sphere group, 527
distributions, 19
divergent curve, 248
divergently parallel, 162
double cover SL.2;C/! SO.3;C/,

256
Dupin condition, 82

counterexample, 110
curvature spheres in R3, 96
curvature spheres in S3, 127
in H3, 177
in S3 , 125
invariance under inversion, 90

Dupin immersion
in�, 520
in M , 423

classified, 423
constant Calapso potential, 478

Legendre in �
classified, 529

projection invariance, 177
Dupin’s Theorem, 294

E
elastica

circle in hyperbolic plane, 104, 110
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Euler, 98
free, 99

hyperbolic plane, 104
elasticae

in S2, 143
element of pseudoarc, 266
elliptic type

PDE, 222
end of an immersion, 489
Enneper surface associates congruences, 236
Enneper’s surface, 216

Weierstrass representation, 234
Enneper–Weierstrass, 216

construction, 228
representation, 231

Enneper–Weierstrass map, 231
equivalence

Euclidean, 47
equivalent immersions, 299
E.3/-deformations, 313
R3 Š su.2/

S2 � su.2/, 139
Euclidean frame field, 52
Euclidean geometry in Möbius geometry,

415
Euclidean group, 48

complex E.3;C/, 253
Lie algebra, 48
rigid motions, 48

Euler characteristic, 100
Euler PDE notation, 222
Euler-Lagrange equation, 222
evenly covered, 25
exponential map

E .3/! E.3/, 84

F
factor property, 19
fiber bundle, 16
finite total curvature

�4� , 252
Gauss map omits 3 points, 252
minimal immersions, 251

first variation, 224
flow, 9
focal

locus, 93, 109
circular torus in S3, 150
Dupin, 110
surface in H3, 182
surface in S3, 130

point, 93
surface in S3, 130

focal map, 127
frame

at point, 32
moving, 32
reference, 30
second order at point

surface in R3, 59
frame field

along CMC 1 surface in H.3/
holomorphic, null, 358

along Dupin Legendre
second order, 524
third order, 526

along generic Legendre
second order, 520
third order, 522

along Legendre immersion, 514
first order, 517

along surface in H.3/
adapted to z, 357
first order, 355
oriented, 357

along surface in H3

first order, 166
first order change, 167
second order, 167

along surface in R3

first order, 53
first order change, 57
second order, 59

along surface in S3, 117
first order, 117
first order change, 118
second order, 119

along surface in M , 403
�-frame, 407
adapted to z, 437
first order, 404
first order to z, 435
principal, 476
second order, 408
third order, 410

direct cyclic
along minimal curve, 263
first order, 264
second order, 265
third order, 267

Euclidean, 61
change, 62
first order, 63
Frenet, 67
second order, 66
second order nonexistence, 67

first order, 39
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frame field (cont.)
Frenet, 34
in �, 508
in S3, 115
on open U � H.3/, 351
second order, 43

frame reduction
surface in R3

summary, 68
surface in S3

summary, 119
Frenet frame

along centro-affine curve, 37
along curve in H3, 179
along curve in R3, 94
along curve in S3, 129
along curve on S2 , 78

Frenet-Serret equations, 94
Frobenius condition, 20
Frobenius Theorem

global, 21
Frobenius theorem

local, 20
Fubini-Study metric, 203
Fujimoto’s theorem, 250
fundamental invariants

of Type A Legendre immersion, 523
Fundamental theorem of Lie sphere geometry,

504
fundamental vertical vector field, 10

G
�-frame, 407
Gauss equation, 55

surfaces in H3, 166
surfaces in S3, 118

Gauss map, 55
conformal in M , 459
degree, 82
Euclidean, 79

conformal, 79
harmonic, 218

hyperbolic, 183
conformal, 183
surface in H.3/, 357

of Weierstrass representation, 232
Gaussian curvature, 51

complex coordinate, 199
of Weierstrass representation, 232

general linear group
complex GL.n;C/, 7
real GL.n;R/, 7

genus, 100, 208

geodesic
in B3, 185
in H3, 185
orientation, 175

geodesic curvature
upper half-plane, 103

Goursat transform, 255
of the catenoid, 259

Grassmannian
G.2;3/, 62
G.2;6/, 502
G.m;n/, 13

great sphere, 120
G-congruence, 29
group actions

origin, 10
projection map, 10
transitive, 10

H
harmonic function, 198
helicoid, 223
helix

in H3, 179
Hermitian inner product, 137
hermitian matrices Herm, 348
Hodge star operator, 68
holomorphic

function, 219
map, 199

holomorphic line bundle, 229
holomorphic quadratic differential

nonexistence on Riemann sphere, 300
holomorphic section, 372
holomorphic section of � W C2 nf0g ! CP1,

270
homogeneous

submanifolds, 43
homogeneous submanifold, 43
homothety, 100, 390
Hopf cylinder over � W N ! S2, 141

k and b relative to z, 492
nonisothermic, 490

Hopf fibration
�h W S3 ! S2, 138

equivariance with SU.2/, 151
S3 ! CP1 Š S2, 138

Hopf invariant
calculation by z, 215
dependence on z, 218
relative to z

in space forms, 211
relative to first order frame, 56
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Hopf quadratic differential, 297
in frame relative to z, 215
in space forms, 211
of Weierstrass representation, 232

Hopf Theorem on constant H, 213
Hopf transform L W S ! C, 56
Hopf’s Theorem on CMC, 301
horn cyclide, 425
horosphere in H3, 170
How to solve dGG�1 D 	, 370
hyperbolic Gauss map, 183

conformal, 183
hyperbolic geometry in Möbius geometry, 416
Hyperbolic plane

Poincaré disk, 99
upper half-plane model, 103

Hyperbolic space
hermitian matrix model

H.3/� Herm, 348
Minkowski hyperboloid model

H3 D SO
C

.3;1/=SO.3/, 348
Minkowski hyperboloid model H3 � R3;1,

156
Poincaré ball model

B3 � R3, 171
hyperbolic type

PDE, 223
Riemann surface, 246

hyperboloid, 107

I
I4;1, 393
immersion of revolution

in R3, 85
in S3, 128

induced metric
surface in H.3/, 356

infinitesimal generator, 9
integrating factor, 194
invariants

constant, 45
Euclidean, 67
Möbius, 411

calculate from z, 443
dependence on z, 439
first order to z, 437
second order to z, 437

inversion, 390
in S2, 89, 101
preserves spheres, 390

isometric immersions
in R3, 312

isometric isomorphism

 W C2 ! R4, 137
isometries

E.3/ of R3, 48
O

C

.3;1/ of H3, 157
isomorphic Riemann surfaces

S2 Š CP1, 205
isoparametric immersion, 82

classification
in H3, 186
in R3, 84
in S3, 126

isothermal coordinates, 194, 276
isothermic

harmonic argument of Hopf invariant,
280

isothermic criterion, 279, 470
form, 476
Möbius invariant p2 D 0, 477
principal frames, 476

isothermic immersion, 277
Christoffel’s Theorem, 284
CMC in R3, 278
cones in R3, 294
cylinders, 278
cylinders in S3, 294
Dupin, 295
into M , 470
proper Bonnet, 278
special

4.logk/zNz D sk�2 � k2, 485
special from CMC, 484
tangential 1-form, 286

isotropic holomorphic 1-form, 228
characterization, 230

isotropic vector, 216, 253
I � C3, 434
parametrized by complex quadric, 231

isotropy
linear, 31
representation, 11
subgroup, 11

G on �, 507
MRob on M , 400
O.4/ on S3, 113
O

C

.3;1/ on H3, 158
SL.2;C/ on N.3/=R�, 353
SL.2;C/ on H.3/, 350
SL.2;C/ on CP1, 353
SO

C

.3;1/ on S2
1

, 164

J
Jacobi identity, 360
Jacobian elliptic function, 143
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K
K.r;A;y/� MRob, 401
K.t;u;A/ 2 SO

C

.3;1/, 164
k.c;B;Z;b/ in Lie sphere group, 507
Killing form, 360

sl.n;C/, 386
su.2/, 139

Klein bottle, 208
Korn-Lichtenstein Theorem, 192
KPP construction, 325

on cone, 331
on cylinder, 329

L
� is

all lines in Q, 499
all pencils in S3, 501
submanifold of G.2;6/, 501
unit tangent bundle of S3, 535

latitude, 86
lattice

in R2, 125
lattices, 207

conformally equivalent, 219
Lawson correspondence, 214
Lawson-Tribuzy Theorem, 342
Lebesgue number, 24, 72
left multiplication Lg, 8
Legendre lift, 510

circular cylinder, 532
circular tori, 530
constructions, 511
of a great circle, 528
surface with singularities, 512

Legendre map, 510
Levi-Civita connection

on surface in H3, 166
Levi-Civita connection form, 55
g-valued 1-forms

wedge product, 22
Lie algebra, 8

o.3/, 13
o.3;1/, 158
o.4/

decomposition, 114
mRob of Möbius group, 399
su.2/, 139
Lie sphere group, 506

Lie algebra isomorphism
˙

�

W su.2/! o.3/, 206
sl.2;C/Š o.3;1/, 350

Lie bracket
E .3/, 49

o.3;1/, 158
o.4/, 114

Lie congruence
circular cylinders and tori, 533

Lie frame field, 514
Lie frame of R4;2, 505

�0; : : : ;�5, 505
Lie group

action, 9
matrix, 7

Lie parallel transformations in SO.4;2/, 504
Lie quadric

Q D S3;1 [M , 497
oriented spheres in space forms, 497

Lie quadric Q � P.R4;2/, 496
Lie sphere group

G in Lie frame of R4;2, 506
O.4;2/=f˙Ig, 504

Lie sphere transformation, 502
lift of f W M ! M , 404
lift property, 11
light cone

N � R3;1, 162
L � R4;1, 394

limit horn cyclide, 425
limit spindle cyclide, 425
limiting ray, 162
line bundles, 371

isomorphic, 372
product, 374
trivial, 372

line of curvature, 57
surfaces in H3 � M , 456
surfaces in R3 � M , 451
surfaces in S3 � M , 454
surfaces in M , 448

linear isotropy representation, 31
lines in Q � P.R4;2/, 499
lines of curvature

invariance under inversion, 90
Liouville’s Theorem, 392
local trivialization, 10, 16
Lorentz group

O
C

.3;1/, isometries of H3, 157
O.3;1/, 157
connected component SO

C

.3;1/, 157
Lorentzian inner product, 393

M
matrix exponential, 9
Maurer–Cartan

form
E.3/, 49
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MRob, 399
O.3;1/, 158
O.4/, 114
SL.2;C/, 350
SL.2;R/, 36
SO

C

.3;1/, 350
decomposition, 32
Lie sphere group G, 506

form !, 8
structure equations, 8

E.3/, 49
O.3;1/, 159
O.4/, 115

mean curvature, 51
meridian, 86
meromorphic function, 229

local representation, 229
minimal curve in C3, 254

curvature, 267
minimal immersion

in R3, 102
minimal ruled surfaces, 270
minimal surface

in R3

harmonic height function, 216
in R3, 51

minimal surface equation of Meusnier, 222
minimal surfaces of revolution, 270
Minkowski space R3;1, 155
Minkowskian inner product on Herm, 348
MRob, 398
Möbius frame field

along surface in M , 403
in M , 402

Möbius frame of R4;1, 397
standard ı0; : : : ;ı4, 398

Möbius invariant
first order to z, 437
second order to z, 437

Möbius invariants, 411
from space form invariants, 449
related to those relative to z, 460

Möbius space, 393
M � P.R4;1/, 400

modulus
Jacobian elliptic function, 144

monodromy matrix, 381, 545
monodromy operator, 145
moving frame, 32

change, 33
MSE minimal surface equation, 222
multiplicity

curvature sphere
in R3, 77

in S3, 123
focal point, 93

N
nonisothermic immersions

densely, 478
Hopf cylinders, 490
Pinkall’s Willmore tori, 492
totally, 302
tubes, 281

normal
inward pointing, 121

normal curvature, 51
normal vector field, 53
null immersion projection, 362
null immersions into SL.2;C/, 360

O
one-form

complex valued, 192
orbit, 15
orbit type, 15

of a Legendre immersion, 520
orientation induced by tangent sphere map,

422
orientation on M , 403
oriented

great spheres in S3 , 534
plane in R3, 75
sphere in H3, 170
sphere in R3, 74
sphere in S3, 121, 418, 493

set of all is Lie quadric, 496
under stereographic projection, 131

spheres in S3

set of all, 495
oriented contact, 500
oriented spheres in M , 418
origin

N.3/, 353
E.3/ acting on R3, 50
O.4/ acting on S3, 113
O

C

.3;1/ acting on H3, 158
O.4;1/� O.4;2/, 503
O.4;2/, 503
O.4;1/, 395
O.R4;1/, 395
orthogonal group

O.3/, 12, 48
O.4/, 113
O.n/, 26
special SO.2;C/, 271
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orthogonal group (cont.)
special SO.3;C/, 253

Goursat’s Theorem, 259
in cyclic frame E, 262

Osserman’s problem, 252

P
P.R4;1/, 393
Pappus’s Theorem, 95
parabolic type

PDE, 223
Riemann surface, 246

parallel
asymptotically, 162
transform

plane in H3, 182
transformation

in H3, 181
parallel postulate

hyperbolic geometry, 162
parallel transformations

Bonnet’s Theorem, 93
in R3, 91

principal curvatures, 92
in S3, 130

principal curvatures, 150
parallel transformtions

conformal in S3, 151
Pauli matrices, 349
PDE type, 222
pencil of oriented spheres

in S3, 122, 501
in M , 420

periods of ˛, 228
Pinkall tori, 147

nonisothermic, 492
plane curves, 83
plane in H3, 170
planes
˘h.n/� R3

oriented, 75
Poincaré Disk, 99

circles, 99
Poincaré disk, 27, 200
point pairs in CP1, 255
point sphere in S3, 120
point spheres in S3, 534
polar coordinates, 207
polar decomposition of B 2 SL.2;C/,

387
principal

curvature
surfaces in H3, 167

surfaces in R3, 51, 56, 68
surfaces in S3, 118, 120

direction, 56
vectors

surfaces in S� , 211
surfaces in M , 448
surfaces in M and space forms, 451

principal bundle
� W SO.R4;1/! M , 397
� W MRob ! M , 400
� W O

C

.3;1/! H3, 158
� W SO

C

.3;1/! S2
1

, 164
definition, 10
Hopf fibration, 151
projection, 10

principal complex coordinate, 469
principal coordinates, 276

complex, 276
principal curvature

surface in R3, 66
principal frame field, 333, 476
principal function, 473
principal normal

plane curve, 83
Principle of symmetric criticality, 143
profile curve, 85, 128
projection

holomorphic null immersion
invariants, 362

projection of a null immersion, 362
projection of a principal bundle, 10
projective coordinates of a tangent sphere, 515
projective space

on R4;1, 393
proper Bonnet

Cartan holomorphic function, 340
proper values of A 2 SU.2/, 146
pseudoarc parameter, 266
pseudosphere, 87
pseudospherical immersion, 87

Q
quadrics are isothermic, 275
quaternion conjugation, 317
quaternions

right C-module, 317
quotient G=H, 15

R
R4;1, 393
radii of curvature, 92
Rank Theorem, 96
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reference frame, 30
E.3/ acting on R3, 50
direct cyclic of C3, 262

regular value, 81
removable singularities lemma, 338
representation

E .3/ in gl.4;R/, 48
E.3/ in GL.4/, 48

residue, 243
Ricci condition, 247
Riemann Mapping Theorem, 290
Riemann sphere, 202

OC D C [ f1g, 432bC Š CP1, 138
invariants in M , 443

Riemann surfaces
complex plane C, 200
conformally equivalent, 199
definition, 191
isomorphic, 199
Poincaré disk, 200
Riemann sphere, 202
tori, 207
upper half-plane, 201

Riemannian metric
G-invariant, 12
induced on H3 � R3;1, 157
induced on S3 � R4, 115
on H3

from O
C

.3;1/, 160
on S3

from O.4/, 116
right half-plane, 338
right multiplication Rg, 8
rigid motions, 48
Ruh-Vilms theorem, 218
ruled surfaces

minimal, 270

S
S D all 2�2 symmetric real matrices, 18
Sard’s Theorem, 81
Scherk’s surface, 223

Weierstrass representation, 239
Schwarzian derivative, 439
second fundamental form

into bidegrees, 211
surfaces in H3, 166
surfaces in R3, 51, 55
surfaces in S3, 118

section
local, 10
principal bundle, 10

sectional curvature
H3, 161
S3, 116

semi-direct product, 48
shape operator, 55
signed height, 75
similarity deformation, 321
similarity group

CSO.3/, 319
sine-Gordon equation, 88
sl.2;C/ decomposition

hermitian C skew-hermitian, 352
slice, 16

criteria for, 17
space curve frames, 107
space forms, 208, 412

isometry groups, 412
SO.R4;1/, 395
special isothermic immersion

character, 485
from CMC, 484

special linear group
SL.2;C/, 255

Goursat’s Theorem, 258
SL.2;R/, 201
SL.2;R/, 14, 35
SL.n;R/, 9

special orthogonal group
SO.n/, 9

special unitary group
SU.1;1/, 26, 200
SU.2/, 204

action on CP1, 204
SU.2/Š S3 � C2, 138

sphere
S3 � R4, 113
S3 � C2, 138
at infinity of H.3/

N.3/=R� Š CP1, 354
S2

1

D N.3/=R� , 353
at infinity of H3

S2
1

D N=R�, 353
at infinity of H3

S2
1

Š @B3, 173
S2

1

D N=R�, 162
spheres

Sr.m/� H3

oriented, 160, 170
Sr.m/� R3

oriented, 74
Sr.m/� S3, 120

oriented, 121
set of nonpoint ˙ , 120
set of oriented Q̇ , 122
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spherical geometry in Möbius geometry, 413
spherical projection � W�! M , 502
spin frame, 319
spin group

Spin.3/, 318
spindle cyclide, 425
spinor

bundle, 375
field, 375

spinor lift � W N ! SU.2/, 140
spiral cylinder, 424
stabilizer, 16
standard fiber, 16
stereographic projection, 202, 392

composed with s, 176
composed with O.4/, 151
default, 131
general, 130
hyperbolic, 171
image of oriented spheres, 131
inverse of oriented plane, 132
of circular torus, 151
of oriented curvature spheres, 135

structure constants, 41
structure equations

surfaces in R3, 52, 68
surfaces in S3, 120

structure equations relative to z, 212
H D 0 in R3 Š CMC1 in H3, 214
H D 0 in S3 Š CMC1 in R3, 215

submersion, 10
surface of revolution

catenoid cousin in H.3/, 382
in H3, 179
in R3, 85
in S3, 128
is isothermic, 277
metrics, 206
minimal in R3, 270

surfaces of translation, 223
minimal in R3, 270

T
T-transform, 474

of minimal is CMC, 487
tangent sphere

in H3, 163
in M , 421
oriented

in H3, 176
in R3, 76
in S3, 123

tangent sphere map

of Legendre immersion, 514
of surface in S3, 124
of surface in M , 421

tangential 1-form, 286
Theorema Egregium, 55
third fundamental form, 79, 92
Thomsen’s Theorem

Willmore and isothermic
Möbius congruent to minimal, 489

three point transitive, 537
time orientation, 395
time oriented, 402
tori, 207

circular
in S3, 217
in R3, 100
in S3, 124
in S3 and M , 455
in M , 428, 446
Legendre lift, 530

torsion of a space curve, 94
total curvature, 80

Scherk’s surface, 247
totally nonisothermic, 302
totally umbilic

surface in B3, 172
surface in H3, 170
surface in R3, 75
surface in S3, 121

tractrix, 87
transition function, 372
triply orthogonal system, 294
tubes

about curve in H3, 181
about curve in R3, 94
about curve in S3, 129
lines of curvature, 109

twisted product, 16

U
ultrasphere in H3, 170
umbilic

curve of, 86
of a Legendre immersion, 517
of surfaces in H3, 167
of surfaces in R3, 56
of surfaces in S3, 119
of surfaces in M , 406
of Willmore immersions into M , 458
totally

S.p/� H3, 185
classification in H3, 170
surface in H3, 169
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surface in R3, 75
surface in S3, 121
surface in M , 419

umbilic point
invariance under inversion, 90

Uniformization Theorem, 289
unit tangent

plane curve, 83
unit tangent bundle US3 of S3, 535
unitarizable map RG W � ! SL.2;C/, 370
unitary group

special, 138
universal cover
˙ W SU.2/! SO.3/, 206
�s W SU.2/! SO.3/, 139

upper half-plane, 201

V
variation

admissible
immersion into M , 457

variation vector field, 225
immersion into M , 457

vector field
induced, 10
left invariant, 9

volume form
H3, 161

Voss minimal surfaces, 250

W
W-surface, 51

Weierstrass
representation, 231

Weierstrass and spinor data, 378
Weierstrass data, 233, 371
Weingarten map, 55
Weingarten surface, 51
Willmore

circular torus, 100
conjecture, 101

Marques-Neves, 103
tori of revolution, 103
tubes, 105

function
dependence on z, 466
relative to �-frame, 407
relative to z, 438

functional, 100
conformal area, 102
Euler-Lagrange equation,

102
space forms, 457
surfaces in S3, 143

immersion, 102, 105
into S3, 143
into M , 458
Pinkall’s Hopf tori, 105
torus into S3, 147

Willmore associates in M , 460
winding number, 243

X
Xavier’s theorem, 250
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